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Dans tout ce chapitre, K désigne R ou C et E un K-espace vectoriel

I Rappels

Définition 1 Soient F1, . . . , Fr des sous-espaces vectoriels de E.

On dit que la somme F1 + · · ·+ Fr est directe, et on la note F1 ⊕ · · · ⊕ Fr ou
r⊕

i=1

Fi lorsque :

∀x ∈ F1 + · · ·+ Fr, ∃ ! (x1, · · ·xr) ∈ F1 × · · · × Fr, tel que x = x1 + · · ·+ xr

Proposition 1 Soit E un espace vectoriel de dimension finie et F1 ⊕ · · · ⊕Fr une somme directe de sous-espaces
vectoriels (non réduits à {0}). Soient B1, . . . ,Br des bases respectives de F1, . . . , Fr.

• Alors la famille obtenue par concaténation des bases B1, . . . ,Br est une base de F1 ⊕ · · · ⊕ Fr.

• dim(F1 ⊕ · · · ⊕ Fr) =
r∑

i=1

dim(Fi).

Proposition 2 Soient F1, . . . , Fr des sous-espaces vectoriels de E (de dimension finie).
Soient B1, . . . ,Br des bases respectives de F1, . . . , Fr.
Si la famille obtenue par concaténation de B1, . . . ,Br est une base de E, alors la somme des Fi est directe et de
plus : F1 ⊕ · · · ⊕ Fr = E.

Corollaire 1 Soit E un espace vectoriel de dimension finie, muni d’une base B.

Si on partitionne B en B1, · · · ,Bp, et si on pose Fi =Vect(Bi), alors E =

p⊕
i=1

Fi.
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II Eléments propres d’un endomorphisme

II.1 Définitions

Définition 2 (Eléments propres d’un endomorphisme)
Soit E un espace vectoriel sur K. Soit f un endomorphisme de E. Soit λ ∈ K.

• λ est une valeur propre de f si et seulement si il existe un vecteur x non nul de E tel que f(x) = λx.

• Un tel vecteur x est appelé vecteur propre de f associé à la valeur propre λ.

• L’ensemble des valeurs propres de f est appelé spectre de f et est noté spec(f).

• Si λ est une valeur propre de f , alors Eλ = {x ∈ E, f(x) = λx} est appelé sous-espace propre associé à λ

Notation : Ker(λIdE − f) = Ker(f − λIdE) = V (λ) = Eλ = Vf (λ) = ... à préciser....
Exemple 1 Pour tout (x, y, z) ∈ R3, f(x, y, z) = (2x, y + 3z, 4y) Calculer f(e1), montrer que 2 est une valeur propre
de f , déterminer le sous espace propre de f associé à la valeur propre λ = 2.
Exemple 2 Pour tout ∀(x, y) ∈ R2, f(x, y) = (−y, x). Valeurs propres de f ?

II.2 Propriétés

Proposition 3 Soit f un endomorphisme de E.
1. Le sous espace propre de f associé à λ est le noyau de (f − λIdE) :

Eλ = {x ∈ E, f(x) = λx} = Ker(f − λIdE)

C’est donc un sous-espace vectoriel de E.
2. Les afirmations suivantes sont équivalentes :

(a) λ est une valeur propre de f

(b) ∃x ̸= 0, f(x) = λx

(c) ∃x ̸= 0, f(x)− λx = 0

(d) Ker(f − λIdE) ̸= {0}
(e) (f − λIdE) n’est pas injective
(f) (f − λIdE) n’est pas bijective (valable si E de dimension finie)

Théorème 1 (dem)
(a) 2 vecteurs propres de f associés à 2 valeurs propres distinctes λ1 et λ2 sont linéairements indépendants.
(b) p vecteurs propres de f associés à p valeurs propres distinctes λ1, ....., λp forment une famille libre.
(c) Si E est de dimension n, alors tout endomorphisme f de E admet au maximum n valeurs propres distinctes.

Théorème 2 (Somme de sous-espaces propres)
Un somme finie de sous-espace propres associés à des valeurs propres distinctes est directe.
Autrement dit : si λ1, ....., λp sont des valeurs propres de f deux à deux distinctes, alors les sous espaces propres
associés Eλ1 , ....., Eλp sont en somme directe.
Conséquence : dim(Eλ1

) + ....+ dim(Eλp
) ⩽ dim(E) (lorsque les dimensions sont finies)

Preuve Démonstration par récurrence sur le nombre de sous-espaces propres. On se donne f ∈ L(E).
On pose Hr : « Si F1, · · · , Fr sont des sous-espaces propres associés à des valeurs propres distinctes de f ,

alors la somme
r∑

i=1

Fi est directe ».

Démonstration à faire ...



PC, Briand Réduction des endomorphismes et des matrices carrées –3/13–

Proposition 4 (Vecteurs propres et sous espace stable. (dem))
• Un vecteur x non nul de E est un vecteur propre de f si et seulement Vect(x) est stable par f .
• Soit f , g ∈ L(E). Si f et g commutent, alors les sous-espaces propres de l’un sont stables par l’autre.

II.3 Polynôme d’endomorphisme et valeur propre

Proposition 5 (dem) Soit f un endomorphisme d’un espace vectoriel E. Soit P un polynôme.
Soit x un vecteur de E tel que f(x) = λx, alors P (f)(x) = P (λ)(x)

Autrement dit : si P =

N∑
k=0

αkX
k et x ∈ Eλ alors P (f)(x) =

(
N∑

k=0

αkλ
k

)
x.

Proposition 6 (Valeur propre et racine d’un polynome annulateur)
Si P est un polynome annulateur de f et si λ est une valeur propre de f alors λ est une racine de P .
La réciproque est fausse : toute racine de P n’est pas nécessairement une valeur propre.

Remarque 1 Le résultat précédent est à exploiter lorqu’on dispose d’un polynome annulateur de f , et que l’on
cherche les valeurs propres de f : il n’est pas nécessaire de faire une recherche générale des valeurs propres, il suffit de
les chercher parmi les racines du polynome annulateur .
Exemple 3 Valeurs propres d’un projecteur ? D’une symétrie vectorielle ?

III Eléments propres d’une matrice carrée

III.1 Définitions

Définition 3 (Eléments propres d’une matrice carrée) Soit n ∈ N∗ et soit A ∈ Mn(K). Soit λ ∈ K.
• λ est une valeur propre de A si et seulement si il existe une matrice colonne X non nulle de Mn,1 telle

que AX = λX.

• Un tel vecteur X est appelé vecteur propre de A associé à la valeur propre λ.

• L’ensemble des valeurs propres de A est appelé spectre de A et est noté spec(A).

• Si λ est une valeur propre de A, alors Eλ = {X ∈ Mn,1, AX = λX} = Ker(A − λI) est appelé
sous-espace propre associé à λ

Notation : Ker(λIn −A) = Ker(A− λIn) = V (λ) = Eλ = VA(λ) = ... à préciser....

III.2 Propriétés

Proposition 7 Si E est rapporté à une base B, si f ∈ L(E) et A = MB(f) alors :

(−→x ∈ E est vecteur propre de f associé à λ
)

⇐⇒
(

X = MB(
−→x ) est vecteur propre de A

associé àλ

)
.

Remarque 2 Soit A ∈ Mn(K). On note f l’endomorphisme de Kn canoniquement associé à A.
La traduction des propriétés (du paragraphe II.2) sur la matrice A donne :

λ est une valeur propre de f ⇐⇒ λ est une valeur propre de A
⇐⇒ ∃X ̸= 0, AX = λX
⇐⇒ ∃X ̸= 0, (A− λI)X = 0
⇐⇒ Ker(A− λI) ̸= {0}
⇐⇒ (A− λI) n’est pas inversible
⇐⇒ det(A− λI) = 0
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Exemple 4 Déterminer les valeurs propres de J =

1 1 1
1 1 1
1 1 1

 et donner une base de chaque sous-espace propre.

Même question pour la matrice aJ + bI ; avec (a, b) ∈ K2.

Remarque 3 Il peut arriver que le spectre dépende du corps K considéré. Dans ce cas, on note SpK(A). Considérons

par exemple la matrice R(x) =

(
cos(x) − sin(x)
sin(x) cos(x)

)
où x ̸≡ 0[π]. Quel est le spectre de R(x) dans R ? Dans C ?

Théorème 3 Soit A ∈ Mn(K).
Soit E un K-espace vectoriel de dimension n, rapporté à une base B.
Si f ∈ L(E) a pour matrice A dans la base B, alors les affirmations suivantes sont équivalentes :

1. λ est valeur propre de f

2. Ker(λIdE − f) ̸= {−→0 } (ou Ker(f − λIdE) ̸= {−→0 })
3. dim Ker(λIdE − f) ≥ 1

4. λIdE − f n’est pas bijective
5. λIn −A n’est pas inversible
6. det(λIn −A) = 0 (ou det(A− λIn) = 0)
7. λ est valeur propre de A

Par conséquent, Sp(A)=Sp(f).

De plus : les dimensions des sous-espaces propres associés sont les mêmes car : rg(f − λIdE)= rg (A− λIn).

III.3 Polynôme de matrice et valeur propre

Proposition 8 (Polynome annulateur et valeur propre d’une matrice)
Si P est un polynome annulateur d’une matrice A et si λ est une valeur propre de A alors λ est une racine de P .
La réciproque est fausse : toute racine de P n’est pas nécessairement une valeur propre de A

Exemple 5 On admet que P = X3 −X2 − 2X annule la matrice A =

 2 0 −3
−3 −1 3
0 0 −1

.

Déterminer les valeurs propres de A

Dans tout ce qui suit, E est un espace vectoriel de dimension n ∈ N∗ et f est un endomorphisme de E.

IV Polynôme caractéristique

IV.1 Introduction
Rappels : Nous avons vu que λ ∈ Sp(A) ⇐⇒
Nous allons donc étudier plus précisément (x 7→ det(xIn −A)).

Exemple 6 1. Déterminer det(xI2 −A)) pour A =

(
a b
c d

)
.

2. Soit A =

a b c
d e f
g h i

. Montrer que det(xI3 −A)) est une fonction polynomiale de degré 3.

Theorème-Definition 4 (Polynôme caractéristique)
• Soit A ∈ Mn(K). L’application (K −→ K, x 7→ det(xIn −A)) est une fonction polynomiale.

Le polynôme ainsi défini, est appelé polynôme caractéristique de A (et souvent noté χA).
• Soit f ∈ L(E). L’application (K −→ K, x 7→ det(xIdE − f)) est une fonction polynomiale.

Le polynôme ainsi défini est appelé polynôme caractéristique de f (et souvent noté χf ).
• Si A est la matrice de f dans une base quelconque B, alors χf = χA.

Lemme 5 Soit (A,B) ∈ Mn(K)2. Pour tout x ∈ K, on pose P (x) =det(A+ xB).
La fonction P ainsi définie est une fonction polynômiale à coefficients dans K et deg(P ) ≤ n.
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Preuve (du lemme)
Procédons par récurrence. Le résultat est immédiat pour n = 1 et n = 2.
Soit n ≥ 2, fixé. Supposons le lemme vrai pour les matrices de taille n− 1 et considérons A et B dans Mn(K). Posons
A = (aij) et B = (bij) et M = (mij) = (aij + xbij).
Pour tout couple (i, j) on notera Aij (resp. Bij ou Mij) la matrice obtenue en barrant dans A (resp. dans B ou M)
la i-ème ligne et la j-ème colonne.
Développons le déterminant Det(A+ xB) par rapport à la première colonne :

Det(M) = P (x) =

n∑
i=1

(−1)(i+1)(ai1 + xbi1)× Det(Ai1 + xBi1).

L’hypothèse de récurrence permet de conclure que P est une fonction polynomiale et deg(P ) ≤ n.

Preuve (du théorème) Le deuxième item du théorème est une conséquence immediate du premier item.
Le 1er item du théorème est une conséquence immédiate du lemme.
Le 3e item à faire en cours...

Théorème 6 (Expression du polynome caracteristique. (dem))
• Soit A ∈ Mn(K). Le polynôme caractéristique de A est de degré n et vérifie :

χA(X) = Xn − tr(A)Xn−1 + ......+ (−1)ndet(A)

• Soit f ∈ L(E). Le polynôme caractéristique de f est de degré n et vérifie :

χf (X) = Xn − tr(f)Xn−1 + ......+ (−1)ndet(f)

Preuve Le deuxième item du théorème est une conséquence immédiate du premier car, si A est la matrice de f dans
une base , alors χf = χA, Tr(f) =Tr(A) et det(f) = det(A).

Le coefficient constant d’un polynôme P est égal à P (0). Donc χA(x) = Det(0In −A) = (−1)nDet(A).
Pour montrer le théorème, il nous reste à nous intéresser aux deux termes de plus hauts degrés de χA.
Posons : H ′

n : « Si A ∈ Mn(K), χA = Xn − tr(A)Xn−1 + ......+ a0 »
La proposition H ′

n est évidente pour n = 1 ou n = 2, il suffit d’expliciter le déterminant.
On suppose H ′

n−1 vrai pour n ≥ 3 fixé. On écrit le déterminant pour une matrice de taille n :

Det(xIn −A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− a11 · · · −a1i · · · −a1n
−a21 x− a22 · · · −a2i · · · −a1n

...
...

...
...

−ai1 · · · x− aii · · · −ain
...

...
...

...
−an1 · · · −ani · · · x− ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
De même que précédemment, on note M = xIn − A, Mij la matrice obtenue en barrant dans la matrice M la i-ème
ligne et la j-ème colonne, et Aij la matrice obtenue en barrant dans la matrice A la i-ème ligne et la j-ème colonne
On développe Det(xIn −A) par rapport à la première colonne et on a :

det(xIn − a) = (x− a11)× Det(M11) +

n∑
i=2

(−1)(i+1)(−ai1)× Det(Mi1).

La matrice M11 est une matrice de taille n− 1, et M11 = xIn−1 −A11.
On peut donc utiliser H ′

n−1 appliqué à la matrice A11 et l’on pbtient :

Det(M11) = χA11
(x) = xn−1 − tr(A)xn−2 + ......+ (−1)n−1det(A11).

Pour i ≥ 2, on constate que la première ligne de Det(Mi1) ne contient que des coefficients constants (indépendants
de x). On développe alors Det(Mi1) par rapport à la première ligne, et en appliquant le lemme, on en déduit que
Det(Mi1) est une fonction polynomiale de degré inférieure ou égal à n− 2 (calcul à expliciter...).

Ainsi : det(xIn − a) = (x− a11)×
(
xn−1 − tr(A)xn−2 + ......+ (−1)n−1det(A11)

)
+Q(x) où deg(Q) ≤ n− 2.

On peut alors conclure en examinant les termes de plus hauts degrés...
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IV.2 Propriétés

Proposition 9 (Valeurs propres et polynome caractéristique. (dem)) On suppose E de dimension finie.
Les valeurs propres d’un endomorphisme de E sont les racines de son polynome caractéristique.
Les valeurs propres d’une matrice carrée A sont les racines de son polynome caractéristique.

Remarque 4 On retrouve le fait qu’un endomorphisme d’un espace de dimension n (resp. une matrice carrée de taille
n) a au plus n valeurs propres distinctes.

Exemple 7 Déterminer les valeurs propres de A =

−5 −2 0
1 −5 −1
0 2 −5


Proposition 10 (Matrices semblables et polynome caractéristique. (dem))
Si deux matrices A et B sont semblables, alors elles ont le même polynome caractéristique.
La réciproque est fausse.

Proposition 11 (Polynome caractéristique d’une matrice triangulaire)
Soit A ∈ Mn(K) une matrice triangulaire dont les termes diagonaux sont notés d1, d2, ....dn. On a alors :

χA(X) = (X − d1)(X − d2).....(X − dn)

Dans le cas d’une matrice triangulaire, il est donc inutile de faire le moindre calcul pour en connaître le spectre !

Proposition 12 (Polynome caractéristique et matrice transposée. (dem))
Une matrice carrée et sa transposée ont le même polynome caractéristique.
Conséquence : une matrice carrée et sa transposée ont les mêmes valeurs propres.

Proposition 13 (Polynome caractéristique d’une matrice par blocs. (dem))

Soit (p, q) ∈ (N∗)2 et M =

(
A C
0 B

)
∈ Mp+q(K) une matrice triangulaire par blocs, avec

 A ∈ Mp(K),
B ∈ Mq(K)
C ∈ Mp,q(K)

.

Alors χM = χA × χB

Théorème 7 (Théorème de Cayley-Hamilton)
• Soit E de dimension finie et soit f ∈ L(E). Alors le polynome caractéristique de f annule f .

Autrement dit : si P = χf alors P (f) = 0L(E).

• Soit A une matrice de Mn(K). Le polynome caractéristique de A annule la matrice A.
Autrement dit : si P = χA alors P (A) = 0.

Demonstration non exigible.

Exemple 8 Soit u un endomorphisme d’un C-espace vectoriel de dimension n. A l’aide du théorème de Cayley-
Hamilton, montrer que u est nilpotent si et seulement si Sp(u) = {0}

IV.3 Ordre de multiplicité des racines du polynôme caractéristique

Définition 4 1. Soient A ∈ Mn(K), χA son polynôme caractéristique et λ ∈ Sp(A).
On appelle ordre de multiplicité de λ l’ordre de multiplicité de λ en tant que racine du polynôme χA.

2. Soient f ∈ L(E), χf son polynôme caractéristique et λ ∈ Sp(f).
On appelle ordre de multiplicité de λ l’ordre de multiplicité de λ en tant que racine du polynôme χf .
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Proposition 14 (Matrice réelle et valeur propre complexe(dem))
Soit A une matrice carrée à coefficients réels. On suppose que A admet une valeur propre λ complexe, non réelle.
Alors le conjugué λ̄ est valeur propre de A avec le même ordre de multiplicité que λ.

Exemple 9 Prenons par exemple A =

1 2 1
0 1 2
0 0 3

.

Calculer les valeurs propres de A ainsi que leurs ordres de multiplicité.
Calculer ensuite la dimension des sous-espaces propres.

Théorème 8 Soient f ∈ L(E), λ ∈ Sp(f), V (λ) le sous-espace propre associé et mλ l’ordre de multiplicité de λ.

Alors : 1 ≤ dim(V (λ)) ≤ mλ ≤ n.

Preuve Posons d =dim(V (λ)). On prend e1, ..., edλ
une base de V (λ)) et l’on complète cette base en une base de

E. La matrice de f dans cette base est
(
λId B
0 C

)
. Donc χf (x) = det

((
(x− λ)Idλ

−B
0 xIn−d − C

))
. On développe

successivement le déterminant χA par raport à la première colonne, puis par rapport à la deuxième etc et l’on obtient :
χf (x) = (x−λ)d× det(xIn−d−C). Donc d ≤ mλ (car on a (x−λ)d en facteur, et il est possible que λ soit aussi racine
de det(xIn−d − C)).
L’inégalité mλ ≤ n est immédiate car le polynôme caractéristique est de degré n.
Enfin, comme λ ∈ Sp(f), le sous-espace propre associé n’est pas trivial et sa dimension vaut au moins 1.

Théorème 9 Soient A ∈ Mn(K), λ ∈ Sp(A), V (λ) le sous-espace propre associé, mλ l’ordre de multiplicité de λ.

Alors : 1 ≤ dim(V (λ)) ≤ mλ ≤ n.

Remarque 5 On en déduit que : si λ est une valeur propre de multiplicité 1 de f (resp. de A), alors le sous-espace
propre associé est de dimension 1.

Remarque 6 Deux matrices semblables ont le même polynôme caractéristique donc les mêmes valeurs propres avec
mêmes ordres de multiplicité.

V Diagonalisation des matrices et des endomorphismes

V.1 Endomorphismes diagonalisables, matrices diagonalisables

Définition 5
• On dit que f est diagonalisable lorsqu’il existe une base de E dans laquelle la matrice de f est diagonale.

Un telle base est alors appelée une base de diagonalisation de f .
Diagonaliser un endomorphisme, c’est trouver une base de diagonalisation pour cet endomorphisme.

• Soit A ∈ Mn(K). On dit que A est diagonalisable (dans Mn(K)) lorsque A est semblable à une matrice
diagonale, c’est à dire : il existe P ∈ GLn(K) telle que P−1AP est diagonale.
Diagonaliser une matrice, c’est trouver une matrice P telle que P−1AP est diagonale.

Exemple 10 Donner des exemples d’endomorphismes diagonalisables.
Donner des exemples de matrices diagonalisables.

Proposition 15 f est diagonalisable ⇐⇒
{

il existe une base de E formée de
vecteurs propres de f.

}

Proposition 16 Soit A ∈ Mn(K). Alors :
A est diagonalisable si et seulement si il existe une base de Mn,1(K) formée de vecteurs propres de A.
Soit (X1, ..., Xn) une telle base (avec AXi = λiXi) et soit P la matrice dont les colonnes sont X1, ..., Xn, alors

P−1AP = Diag(λ1, ...λn)
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Proposition 17 Soit A ∈ Mn(K). Soit E un K-espace vectoriel de dimension n, rapporté à une base B.
Si f ∈ L(E) a pour matrice A dans la base B alors :

A est diagonalisable si et seulement si f est diagonalisable.

Remarque 7 Soit A une matrice réelle. Il peut arriver que A soit diagonalisable dans Mn(C) et ne le soit pas dans
Mn(R). Par exemple si le spectre de A est vide dans R (voir remarque 3, page 4) .

Proposition 18 (Caractérisation des endomorphismes diagonalisables. (dem))
Soit f un endomorphisme de E. On note λ1, ..., λp les valeurs propres de f .
Les propositions suivantes sont équivalentes :

(a) f est diagonalisable.

(b) il existe une base de E formée de vecteurs propres de f .

(c) E est somme directe des sous-espaces propres de f : E =

p⊕
i=1

Eλi
(f)

(d) dim(E) =

p∑
i=1

dim(Eλi
(f))

(e) χf est scindé et l’ordre de multiplicité de chaque valeur propre est égale à la dimension du sous-espace
propre associé.

Proposition 19 Si f a n valeurs propres distinctes, alors f est diagonalisable.

Remarque 8 Si le polynôme caractéristique d’un endomorphisme (resp. d’une matrice) est scindé à racines simples,
alors cet endomorphisme (resp. matrice) est diagonalisable.

A vous de jouer : Quelles propositions portant sur les matrices peut-on formuler en appliquant les propositions 18
et 19 ? (voir page 8)

Exemple 11 1. Considérons f ∈ L(R3) canoniquement associé à A1 =

1 2 3
0 2 4
0 0 3

 ; f est-il diagonalisable ?

2. Même question avec la matrice A2 =

1 1 1
0 1 1
0 0 1

.

3. Même question avec les matrice suivantes : A3 =

 0 1 0
0 0 1
1 0 0

 , A4 =

 1 0 1
0 1 0
1 1 3

 .

Exemple 12 ♡ Que dire d’un endomorphisme diagonalisable, qui admet une seule valeur propre λ ?
Que dire d’une matrice diagonalisable, qui admet une seule valeur propre λ ?
Exemple 13 ♡ Soit A la matrice carrée de taille n ≥ 2 ne contenant que des 1.
Déterminer les valeurs propres et les vecteurs propres de A.
On précisera les dimensions des sous-espaces propres et on en donnera des bases.
Enfin : la matrice A est-elle diagonalisable ?

Exemple 14 Soit A =

 0 −2 0
−2 0 0
2 2 2

 Déterminer les valeurs propres de A et une base de chaque sous-espace

propre. (NB : il y a deux valeurs propres). Diagonaliser A si c’est possible (en le justifiant).
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Exemple 15 1. Que peut-on dire d’une matrice diagonalisable admettant 1 pour SEULE valeur propre ?
♡ Que peut-on dire d’une matrice diagonalisable admettant une unique valeur propre λ ?

La matrice
(

1 1
0 1

)
est-elle diagonalisable ? inversible ?

et la matrice
(

0 1
0 0

)
est-elle diagonalisable ? inversible ?

2. Donner un exemple de matrice
(a) diagonalisable et inversible,
(b) diagonalisable et non inversible,
(c) non diagonalisable et inversible,
(d) non diagonalisable et non inversible.

V.2 En pratique : diagonaliser une matrice ou un endomorphisme....
Pour diagonaliser une matrice, on cherche les valeurs propres, puis une base de chaque sous-espace propre. La matrice
sera diagonalisable SSI chaque SEP a pour dimension l’ordre de multiplicité de la valeur propre considérée.
Ou encore : on sait que la matrice sera diagonalisable si et seulement si l’endomorphisme f canoniquement associé est
diagonalisable, c’est à dire si et seulement si la somme (directe) des sous-espaces propres vaut E, ce qui revient à dire
que la somme des dimensions vaut n.
En prenant la réunion des bases des sous-espaces propres, on obtient une base de diagonalisation de f , donc une
matrice P telle que P−1MP = D (la matrice P étant la matrice de passage de la base canonique vers la base de
diagonalisation).
Concrètement, les éléments de cette base de diagonalisation sera représentés par des matrices colonnes X1, ..., Xn et
l’on aura P = (X1...Xn) .

Exemple 16 Etudier si la matrice M =

1 4 2
0 −3 −2
0 4 3

 est diagonalisable et, si oui, la diagonaliser.

Exemple 17 A =

0 −1 2
0 1 0
1 1 −1

 est-elle diagonalisable ?

Exemple 18 Soit (a, b, c, d, e) ∈ C5. Déterminer une condition nécessaire et suffisante pour que

M =

a c d
0 a e
0 0 b

 soit diagonalisable.

V.3 Diagonalisabilité et polynomes annulateurs

Théorème 10 (admis)
Un endomorphisme est diagonalisable si et seulement si il admet un polynome annulateur scindé à racines simples.

Une matrice carrée est diagonalisable si et seulement si elle admet un polynome annulateur scindé à racines simples.

Exemple 19 Soit f un endomorphisme d’un espace vectoriel E, tel que f2 − 3f + 2idE = 0.
Peut-on affirmer que f est diagonalisable ?

Proposition 20 (Endomorphisme induit par un endomorphisme diagonalisable. (dem))
L’endomorphisme induit par un endomorphisme diagonalisable sur un sous-espace vectoriel stable est dia-
gonalisable.

Proposition 21
• Un endomorphisme f est diagonalisable si et seulement si il admet

∏
λ∈Sp(f)

(X−λ) comme polynome annulateur.

• Une matrice carrée A est diagonalisable si et seulement si elle admet
∏

λ∈Sp(A)

(X−λ) comme polynome annulateur.
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VI Trigonalisation

VI.1 Introduction : définition, propriétés

Définition 6 1. Soit f ∈ L(E). On dit que f est trigonalisable lorsqu’il existe une base de E dans laquelle
la matrice de f est triangulaire. Une telle base est alors appelée base de trigonalisation de f .

2. Soit A ∈ Mn(K). On dit que A est trigonalisable lorsqu’il existe une matrice triangulaire T ∈ Mn(K)
qui soit semblable à A, c’est à dire qu’il existe P ∈ Gℓn(K) telle que P−1AP = T .

Remarque 9 1. Soit f ∈ L(E). Les deux phrases suivantes sont équivalentes :
• Il existe une base de E dans laquelle la matrice de f est triangulaire supérieure.
• Il existe une base de E dans laquelle la matrice de f est triangulaire inférieure.

2. Soit A ∈ Mn(K). Les deux phrases suivantes sont équivalentes :
• A est semblable à une matrice triangulaire supérieure.
• A est semblable à une matrice triangulaire inférieure.

3. Une matrice diagonalisable est a fortiori trigonalisable. Idem pour les endomorphismes...
4. Une matrice est trigonalisable si c’est la matrice d’un certain endomorphisme trigonalisable.
5. Supposons que f ∈ L(E) soit trigonalisable. Il existe une base de E dans laquelle la matrice de f est triangulaire

supérieure : T =

t11 · · · · · ·

0
. . .

0 0 tnn

. Alors le polynôme caractérisque vaut χf (x) =

n∏
k=1

(x − tii) et il est donc

scindé. Nous admettrons la réciproque.
De même : si A est trigonalisable, on montre sans peine que son polynôme caractéristique est scindé. Nous
admettrons la réciproque.

Théorème 11 (admis)
1. Soit f ∈ L(E). f est trigonalisable si et seulement si son polynôme caractéristique est scindé.

En particulier, tout endomorphisme d’un C-espace vectoriel est trigonalisable (dans C).
2. Soit A ∈ Mn(K). A est trigonalisable si et seulement si son polynôme caractéristique est scindé.

En particulier, toute matrice de Mn(C) est trigonalisable :

∀A ∈ Mn(C), ∃P ∈ Gℓn(C), P−1AP = T où T est triangulaire supérieure

Remarque 10 Une matrice peut être trigonalisable dans Mn(C) et ne pas l’être dans Mn(R) : par exemple si le
polynôme caractéristique de A admet des racines complexes non réelles.

Proposition 22 1. Soit f un endomorphisme trigonalisable d’une espace vectoriel E. On suppose que
Sp(f)={ λ1, ..., λr} et mi est l’ordre de multiplicité de la valeur propre λi. Alors :
• det(f)=
• Tr(f)=

2. Soit A ∈ Mn(K) une matrice trigonalisable. On suppose que Sp(A)={ λ1, ..., λr} et mi est l’ordre de
multiplicité de la valeur propre λi. Alors :
• det(A)=
• Tr(A)=
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VI.2 Comment trigonaliser une matrice 3×3 (non diagonalisable) admettant une valeur
propre simple et une valeur propre double

On suppose que A admet une valeur propre simple α et une valeur propre double β.

• On détermine un vecteur propre associé à la valeur propre α.
• On détermine un vecteur propre X2 associé à la valeur propre β.
• Comme X1 et X2 sont associés à des valeurs propres différentes, ils forment une famille libre. On complète en

une base (X1, X2, X3) de K3

• Il existe des scalaires a, b, c tels que AX3 = aX1 + bX2 + cX3.
• On appelle P la matrice dont les colonnes sont X1, X2, X3.

⋆ Première méthode : On a alors : P−1AP =

α 0 a
0 β b
0 0 c


Le calcul du polynôme caractéristique de A nous montre que c = β. Il faut donc seulement chercher a et b
tels que AX3 = aX1 + bX2 + βX3.

• Au lieu de prendre X3« au hasard », on peut imposer que AX3 soit combinaison linéaire de X2 et X3 (c’est

à dire a = 0). Cela nous donnera alors P−1AP =

α 0 0
0 β b
0 0 β


Si cela doit doit vous faciliter les calculs par la suite, l’énoncé devrait vous le suggérer.

⋆ Deuxième méthode : : On a P−1AP = T ⇐⇒ AP = PT et donc la troisième colonne de AP est égale à la
troisième colonne de PT .
Or la troisième colonne de PT est égale à P (T )3 où (T )3 est la troisième colonne de T .

On écrit donc a priori la 3e colonne de T :

a
b
c

 .

Puis on cherche a, b et c tels que A(P )3 = P

a
b
c

.

Exemple 20 Trigonaliser la matrice A =

 0 1 1
1 2 −1
−1 1 2

 (est-elle diagonalisable ?)

VI.3 Comment trigonaliser une matrice 3×3 (non diagonalisable) admettant une valeur
propre triple λ et dont l’espace propre est de dimension 2

Comme l’espace propre est de dimension 2, on peut en trouver une base (X1,X2). On complète en une base de M3,1(K)
en prenant n’importe quel X3 qui n’est pas combinaison linéaire de X1 et X2.
On a donc : AX1 = λX1, AX2 = λX2.
Il ne reste qu’à calculer a, b, c tels que AX3 = aX1+bX2+cX3 (c’est possible car (X1, X2X3) est une base de M3,1(K)).

En posant P = [X1|X2|X3], on a : P−1AP =

λ 0 a
0 λ b
0 0 c

.

En fait, en regardant cette matrice, on se rend compte que l’on aura nécessairement c = λ (il suffit de regarder le
polynôme caractéristique).



PC, Briand Réduction des endomorphismes et des matrices carrées –12/13–

VII Applications de la diagonalisation et de la trigonalisation

1. Calcul des puissances n-ièmes d’une matrice
si P−1AP = D = Diag(λ1, ..., λn) alors par récurrence on a :

Ak = PDkP−1 = P × Diag(λk
1 , ..., λ

k
n)P

−1

2. Suites satisfaisant une récurrence linéaire simultanée (ou croisée)
Exemple : On pose u0 = 0, v0 = 22, w0 = 22. Pour tout n ∈ N, on définit

un+1 =
1

4
(2un + vn + wn)

vn+1 =
1

3
(un + vn + wn)

wn+1 =
1

4
(un + vn + 2wn)

Calculer un, vn et wn en fonction de n. Etudier la convergence de ces trois suites.

On note A =

1/2 1/4 1/4
1/3 1/3 1/3
1/4 1/4 1/2

 et Xn =

un

vn
wn

.

On a alors Xn+1 = AXn puis par récurrence : Xn = AnX0. On est donc ramené au calcul de la puissance nème
de A.
Calcul du polynôme caractéristique : χA(x) = ... = (x−1)(x−(1/12))(x−(1/4)). Comme A a 3 valeurs propres
distinctes, A est diagonalisable.

Après calcul, on obtient comme matrice de diagonalisation : P =

1 1 3
1 0 −8
1 −1 3


Puis P−1 =

1

22

 8 6 8
11 0 −11
1 −2 1


D’où ∀n, Xn = AnX0 = PDnP−1X0 = ... et enfin
un = 14− 11 ∗ 4−n − 3 ∗ 12−n, , vn = 14 + 8 ∗ 12−n, wn = 14 + 11 ∗ 4−n − 3 ∗ 12−n.
Les 3 suites convergent vers 14.
On peut imaginer des exemples plus subtils, par exemple en laissant u0, v0, w0 en paramètres et en demandant
pour quelles valeurs de ces paramètres les suites convergent...

3. Etude de suites satisfaisant une récurrence linéaire à coefficients constants.
Pour les suites satisfaisant une récurrence linéaire d’ordre 2, on a des formules.

Exemple 21 Soit (un) la suite définie par
{

u0 = 1, u1 = 0, u2 = 2
∀n ∈ N, un+3 = −6un − 11un+1 − 6un+2

On note Xn =

 un

un+1

un+2

. Alors la récurrence s’écrit : Xn+1 = AXn avec A =.

Déterminer une expression de un en fonction de n.

Exemple 22 Considérons la suite (un) définie par :
{

u0 = 1, u1 = 1, u2 = 2
∀n ∈ N, un+3 = 4un − 8un+1 + 5un+2

On pose Xn =

 un

un+1

un+2

. Alors Xn+1 = AXn avec A =

Le calcul du polynôme caractéristique donne : χA(x) = x3 − 5x2 + 8x− 4 = (x− 2)2(x− 1).

Un calcul rapide donneE2 =vect(U) où U =

1
2
4

 et E1=vect(V ) où V =

1
1
1

 .

La matrice A est-elle diagonalisable ?
Déterminer une expression de un en fonction de n.

4. La diagonalisation/trigonalisation peut servir pour résoudre des systèmes d’équations différentielles (mais ce
n’est plus à votre programme).
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VIII Bilan (partiel) outils

Faites attention à la question posée ! Parfois on voit des étudiants faire de longs calculs inutiles....
Faites attention : certaines conditions sont des conditions suffisantes, d’autres sont nécessaires et suffisantes.
Je fais ici un petit recueil des outils pour les matrices. Il y a les mêmes pour les endomorphismes.

• Outils pour trouver le spectre de A

⋆ Voir si il n’y a pas des valeurs propres « évidentes »ou suggérées par l’énoncé.
⋆ Voir si une des colonnes de A est nulle.
⋆ Si la matrice est triangulaire, les valeurs propres sont les éléments diagonaux
⋆ Calculer le polynôme caractéristique.
⋆ Si on connait un polynôme annulateur de A, les valeurs propres de A sont nécessairement racines de ce

polynôme.
⋆ La trace de A est égale à la somme des valeurs propres (comptées avec leur ordre de multiplicité). Utilisable

si on connaît déjà des valeurs propres de A

• Outils pour savoir si une matrice A ∈ Mn(K) (resp. un endomorphisme f de E, de dimension n)
est diagonalisable.
⋆ Si A a n valeurs propres distinctes, alors A est diagonalisable.
⋆ Si χA est scindé à racines simples , alors A est diagonalisable.
⋆ Si A est semblable à une matrice diagonalisable, elle est diagonalisable.
⋆ A diagonalisable ⇐⇒ la somme des dimensions des SEP vaut n.
⋆ f diagonalisable ⇐⇒ la somme des SEP vaut E.
⋆ A est diagonalisable ⇐⇒ il existe P ∈ K[X], tel que : P est scindé à racines simples et P (A) = 0.

⋆ A est diagonalisable ⇐⇒

P (A) = 0 avec P =
∏

λ∈Sp(A)

(X − λ)

 ⇐⇒

 ∏
λ∈Sp(A)

(A− λIn) = 0


⋆ A est diagonalisable ⇐⇒

 χA est scindé
et pour toute valeur propre de A
dim (Ker (A− λIn)) = ordre de multiplicité de λ


• Outils pour diagonaliser une matrice : trouver les valeurs propres de A puis chercher les sous-espaces

propres.

• Outils pour savoir si une matrice A ∈ Mn(K) (resp. un endomorphisme f de E, de dimension n)
est trigonalisable.
⋆ Un endomorphisme est trigonalisable si et seulement si son polynôme caractéristique est scindé sur K.
⋆ Toute matrice est trigonalisable dans C.

• Outils pour trigonaliser une matrice : savoir travailler sur les cas indiqués dans le paragraphe correspon-
dant. Si c’est plus compliqué, l’exercice comportera une indication.
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