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I Quelques activités préliminaires et petits rappels

I.1 Activités préliminaires
— Rappeler la définition d’une tribu, d’un espace probabilisé, d’une probabilité.
— Rappeler la définition d’une variable aléatoire discrète, d’une variable aléatoire réelle discrète.
— Quelle propriété importante sur les séries utilise-t-on pour définir l’espérance d’une variable aléatoire réelle

discrète ?
— Rappeler la définition de l’espérance d’une variable aléatoire réelle discrète.

Remarque 1 Toute variable aléatoire réelle discrète et bornée admet une espérance.
Dans tout ce qui suit : on considère des variables aléatoires réelles (ou complexes) discrètes définies

sur un espace probabilisé (Ω, T , P ) donné.

I.2 Rappels

Définition 1 (Espérance d’une variable aléatoire à valeurs réelles ou complexes)
Soit (Ω,A,P) un espace probabilisé.
Soit X une variable aléatoire réelle (ou complexe) discrète définie sur Ω, avec X(Ω) = {xi, i ∈ I} où I est un
ensemble au plus dénombrable.
Si
∑
i∈I

xiP (X = xi) converge absolument , on dit alors que X est une variable aléatoire d’espérance finie ou

encore que X admet une espérance.
Si tel est le cas, on appelle espérance de X et on note E(X) le réel (ou le complexe)

∑
i∈I

xiP (X = xi)

Une variable dont l’espérance est nulle est dite centrée.

Remarque 2 Ce que dit le programme.
• A propos des familles sommables :

La famille (xi)i∈I d’éléments de [0,+∞] est dite sommable si
∑
i∈I

xi < ∞.

En pratique, dans le cas positif, les étudiants peuvent découper, calculer et majorer leurs sommes directe-
ment, la finitude de la somme valant preuve de sommabilité.
Une famille (xi)i∈I au plus dénombrable de nombres complexes est dite sommable si (|xi|)i∈I l’est. Pour I = N,
la sommabilité d’une suite équivaut à la convergence absolue de la série associée. Si |xi| ⩽ yi pour tout i ∈ I,
la sommabilité de (yi)i∈I implique celle de (xi)i∈I .
En cas de sommabilité, les sommes se manipulent naturellement grâce aux propriétés suivantes : croissance,
linéarité, sommation par paquets, théorème de Fubini, produit de deux sommes.

• A propos d’espérance : l’espérance d’une variable aléatoire à valeurs dans [0,+∞] est définie par

E(X) =
∑

x∈X(Ω)

xP (X = x).

On adopte la convention xP (X = x) = 0 lorsque x = +∞ et P (X = +∞) = 0.
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II Lois usuelles

II.1 Lois de variables aléatoires finies
Dans chacun des cas suivants, donner la définition (la loi), le schéma théorique (ou schéma d’expérience), l’espérance,
la variance.

1. X est une variable aléatoire certaine.
2. X ∼ U[[ 1 ; n ]]

3. Loi de Bernoulli : X ∼ B(p) (ou B(1, p))
4. Loi binomiale X ∼ B(n, p)

II.2 Loi géométrique

Définition 2 Pour p ∈]0, 1[, on dit que la variable aléatoire X suit une loi géométrique de paramètre p et on note
X ∼ G(p) si :

X(Ω) = N∗ et ∀k ∈ N∗, P (X = k) = p(1− p)k−1.

Schéma théorique : La loi géométrique peut être interprétée comme rang du premier succès dans une suite illimitée
d’épreuves de Bernoulli indépendantes et de même paramêtre p.
Rappel : Soit A= « On n’obtient aucun succès ». Nous avons déjà démontré que P (A) =
C’est ce qui permet de prendre X(Ω) = N∗.

Exercice 1 1. Soit X ∼ G(p).
(a) Caculer P (X > k) pour tout k ⩾ 1.
(b) Montrer que ∀(n, k) ∈ N2, PX>n(X > k + n) = P (X > k).

2. On se propose de montrer une réciproque. On suppose que X est une variable aléatoire réelle discrète telle
que :

X(Ω) ⊂ N, P (X = 1) ̸= 0 et ∀n ∈ N, P (X > n) ̸= 0.

On suppose de plus que : ∀(n, k) ∈ N2, PX>n(X > k + n) = P (X > k).
(a) Montrer que P (X = 0) = 0. On peut donc considérer que X(Ω) = N∗.
(b) On pose p = P (X = 1) qui est non nul par hypothèse. Montrer que la suite (P (X > k))k∈N est géométrique

de raison q = 1− p.
(c) En déduire la loi de X.
(d) Quelle proposition a-t-on montré dans cette deuxième question ?

II.3 Loi de Poisson ou loi des événements rares

Définition 3 Soit λ ∈ R+∗. On dit que X suit une loi de Poisson de paramètre λ et on note X ∼ P(λ) lorsque

X(Ω) = N et ∀n ∈ N, P (X = n) = e−λλ
n

n!

Remarque 3 Si X ∼ P(λ), alors
+∞∑
k=0

P (X = k) =
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III Compléments sur les variables aléatoires discrètes

III.1 Fonction d’une variable aléatoire discrète et théorème du transfert

Proposition 1 (rappel)
Soit X une variable aléatoire discrète définie sur (Ω, T , P ), avec X(Ω) = {xn, n ∈ N}.
Soit f une application définie sur X(Ω) et à valeurs réelles ou complexes. Alors la fonction

f ◦X :

{
Ω → R
ω → f(X(ω))

définie sur Ω est une variable aléatoire discrète. On la note aussi f(X).

Théorème 1 Théorème de transfert. Soit X une variable aléatoire discrète définie sur (Ω, T , P ) et soit f
une fonction définie sur X(Ω) et à valeurs dans R ou C.

1. Si X(Ω) = {x1, · · · , xn} est fini, alors f(X) a une espérance et

E (f (X)) =

n∑
i=1

f(xi)P (X = xi)

2. Si X(Ω) = {xi, i ∈ N}, alors :
f(X) est d’espérance finie si et seulement si la famille

(
f(x)P (X = x)

)
x∈X(Ω)

est sommable.
Dans ce cas :

E
(
f(X)

)
=
∑

x∈X(Ω)

f(x)P (X = x).

Remarque 4 La série étant absolument convergente, le résultat ne dépend pas de l’ordre de sommation. Ce qui
justifie qu’on puisse éventuellement noter ceci E (f (X)) =

∑
x∈X(Ω)

f(x)P (X = x).
Preuve 1 Ce théorème a été démontré en PCSI dans le cas où Ω est fini.
On peut démontrer le 1. sans grande douleur. En revanche, nous n’avons pas les outils mathématiques pour démontrer
le 2. du théorème. Nous l’admettons quoiqu’il en soit.... (démonstration hors programme).
Remarque 5 Dans ce théorème, X est une variable aléatoire qui n’est pas nécessairement réelle. X peut être un
vecteur aléatoire. En revanche, f étant à valeurs réelles ou complexes, f(X) est bien une variable aléatoire à valeurs
réelles ou complexes.
Par exemple : on tire deux dés de couleurs différentes, (un rouge et un bleu). On note X1 le rang d’apparition du
premier 6 pour le dé rouge et X2 le rang d’apparition du premier 6 pour le dé bleu. Alors X = (X1, X2) est une
variable aléatoire discrète et l’on peut considérer f(X) = X1 +X2.
Nous reviendrons sur ce type de cas dans un chapitre ultérieur.

Corollaire 1 Soit X une variable aléatoire discrète réelle ou complexe .
Si E(X) existe, alors, pour tout (a, b) ∈ R2, Y = aX + b est d’espérance finie et

E(aX + b) = aE(X) + b.

Corollaire 2 Soit X une variable aléatoire réelle discrète.
Si

∑
x∈X(Ω)

x2P (X = x) est (absolument) convergente, alors E(X2) existe et E(X2) =
∑

x∈X(Ω)

x2P (X = x).

III.2 Propriétés fondamentales de l’espérance

Proposition 2 Linéarité (admis). Soient X et Y deux variables aléatoires discrètes réelles ou complexes
admettant une espérance (ou « d’espérances finies »). Alors pour tout (a, b) ∈ K2, aX + bY est une variable
aléatoire discrète réelle ou complexe d’espérance finie et de plus

E(aX + bY ) = aE(X) + bE(Y ).

Corollaire 3 Si X1, . . . , Xn sont des variables aléatoires discrètes réelles ou complexes sur un même espace

probabilisé (Ω, T , P ), admettant toutes une espérance et si (a1, . . . , an) ∈ Rn, alors
n∑

i=1

aiXi est une variable

aléatoire d’espérance finie. De plus, on a alors : E

(
n∑

i=1

aiXi

)
=

n∑
i=1

ai E(Xi).
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Proposition 3 Positivité et croissance. Soient X et Y deux variables aléatoires réelles discrètes admettant
une espérance.

• Si X ⩾ 0 alors E(X) ⩾ 0.
• Si X ⩽ Y alors E(X) ⩽ E(Y ).

Proposition (admise) 1
Soit X une variable aléatoire discrète réelle ou complexe et soit Y une variable aléatoire réelle discrète.

Si
{

Y est d’espérance finie
|X| ⩽ Y

}
, alors X est d’espérance finie.

Proposition 4 Soit X une variable aléatoire réelle discrète.
Si X est positive et d’espérance nulle, alors (X = 0) est presque sûr.
Autrement dit

Dans tout ce qui suit, X est une variable aléatoire réelle discrète.

III.3 Variance et écart type

Proposition 5 Si X2 est d’espérance finie, alors X est aussi d’espérance finie, ainsi que (X − E(X))2. De plus

E
(
(X − E(X))

2 )
= E

(
X2
)
− (E(X))

2 (formule de Huyghens)

Définition 4 Si X2 est d’espérance finie, on appelle variance de X et on note V (X) le réel

V (X) = E
(
(X − E(X))

2 )
= E

(
X2
)
− (E(X))

2.

On appelle écart type de X et on note σ(X) le réel σ(X) =
√

V (X).

Proposition 6 Si X2 est d’espérance finie, alors V (X) existe et de plus :

∀(a, b) ∈ R2,

{
V (aX + b) =

σ(aX + b) =

Définition 5 On dit qu’une variable aléatoire réelle est centrée réduite lorsque :

V (X) existe, E(X) = 0 et V (X) = 1.

Proposition 7 Si V (X) existe et σ(X) > 0, alors la variable X⋆ =
X − E(X)

σ(X)
est centrée réduite.

Proposition 8 Si V (X) existe, alors : V (X) = 0 ⇐⇒
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III.4 Variables aléatoires à valeurs dans N, séries génératrices
Dans tout ce paragraphe : X est une variable aléatoire à à valeurs dans N (c’est à dire X(Ω) ⊂ N).

III.4.a Enoncer le théorème d’antirépartition.

III.4.b Fonctions génératrices

Considérons la série entière
∑

P (X = n) tn. Soit R son rayon de convergence.
1.
∑

P (X = n) tn converge pour t = 1 car

2. De 1., on peut déduire que : R
3. La série entière converge aussi pour t = −1 car

4. D’après le théorème de transfert, lorsque la série converge absolument :

+∞∑
n=0

P (X = n) tn =

N.B. : la convergence absolue est nécessaire pour

Définition 6 On appelle fonction génératrice de X la série

GX(t) = E(tX) =

+∞∑
n=0

P (X = n) tn

Remarque 6 Si X est une variable aléatoire discrète (infinie), GX est la somme d’une série entière.
Si X est une variable aléatoire finie, GX est une fonction polynomiale (ce qui est un cas particulier de série entière)

Proposition 9 En reprenant les notations de la définition 6, on a :
• [−1, 1] ⊂ DGX

(en notant DGX
le domaine de définition de GX).

• GX est de classe C∞ au moins sur l’intervalle ]− 1, 1[.
• GX(1) = 1.

Exemple 1 Donner la fonction génératrice de X dans chacun des cas suivants :
1. X est une variable aléatoire certaine ;
2. X ∼ U[[ 1 ; n ]]

3. Loi de Bernoulli : X ∼ B(p) (ou B(1, p))
4. Loi binomiale X ∼ B(n, p)
5. X ∼ G(p) où p ∈]0, 1[.
6. X ∼ P(λ) où λ > 0.

Proposition 10 La loi d’une variable aléatoire à valeurs dans N est varactérisée par sa fonction génératrice GX .
Plus précisément :

P (X = n) =

Par conséquent, si X et Y sont deux variables aléatoires réelles discrètes, alors :

(X et Y ont même loi ) ⇐⇒ GX = GY
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Théorème 2 Soit X une variable aléatoire à valeurs dans N.
Alors X admet une espérance E(X) si et seulement si GX est dérivable (à gauche) en 1.
Si tel est le cas : E(X) = G′

X(1).

Preuve 2 La démonstration de la réciproque n’est pas exigible. Nous la ferons dans le cas où RGX
> 1.

Théorème 3 Soit X une variable aléatoire à valeurs dans N.
1. X admet une variance si et seulement si GX est deux fois dérivable (à gauche) en 1.
2. Dans le cas où G′′

X(1) existe, alors : V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2.

N.B. : on doit savoir le 1. du théorème. On doit pouvoir retrouver le 2. du théorème.

Exemple 2 Retrouver/calculer l’espérance et la variance de X dans chacun des cas suivants
1. X est une variable aléatoire certaine ;
2. X ∼ U[[ 1 ; n ]]

3. Loi de Bernoulli : X ∼ B(p) (ou B(1, p))
4. Loi binomiale X ∼ B(n, p)
5. X ∼ G(p) où p ∈]0, 1[.
6. X ∼ P(λ) où λ > 0.

Faire ensuite un récapitulatif de tout ce que vous connaissez désormais sur les lois énumérées ci-dessus.
Extrait du programme : "Les étudiants doivent savoir calculer rapidement la fonction génératrice d’une variable
aléatoire de Bernoulli, binomiale, géométrique, de Poisson. "
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