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I Questions de révision pour se mettre en route

1. Qu’est-ce qu’un produit scalaire ?

2. Donner différents produits scalaires.

3. Qu’est-ce qu’un espace préhilbertien réel ? Qu’est-ce qu’un espace euclidien ?

4. Qu’est-ce qu’une norme ? Qu’est-ce qu’une norme euclidienne ?

5. Enoncer l’inégalité de Cauchy-Schwarz.

6. Que signifie : « x ⊥ y » ?

7. Qu’est-ce qu’un vecteur normé ? un vecteur unitaire ?

8. Qu’est-ce que l’orthogonal d’une partie d’un espace préhilbertien ? Donner E⊥ et {0E}⊥.
9. Qu’est-ce qu’une famille orthogonale ? Qu’est-ce qu’une famille orthonormale ?

10. Une famille orthogonale peut-elle être liée ? Une famille orthonormale peut-elle être liée ?

11. Enoncer le théorème de Pythagore.

12. Qu’est-ce que le procédé d’orthonormalisation de Gram-Schmidt ?

13. Orthonormaliser pour le produit scalaire canonique de R3 la famille (u, v, w) où
u = (1, 1, 0), v = (1, 0, 1) et w) = (0, 1, 1).

14. Un espace euclidien possède-t-il toujours des bases orthonormales ?

15. Quel est l’intérêt des bases orthonormales ?

16. Qu’est-ce qu’une projection orthogonale ?

17. Soit F =Vect{(1, 1, 1)} ⊂ R3, où R3 est muni du produit scalaire usuel.

(a) Donner l’expression du projeté orthogonal d’un vecteur u = (x, y, z) sur F .

(b) Donner la distance de v = (1, 2, 3) à l’espace F .
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Dans tout ce qui suit, E est un espace vectoriel sur R.

II Produit scalaire

II.1 Définition, exemples

Définition 1 (a) Une forme bilinéaire définie sur E est une application φ : E ×E 7→ R linéaire par
rapport à la première et à la deuxième variable, c’est à dire : pour tous vecteurs x1, x2, y, x, y1, y2 et
tout réel λ, on a

φ(x1 + λx2, y) = φ(x1, y) + λφ(x2, y)

φ(x, y1 + λy2) = φ(x, y1) + λφ(x, y2)

(b) Une forme bilinéaire φ est symétrique si : ∀(x, y) ∈ E2, φ(x, y) = φ(y, x).

(c) Une forme bilinéaire φ est positive si : ∀x ∈ E, φ(x, x) ≥ 0.

(d) Une forme bilinéaire φ est définie positive si :
elle est positive et : ∀x, φ(x, x) = 0⇒ x = 0.

(e) On appelle produit scalaire sur E toute forme bilinéaire symétrique, définie positive.

Exemple 1 1. Produit scalaire canonique dans Rn : pour x = (x1, · · · , xn) et y = (y1, · · · , yn), on pose :

φ(x, y) = 〈x, y〉 =
n∑

k=1

xiyi

2. Produit scalaire canonique dansMn,1(R) : on pose 〈X,Y 〉 =t XY = XT · Y.

Si X =

x1...
xn

 et Y =

y1...
yn

, on a alors : 〈X,Y 〉

En pratique, on peut identifier Rn et l’espace des vecteurs colonnes correspondant.

3. Soit E = C0([a, b]) où a < b. Soit ϕ : (f, g) ∈ E2 7→ +

∫ b

a
f(t)g(t)dt.

4. Soit E = C1([0, 1]). Soit ϕ : (f, g) ∈ E2 7→ f(0)g(0) +

∫ 1

0
f ′(t)g′(t)dt.

5. E = Rn. On se donne a1, . . . , an des réels strictement positifs et on considère l’application ϕ qui à

(x, y) associe
n∑

k=1

aixiyi (sachant que x = (x1, · · · , xn) et y = (y1, · · · , yn)).

6. Pour x = (x1, x2) ∈ R2 et y = (y1, y2) ∈ R2, on pose ϕ(x, y) = 5x1y1 − 3x2y2. Montrer, à l’aide d’un
argument frappant, que ϕ ne définit pas un produit scalaire sur R2.

7. Soit E =Mn(R). On définit la trace d’une matrice M = [aij ] par Tr(M) =

n∑
i=1

aii.

Soit Φ : E × E → R, (A,B)→ Tr(AT ·B). Alors Φ définit un produit scalaire surMn(R).

8. Soit E = Rn[X]. On considère Φ :

(
(P,Q) −→

n∑
i=0

P (i)Q(i)

)
.

9. Sur le R-espace vectoriel E = R[X], on considère Φ définie par : Φ(P,Q) =

∫ 1

0
P (t)Q(t)dt.

10. Soit E = R[X]. Pour (P,Q) ∈ E2 on pose Φ(P,Q) =

∫ +∞

0
P (t)Q(t)e−tdt. Montrer que Φ est bien

définie sur E2, puis que c’est un produit scalaire sur R[X].

Ultra-classiques
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Remarque 1 On peut définir un produit scalaire en dimension finie ou infinie.

Notations usuelles pour un produit scalaire : 〈x, y〉, (x|y), x · y....
Dans la suite on suppose E muni d’un produit scalaire noté 〈·, ·〉

Définition 2 Si E est un R-espace vectoriel muni d’un produit scalaire, de dimension quelconque, on
dit que E est un espace préhilbertien réel.

Si E est un espace préhilbertien réel de dimension finie, dit que E est un espace vectoriel euclidien.

Remarque 2 Si 〈·, ·〉 est un produit scalaire sur E alors : ∀x ∈ E, 〈x, 0〉 = 〈0, x〉 = 0

II.2 Propriétés du produit scalaire

Théorème 1 Inégalité de Cauchy-Schwarz.

∀(x, y) ∈ E2, |〈x, y〉| ≤
√
〈x, x〉 ·

√
〈y, y〉

On a égalité si et seulement si la famille (x, y) est liée.

Théorème 2 Inégalité de Minkowski (qui sera aussi l’inégalité triangulaire).

∀(x, y) ∈ E2,
√
〈x+ y, x+ y〉 ≤

√
〈x, x〉+

√
〈y, y〉

L’égalité est réalisée si et seulement si la famille (x, y) est liée et 〈x, y〉 ≥ 0.

Exemple 2 Soient n ∈ N∗, (a1, . . . an) ∈ Rn, (b1, . . . bn) ∈ Rn et (c1, . . . cn) ∈ (R+∗)n.
Prouver les inégalités suivantes et étudier les cas d’égalité.

1.

(
n∑

k=1

akbkck

)2

≤

(
n∑

k=1

a2kck

)(
n∑

k=1

b2kck

)

2.

(
n∑

k=1

|ak|

)
≤
√
n

√√√√ n∑
k=1

a2k

3.


On suppose

n∑
k=1

ck = 1.

Montrer que :
n∑

k=1

(
1

ck
) ≥ n2

II.3 Norme préhilbertienne, distance associée

Définition 3 Soit N une application de E dans R+. N est une norme si

(a) ∀x ∈ E, N(x) = 0 ⇐⇒ x = 0

(b) ∀x ∈ E, ∀λ ∈ R, N(λx) = |λ|N(x)

(c) ∀(x, y) ∈ E2, N(x+ y) ≤ N(x) +N(y)

Proposition 1 L’application ‖.‖ : x → ‖x‖ =
√
〈x, x〉 est une norme. C’est la norme euclidienne

associée à 〈·, ·〉. On dit aussi que 〈·, ·〉 est la forme polaire associée à la norme.

Définition 4 Soit Ω un ensemble et soit d une application définie sur Ω2.
On dit que d est une distance sur Ω lorsque :

(a) ∀(a, b) ∈ Ω2, d(a, b) = d(b, a)

(b) ∀(a, b) ∈ Ω2, d(a, b) = 0 ⇐⇒ a = b

(c) ∀(a, b, c) ∈ Ω2, d(a, c) ≤ d(a, b) + d(b, c) (inégalité triangulaire)

inégalité triangulaire
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Proposition 2 L’application définie sur E2 par d(x, y) = ‖x− y‖ est une distance.

Définition 5 Vecteur normé ou unitaire : de norme 1

Proposition 3 Identités remarquables Pour tout (x, y) ∈ E2, on a les égalités suivantes :

(a) Identités de polarisation :

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
=

1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
=

1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
(b) Identité du parallélogramme : ‖x+ y‖2 + ‖x− y‖2 = 2

(
‖x‖2 + ‖y‖2

)
Exemple 3 Pour (x, y) ∈ R2, on pose : N(x, y) = (|x|+ |y|) = ‖(x, y)‖.
Montrer que c’est une norme sur R2. Montrer que ce n’est pas une norme euclidienne sur R2.
Indication : on pourra utiliser l’identité du parallélogramme et considérer les vecteurs u = (2, 1) et v = (1, 2).

III Orthogonalité

III.1 Introduction

Définition 6 (a) On dit que x est orthogonal à y et on note « x ⊥ y »si 〈x, y〉 = 0

(b) On dit qu’une famille de vecteurs (xi)i∈I est orthogonale si : ∀(i, j) ∈ I2, i 6= j ⇒ xi ⊥ xj .
(c) On dit qu’une famille est orthonormale ou orthonormée si elle est orthogonale et si tous ses

vecteurs sont normés.

Remarque 3 ∀x ∈ E, x ⊥ 0E

Remarque 4 Dans la définition ci-dessus, I est un ensemble d’indices, et I peut être un ensemble fini ou
infini... Dans le cas où les indices sont entiers, on utilise souvent le symbole de Kronecker :

δij = 0 si i 6= j et δij = 1 si i = j.

Par exemple : la famille (x1, · · · , xn) est orthonormale si : ∀(i, j) ∈ [[ 1 ; n ]] , 〈xi, xj〉 = δij .

Proposition 4 (a) Si (xi)i∈I est orthogonale, et si ∀i, xi 6= 0 , alors (xi)i∈I est libre.

(b) Si (xi)i∈I est orthonormale, c’est une famille libre.

Exemple 4 Pour n ∈ N, on considère la fonction fn définie sur R par : fn(t) = cos(nt). Montrer que la
famille (fn)n∈N est libre.

Théorème 3 (a) Théorème de Pythagore : x ⊥ y ⇐⇒ ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
(b) Relation de Pythagore pour une famille orthogonale finie :

si la famille (x1, · · · , xn) est orthogonale, alors :

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

=
n∑

k=1

‖xk‖2
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III.2 Sous-espaces vectoriels orthogonaux

Définition 7 Soient F et G deux sous-espaces vectoriels de E. On dit que F et G sont des sous-espaces
vectoriels orthogonaux si tout vecteur de F est orthogonal à tout vecteur de G, c’est à dire :

∀(x, y) ∈ F ×G, 〈x, y〉 = 0

On note alors : F ⊥ G.

Proposition 5 Si F et G sont des sous-espaces vectoriels de E tels que F ⊥ G, alors
F ∩G = {0E} et donc la somme F +G est directe.

Définition 8 Orthogonal d’un sous-espace vectoriel de E.
Soit F un sous-espace vectoriel de E.
On appelle orthogonal de F et on note F⊥ l’ensemble des vecteurs de E qui sont orthogonaux à tous
les vecteurs de F .

Exemple 5 Soit E = R3 muni du produit scalaire usuel.
Quel est l’orthogonal du plan (vectoriel) d’équation x = 0 ?
Quel est l’orthogonal de la droite vectorielle engendre par (1, 1, 0) ?

Proposition 6 E⊥={0} et {0}⊥ = E

Proposition 7 Soient F,G deux sous-espaces vectoriels de E.

(a) F⊥ est un sous-espace vectoriel de E.

(b) F ⊥ F⊥

(c) F ⊂ G⇒ G⊥ ⊂ F⊥

(d) F ⊂ (F⊥)⊥ = F⊥⊥

(e) F ∩ F⊥ = {0E} donc la somme F + F⊥ est directe.

Exemple 6 Donner deux SEV orthogonaux pour le produit scalaire usuel dans R3.

Attention : Si F est un SEV de E alors F + F⊥ = F ⊕ F⊥ mais la somme ne vaut pas nécessairement
E, autrement dit : en dimension infinie, F et F⊥ ne sont pas nécessairement supplémentaires.

Prenons par exemple : E = R[X] muni du produit scalaire : 〈P,Q〉 =

∫ 1

0

P (t)Q(t)dt.

Prenons F = XR[X] = {XQ, Q ∈ R[X]}.
On montre que F⊥ = {0}. Donc F ⊕ F⊥ = F 6= E et F⊥⊥ = E 6= F .

Proposition 8 Si F est un sous-espace vectoriel de E engendré par une famille F = (fi)i∈I , alors :

x ∈ F⊥ ⇐⇒
(
∀i ∈ I, 〈x, fi〉 = 0

)
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IV Procédé d’orthonormalisation de Gram-Schmidt
et premières conséquences

Théorème 4 Soit (v1, · · · , vn) une famille libre de E.
Il existe une unique famille orthonormale (e1, · · · , en) telle que :

∀k = 1 · · ·n,

{
vect(e1, · · · , ek) = vect(v1, · · · , vk)

〈ek, vk〉 > 0

Preuve : On la construit par récurrence. On pose e1 =
v1
‖v1‖

. (On n’a pas le choix....)

Supposons que (e1, · · · , ek) vérifie les hypothèses, à savoir :

∀i = 1 · · · k,

{
vect(e1, · · · , ei) = (v1, · · · , vi)
〈ei, vi〉 ≥ 0

On cherche ek+1. Il est dans vect(e1, · · · , ek, vk+1). Posons ek+1 =

 k∑
j=1

ajej

+ bvk+1.

On veut que : ∀i = 1 · · · k, 〈ei, ek+1〉 = 0. Ce qui après calcul nous donne : ai + b〈eivk+1〉 = 0.
Par ailleurs on veut avoir 〈ek+1, ek+1〉 = 1, ce qui après calcul nous donne l’équation :

1 = b2

∥∥∥∥∥∥vk+1 −
k∑

j=1

〈ej , vk+1〉ej

∥∥∥∥∥∥
2

.

On remarque que

∥∥∥∥∥∥vk+1 −
k∑

j=1

〈ej , vk+1, 〉ej

∥∥∥∥∥∥
2

est bien différent de 0.

Enfin on écrit vk+1 en fonction des ei et la condition 〈vk+1, ek+1〉 > 0 nous donne : b > 0, donc

b =
1

‖vk+1 −
k∑

j=1

〈ej , vk+1〉ej‖

.

On en déduit ensuite les ai grâce à la formule :
Conclusion : on a unicité de la famille orthonormale satisfaisant les hypothèses du théorème.
En posant successivement

ek+1 =

vk+1 −
k∑

j=1

〈ej , vk+1〉ej∥∥∥∥∥∥vk+1 −
k∑

j=1

〈ej , vk+1〉ej

∥∥∥∥∥∥
on a bien toutes les conditions souhaitées. D’où l’existence...

En pratique : on peut soit utiliser la formule ci-dessus, soit construire une base orthogonale puis normer
les vecteurs ensuite.

a faire
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Exemple 7 1. Orthonormaliser pour le produit scalaire canonique de R3 la famille (u, v, w) où
u = (1, 1, 0), v = (1, 0, 1) et w) = (0, 1, 1)..

2. On considère le produit scalaire sur R2[X] défini par 〈P,Q〉 =

∫ 1

0

P (t)Q(t)dt. Donner une base orthonormée

de R2[X] pour ce produit scalaire.

Corollaire 1 Soit (E, 〈., .〉) un espace préhilbertien réel et F un sous-espace vectoriel de E.
Si F est de dimension finie et F 6= {0E}, alors F possède des bases orthonormales.

Corollaire 2 Si E est un espace euclidien non réduit à {0E}, alors E possède des bases orthonormales.

Proposition 9 : Expression du produit scalaire et de la norme dans une BON
Soit E un espace euclidien et soit B une base orthonormale de E.

Soit (x, y) ∈ E2 : x =

n∑
i=1

xiei et y =

n∑
i=1

yiei.

Alors : pour tout i ∈ [[ 1 ; n ]] , xi = 〈x, ei〉 et de plus ‖x‖2 =
n∑

k=1

x2i .

Par ailleurs, 〈x, y〉 =

Expression matricielle du produit scalaire et de la norme dans une BON .
Si on note X =MB(x) et Y =MB(y), alors

〈x, y〉 = XT Y et ‖x‖2 = XT X

Ou bien, selon les notations choisies :

〈x, y〉 = tX Y et ‖x‖2 = tXX

NB : Quand on travaille avec une BON , le produit scalaire s’exprime donc comme le produit scalaire canonique de
Rn.

Proposition 10 Matrice d’un endomorphisme dans une BON .
On suppose que E est de dimension finie et que B = (e1, · · · , en) est une BON de E.
Soit f ∈ L(E) et soit A = (ai,j)i,j=1..n sa matrice dans la base B.
Alors pour tout (i, j) ∈ [[ 1 ; n ]]2 , ai,j = 〈ei, f(ej)〉.

V Projection orthogonale sur un SEV de dimension finie

V.1 Supplémentaire orthogonal d’un sous-espace de dimension finie

On suppose que E est de dimension quelconque.

Si F = {0E}, alors F⊥ =

Soit F un sous-espace vectoriel de E ; on suppose que F est de dimension finie et F 6= {0E}.
Il existe donc une base orthonormée B = {e1, · · · , ep} de F .
On cherche à montrer que F ⊕ F⊥ = E.
On sait déjà que :
Il reste donc à montrer que :
Raisonnement par analyse synthèse à faire au dos de page précédente/cette page.

la somme de F et de son orthogonal est directe
la somme vaut E
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Théorème 5 Soit E un espace préhilbertien réel de dimension quelconque.
Soit F un sous-espace de E, F étant de dimension finie. Alors :

• E = F ⊕ F⊥

• Si (e1, · · · ep) est une base orthonormale de F , alors l’application

pF : E → E, x 7→
p∑

k=1

〈x, ei〉ei

est le projecteur sur F parallèlement à F⊥.

• En reprenant les notations ci-dessus, on a l’équivalence :

y = pF (x) ⇐⇒
(
y ∈ F et x− y ∈ F⊥

)

Remarque 5 L’application pF est indépendante du choix de la BON de F .

Définition 9 Soit F un sous-espace de E tel que F ⊕ F⊥ = E.
Alors le projecteur sur F parallèlement à F⊥ est appelé projecteur orthogonal sur F (ou projection
orthogonale sur F ).

Notons pF ce projecteur orthogonal sur F
Pour tout x ∈ E, le vecteur pF (x) est alors appelé projeté orthogonal de x sur F .

Remarque 6 D’après ce qui précède, si F est de dimension finie, la projection orthogonale sur F est bien
définie.

Corollaire 3 Si E est euclidien (i.e. de dimension finie) alors tout sous-espace de E admet un supplé-
mentaire orthogonal.
Autrement dit : Tout sous-espace vectoriel F de E vérifie : F ⊕ F⊥ = E.

Corollaire 4 Si F est un sous-espace de dimension finie de E, alors F⊥⊥ = F

Rappel : si E et F sont de dimensions infinies, alors F n’a pas nécessairement de supplémentaire
orthogonal, et F⊥⊥ n’est pas nécessairement égal à F .

Remarque 7 Dans le procédé de Gram-Schmidt : ek+1 =
vk+1 − pF (vk+1)

‖vk+1 − pF (vk+1)‖
=

pF⊥(vk+1)

‖pF⊥(vk+1)‖
.
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V.2 Distance à un sous-espace vectoriel de dimension finie

Soit F un sous-espace de E, F étant de dimension finie.
Soit p le projecteur orthogonal sur F , soit x un vecteur de E et y un vecteur de F .

Proposition 11 Soit F un sous-espace de E, F étant de dimension finie.
Soit pF le projecteur orthogonal sur F .

Alors ‖x− pF (x)‖ = min
y∈F

(‖x− y‖)

De plus, pF (x) est alors l’unique élément z de F tel que ‖x− z‖ = min
y∈F

(‖x− y‖).

Définition 10 Soit F un sous-espace de E, F étant de dimension finie. Le réel min
y∈F

(‖x− y‖) est appelé

distance de x au sous-espace F et notée d(x, F )

Calcul pratique de d(x, F ).

• Si on a une base orthonormée (e1, · · · , ep) de F , alors ‖x− p(x)‖ =

∥∥∥∥∥x−
k∑

k=1

〈x, ei〉ei

∥∥∥∥∥
• On a aussi : ‖x− p(x)‖2 + ‖p(x)‖2 = ‖x‖2 d’où ‖x− p(x)‖2 = ‖x‖2 − ‖p(x)‖2

• Si E est de dimension finie et l’on a une BON (f1, · · · fr) de F⊥, alors

x− pF (x) = PF⊥(x) =
r∑

i=1

〈x, fi〉fi d’où le calcul de ‖x− pF (x)‖.

Exemple 8 Soit E = R3 muni de son produit scalaire usuel :
∀~u = (x, y, z) ∈ E, ∀~v = (x′, y′, z′) ∈ E, ~u . ~v = xx′ + yy′ + zz′.

On note C = (~e1, ~e2, ~e3) sa base canonique.

1. Soit ~n = (1, 1,−1), et D la droite vectorielle engendrée par le vecteur ~n.
Déterminer une équation de H, le supplémentaire orthogonal de D dans E.

2. (a) Donner une base orthonormale (~a,~b) de H.

(b) En déduire une base orthonormale B = (~a,~b,~c) de E.

(c) Soit Q, la matrice de passage de la base C vers la base B : cette matrice est-elle inversible ?

3. Chercher la matrice M1 canoniquement associée à p1, le projecteur orthogonal sur le sous-espace D.
Chercher la matrice M2 canoniquement associée à p2, le projecteur orthogonal sur le sous-espace H.

4. (a) Soit le vecteur ~u = (3, 2, 1) : déterminer son projeté orthogonal ~u2 sur H.

(b) Calculer la distance de ~u à H.

(c) Calculer la distance de ~u à D.
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VI Conclusion : savoir-faire à maîtriser dans ce chapitre

• Savoir montrer qu’un application de E × E dans R est un produit scalaire.

• Reconnaître des situations où l’on peut utiliser l’inégalité de Cauchy-Schwarz

• Savoir montrer que deux sous-espaces F et G de E sont des supplémentaires orthogonaux.

(a) On montre que ce sont des SEV orthogonaux, c’est à dire que tout vecteur de l’un est orthogonal
à tout vecteur de l’autre. Ils sont alors en somme directe !

(b) On établit ensuite que E = F + G. Pour cela, on peut soit utiliser des arguments de dimensions
(si E est de dimension finie), soit revenir à la définition et montrer que tout vecteur x de E s’écrit
comme somme d’une vecteur de F et d’un vecteur de G.

• Savoir mettre en oeuvre l’algorithme de Gram-Schmidt pour calculer une famille orthonormale à partir
d’une famille libre donnée.

• Savoir déterminer le projecté orthogonal d’un vecteur sur un SEV F de dimension finie.

(a) Si l’on dispose d’un base orthonormée de F , alors p(x) =

k∑
k=1

〈x, ei〉ei.

(b) Si l’on ne dispose pas de base orthonormée de F , il est souvent assez rapide de calcule p(x) en
utilisant sa carcatérisation : p(x) ∈ F et (x− p(x)) ∈ F⊥.

(c) On peut trouver une base orthonormée de F à l’aide du procédé de Gram-Schmidt, mais cela peut
être pénible, donc on hésite un peu avant de se lancer dans le calcul. Et ensuite on est ramené au
(a).

• Interpréter des problèmes de minimisation comme recherche de d(x, F ) où F est un SEV de E
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