PROGRAMME DE COLLE n°7 Semaine du 10/11 au 14/11

Chimie organique: création de liaison C-C par

- réaction de Diels-Alder ;
- utilisation des ions énolates ;
- utilisation des organomagnésiens et réactivité nucléophile des ions énolates

Notions et contenus	Capacités exigibles
Réaction de Diels-Alder	
Diastéréosélectivité, stéréospécificité, régiosélectivité, influence de la structure des réactifs sur la vitesse de la transformation (règle d'Alder).	
Réaction de rétro-Diels-Alder.	réaction de Diels-Alder sous contrôle cinétique.

La règle endo n'est plus au programme.

Réactivité nucléophile des énolates	
Équilibre de tautomérie céto-énolique.	Représenter le(s) énol(s) isomère(s) d'une espèce énolisable.
Acidité d'un aldéhyde ou d'une cétone.	•
Généralisation à d'autres espèces énolisables.	Identifier un énol et représenter l'aldéhyde ou la cétone dont il est l'isomère.
	Représenter la base conjuguée d'une espèce énolisable et justifier sa stabilité à l'aide du formalisme de la mésomérie.
	Proposer ou justifier le choix d'une base permettant de déprotoner une espèce énolisable, les valeurs des pKa étant fournies.
C-alkylation en position α d'un groupe carbonyle de cétone : mécanisme limite, régiosélectivité de l'alkylation des énolates.	Justifier la réactivité nucléophile ambidente de l'énolate dans le formalisme de la mésomérie ou par l'analyse de ses orbitales frontalières.
	Décrire les interactions entre orbitales frontalières des réactifs et interpréter la régiosélectivité de l'alkylation de l'énolate.
Aldolisation non dirigée : mécanisme en milieu basique aqueux ou alcoolique.	Identifier dans une analyse rétrosynthétique les réactifs permettant d'obtenir un aldol, un cétol,
Aldolisation croisée dirigée avec déprotonation totale préalable : mécanisme, intérêt synthétique.	un α -énal, une α -énone.
	Choisir dans le cadre d'une stratégie de synthèse les meilleures conditions expérimentales de préparation d'un aldol (d'un cétol) issu d'une aldolisation croisée.
	Justifier par la compétition avec l'aldolisation l'impossibilité d'alkyler un aldéhyde.
Crotonisation : déshydratation de l'aldol (cétol) en présence d'une base, mécanisme E1cb, régiosélectivité.	Justifier la régiosélectivité de la crotonisation en présence d'une base.
Réaction de Michael sur une α-énone; mécanisme.	Décrire les interactions entre orbitales frontalières des réactifs et interpréter la régiosélectivité de la réaction de Michael.
	Identifier dans une analyse rétrosynthétique les réactifs permettant de réaliser une addition de Michael sur une α -énone.
Utilisation des organomagnésiens en synthèse	
Notions et contenus	Capacités exigibles
Synthèse des alcools par action des organomagnésiens sur les époxydes et les esters, mécanismes.	Identifier dans une analyse rétrosynthétique les réactifs de la synthèse magnésienne d'un alcool.