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*Exercice 1 Soit X ↪→ B(n, p). Chacun des résultats de X est affiché sur un compteur qui est détraqué de la manière
suivante : si X n’est pas nul, le compteur affiche la valeur de X et si X est nul, le compteur affiche un nombre au
hasard entre 1 et n.
Soit Y la VAR égale au nombre affiché sur le compteur.
Déterminer la loi de Y et son espérance. Montrer que E(Y ) ≥ E(X) (sans calcul).

Solution: ECS F27 exo 1

**Exercice 2 Préliminaire : Formule de Vandermonde. Soient n, a, b des entiers naturels non nuls, tels que n ≤ a+b.
Montrer que : (

a+ b

n

)
=

n∑
r=0

(
a

r

)
×
(

b

n− r

)
On considère une rangée infinie de cases indexées par Z.

1. Une puce placée à l’instant n sur une case, saute à l’instant n+1 sur une des 2 cases voisines équiprobablement.
A l’instant 0, elle se trouve sur la case 0. On note X la VAR indiquant le numéro de la case occupée par la
puce après n sauts, n étant un entier naturel fixé.
Quelle est la loi de X ? Calculer son espérance et sa variance.

2. On suppose qu’on a placé 2 puces à l’instant 0 sur la case 0. Ces deux puces sautent à chaque instant sur une
des deux cases voisines de celles qu’elles occupaient à l’instant précédent, et de manière indépendante l’une de
l’autre.
Quelle est la probabilité qu’elles se retrouvent sur la même case après n sauts ?
Quelle est la probabilité qu’elles aient accompli tout leur trajet ensemble, sachant qu’elles sont ensemble à
l’instant n ?

Solution: ECS F27 exo 2

** Exercice 3 Soient A,B et C trois variables aléatoires réelles mutuellement indépendantes, définies sur un espace
(Ω,A, P ), suivant une même loi binomiale de paramètres n et p. On admettra (provisoirement) qu’alors A+B+C
suit une loi binomiale de paramètres 3n et p.
Soit M la variable aléatoire qui à tout ω ∈ Ω associe la matrice M(ω) définie par :

M(ω) =

A(ω) B(ω) C(ω)
A(ω) B(ω) C(ω)
A(ω) B(ω) C(ω)


1. Quelle est la probabilité que M soit inversible ?
2. Quelle est la probabilité que M soit nilpotente, c’est à dire qu’il existe un entier p > 0 tel que Mp = 0 ?
3. Quelle est la probabilité que M soit la matrice d’un projecteur ?
4. Donner la loi, l’espérance du nombre de valeurs propres de M . Quelle est la probabilité que M soit diagonali-

sable ?
5. Donner la loi et l’espérance de la plus grande des valeurs propres.

Solution: Oral ESCP 2000
1. Les troislignes de la matrice M sont identiques et la matrice M n’est jamais inversible. Donc :

P (M inversible) = 0

2. Un calcul immédiat donne : M2 = (A+B + C)M, et ∀n ≥ 2, Mn = (A+B + C)n−1M .
Ainsi M est nilpotente si et seulement si A+B+C = 0 (ceci comprend les cas où M = 0). Mais, par indépendance,
A+B + C suit une loi binomiale B(3n, p) ; donc :

P (M nilpotente) = (1− p)3n

3. M est la matrice d’un projecteur si et seulement si M2 = M et par le calcul précédent si et seulement si
A+ B + C = 1 (c’est à dire A = 1, B = 0, C = 0 ou A = 0, B = 1, C = 0 ou A = B = 0, C = 1) ou bien M = 0.
Ces deux événements étant incompatibles, il vient :

P (M est une projection) = 3

(
n

1

)
p(1− p)3n−1 + (1− p)3n

= (1− p)3n−1[(3n− 1)p+ 1]
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4. Si M n’est pas la matrice nulle, M est de rang 1. Donc :
• A+B + C = 0 ⇒ M = 0 et M admet une seule valeur propre 0.
• A + B + C ̸= 0, alors M est de rang 1. Son noyau est de dimension 2 ; ainsi 0 est valeur propre de M , le
sous-espace propre associé étant de dimension 2, et la valeur propre restante est A+B+C (le sous-espace propre

associé étant engendré par

1
1
1

). Ainsi, dans ce cas, M admet deux valeurs propres. Si l’on appelle N la variable

aléatoire égale au nombre de valeurs propres de M , alors N(Ω) = {1, 2} et :

P (N = 1) = (1− p)3n, P (N = 2) = 1− (1− p)3n

Un calcul immédait donne E(N) = 2− (1− p)3n.
Enfin, la matrice M est toujours diagonalisable, car, soit M = 0, auquel cas elle est diagonale, soit M ̸= 0 et les
deux sous-espaces propres de M sont supplémentaires.

5. Si X est la variable aléatoire représentant la plus grande valeur propre de M , alors X(ω) = A + B + C et X
suit une loi binomiale B(3n, p) (cf propriété admise dans énoncé). Ainsi :

E(X) = 3np, V (X) = 3np(1− p).

*Exercice 4 On dispose d’une pièce truquée, telle que la probabilité d’obtenir Pile est p ∈]0, 1[. On lance deux fois
la pièce : si on obtient (F, P ), on a gagné, si on obtient (P, F ), on a perdu ; sinon, on recommence. Déterminer le
nombre moyen de lancers effectués.
Indication : si on note X le nombre de lancers effectués, on pourra s’intéresser à Y = X

2 .

Solution: ECS F27 exo 4

*Exercice 5 Soit X une V.A.R. discrète à valeurs dans N et telle que
• P (X = n) = 0 si les reste de la division euclidienne de n par 4 est égal à 2 ou à 3.
• P (X = n) = λ2−n sinon.

1. Trouver la valeur de λ (de telle sorte que X soit bien une V.A.R.)
2. Trouver E(X) (et V (X) si vous avez le courage).

Solution:

1. On cherche λ tel que
+∞∑
n=0

P (X = n) = 1. On rappelle que, pour une série à termes positifs, l’ordre n’importe

pas. Donc cette condition est équivalente à la condition

+∞∑
k=0

P (X = 4k) +

+∞∑
k=0

P (X = 4k + 1) +

+∞∑
k=0

P (X = 4k + 2) +

+∞∑
k=0

P (X = 4k + 3) = 1

ce qui s’écrit encore
+∞∑
k=0

(
λ
(
2−4k + 2−(4k+1) + 0 + 0

))
= 1

ce qui après calcul donne λ = 5/8.
2. Première méthode pour le calcul de E(X). La fonction génératrice de X est

GX(t) = λ

(
+∞∑
k=0

(
t

2

)4k

+

+∞∑
k=0

(
t

2

)4k+1
)

= λ

(
t

2
+ 1

)(+∞∑
k=0

(
t

2

)4k
)

= λ

(
t

2
+ 1

)
× 1

1− (t/2)4

= λ

(
t

2
+ 1

)
× 16

16− t4
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Cette fonction est dérivable deux fois en 1 donc E(X) et V (X) existent.

E(X) = G′
X(1) = λ×

(
1

2
× 16

16− 1
+

3

2
× 4× 16

(16− 1)2

)
= ... =

3

5

Deuxième méthode pour le calcul de E(X). Rappel : si q ∈]−1, 1[, alors les séries de termes généraux

qk et kqk−1 sont absolument convergentes. De plus
+∞∑
k+0

qk =
1

1− q
et par le théorème de dérivation terme

à terme pour les séries entières :
+∞∑
k=1

kqk−1 =
1

(1− q)2
.

On s’intéresse à la série

λ

+∞∑
k=0

(
(4k)× 2−4k + (4k + 1)× 2−(4k+1)

)

On reconnait une série absolument convergente, somme de deux séries absolument convergentes. En effet :

(4k) × 2−4k =
4

24
×

(
k

(
1

24

)k−1
)

donc c’est le terme général d’une série ansolument convergente par la

remarque précédente.

Par ailleurs : (4k + 1)× 2−(4k+1) = 2−(4k+1) +
1

2
(4k)× 2−4k =

1

2
×
(

1

16

)k

+
1

8
×

(
k

(
1

24

)k−1
)

et c’est

aussi le terme général d’une série ACV. Remarquons par ailleurs que, pour k = 0, on a k×x = 0 pour tout
réel x (ce qui permet d’omettre le terme correspondant à k = 0 pour les termes de la forme k × ... Donc
E(X) existe, et de plus

E(X) =
5

8
×

(
1

4

+∞∑
k=1

k

(
1

24

)k−1

+
1

2
×

+∞∑
k=0

(
1

16

)k

+
1

8
×

+∞∑
k=1

k

(
1

24

)k−1
)

=
5

8
×
(
3

8
× 1

(1− 1/16)2
+

1

2
× 1

1− 1/16

)
=

5

8
×
(
3

8
× 162

152
+

1

2
× 16

15

)
= ... =

3

5

Calcul de V (X) : rappel : si q ∈]− 1, 1[, alors les séries de termes généraux qk et kqk−1 sont absolument

convergentes. De plus
+∞∑
k+0

qk =
1

1− q
et par le théorème de dérivation terme à terme pour les séries entières

appliqué deux fois :
+∞∑
k=1

k(k − 1)qk−2 =
2

(1− q)3
.

On cherche si X a un moment d’ordre 2. On considère donc la série de terme général

vk = (4k)2 × 1

24k
+ (4k + 1)2 × 1

24k+1
= 16× k2 ×

(
1

16

)k

+
1

2

(
16k2 + 8k + 1

) 1

16k

= (16 + 16/2)× k2 ×
(

1

16

)k

+ 4× k ×
(

1

16

)k

+
1

2

(
1

16

)k

On écrit ensuite que k2 = k(k − 1) + k ce qui permet d’écrire

vk = 24k(k − 1)

(
1

16

)k

+ (24 + 4)
1

16
k ×

(
1

16

)k−1

+
1

2

(
1

16

)k

et vk est donc somme de termes généraux de séries ACV d’après la remarque préliminaire, donc E(X2)
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existe et de plus

E(X2) =
5

8

(
+∞∑
k=0

vk

)
=

5

8

(
+∞∑
k=0

24k(k − 1)

(
1

16

)k

+

+∞∑
k=0

28k

(
1

16

)k

+
1

2

+∞∑
k=0

(
1

16

)k
)

=
5

8

(
+∞∑
k=2

24k(k − 1)

(
1

16

)k

+

+∞∑
k=1

28k

(
1

16

)k

+
1

2

+∞∑
k=0

(
1

16

)k
)

=
5

8

(
24

162

+∞∑
k=2

k(k − 1)

(
1

16

)k−2

+
28

16

+∞∑
k=1

k

(
1

16

)k−1

+
1

2

+∞∑
k=0

(
1

16

)k
)

=
5

8

(
24

162
2

(1− (1/16))3
+

28

16

1

(1− (1/16))2
+

1

2
× 1

1− (1/16)

)
=

5

8
× 24× 2× 163

162 × 153
+

5

8
× 28× 162

16× 152
+

5× 16

2× 8× 15

=
32

152
+

56

3× 15
+

5

15
=

387

152
=

43

25

Puis V (X) = E(X2)− (E(X))2 =
34

25
Deuxième méthode pour le calcul de V (X) : On utilise la formule vue en cours (et que l’on doit savoir
démontrer !) :

V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2 = G′′

X(1) + E(X)− E(X)2

On a déjà GX(t) = 10 ·
( t2 + 1)

(16− t4)
puis G′

X(t) =
5

(16− t4)
+ 40

( t2 + 1) · t3

(16− t4)
2 et

20 · t3

(16− t4)
2 + 40 ·

( t2 + 1) · 3 · t2

(16− t4)
2

G′′
X(t) = 320× t6 × (t/2 + 1)

(−t4 + 16)3
+ 40× t3

(−t4 + 16)2
+ 120× t2 × (t/2 + 1)

(−t4 + 16)2

et l’on en déduit la valeur de V (X).

**Exercice 6 Soit n ∈ N, n > 3. On observe une assemblée de n personnes qui jouent à un jeu palpitant : chaque
personne lance une pièce de monnaie. Une personne gagne une partie si elle obtient le contraire de toutes les autres.
On note X la V.A.R. désignant le nombre de parties nécessaires à l’obtention d’un gagnant. Trouver la loi de X, son
espérance et sa variance (si elles existent).

Solution: ECS F27 exo 8

*Exercice 7 Un candidat passe chaque année 3 concours indépendants avec une probabilité de réussite à chaque
concours de 1/3. Déterminer la loi du nombre d’années X nécessaires l’intégration d’une école. Calculer le nombre
moyen d’années nécessaires à l’intégration d’une école.

Solution: ECS F27 exo 9
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*Exercice 8 Soit (a, b) ∈ (R∗
+)

2 tel que a+ b < 1.
Un interrupteur admet deux positions que l’on note 0 et 1. Si, à l’instant n, il est en position 0, il sera encore en
position 0 à l’instant n + 1 avec la probabilité 1 − a et passera en position 1 avec la probabilité a. De même, s’il est
en position 1, il y restera l’instant suivant avec la probabilité 1− b et basculera en position 0 avec la probabilité b.
Pour tout n ∈ N, on définit Xn la position de l’interrupteur à l’instant n.

1. Montrer que, pour tout n ∈ N,(
P ([Xn+1 = 0])

P ([Xn+1 = 1])

)
= A.

(
P ([Xn = 0)]
P ([Xn = 1])

)
avec A =

(
1− a b
a 1− b

)
2. Si l’on suppose que X0 suit la loi de Bernoulli de paramètre

a

a+ b
, déterminer la loi de la variable Xn pour

tout n ∈ N.
3. Dans le cas général, montrer que, pour tout n ∈ N, Xn suit une loi de Bernoulli dont on déterminera le paramètre

pn.
4. Que peut-on dire de lim

n→+∞
P (Xn = k) pour k ∈ {0; 1} ?

Solution: ECS F27exo 15

**Exercice 9 Soit X une variable aléatoire réelle de Poisson de paramètre λ > 0. On définit une variable aléatoire
réelle Y de la manière suivante :

— Si X = 0 ou si X prend une valeur impaire, alors Y = 0
— Si X prend une valeur paire, alors Y = X/2.

Trouver la loi de Y , son espérance et sa variance. (Le résultat n’est pas palpitant).

Solution: Calcul de P (Y = 0).

P (Y = 0) = P (X = 0) +

+∞∑
k=0

P (X = 2k + 1)

= e−λ +

+∞∑
k=0

e−λ λ2k+1

(2k + 1)!

= e−λ

(
1 +

+∞∑
k=0

λ2k+1

(2k + 1)!

)
= e−λ(1 + sh(λ))

Pour tout k ∈ N∗, on a P (Y = k) = P (X = 2k) = e−λ λ2k

(2k)!
.

Donc la fonction génératrice de Y est

GY (t) = e−λ(1 + sh(λ)) +
+∞∑
k=1

e−λ λ2k

(2k)!
tk

= e−λsh(λ) + e−λ
+∞∑
k=0

λ2k

(2k)!
tk

Pour t ≥ 0, on écrit t =
√
t2 et on en déduit :

GY (t) = e−λsh(λ) + e−λch(λ
√
t)

La série génératrice est donc dérivable (et même dérivable deux fois) en 1, donc Y a une espérance et une variance.

Pour t ≥ 0 on a : G′
Y (t) = e−λ λ

2
√
t
sh(λ

√
t) et

G′′
Y (t) =

λe−λ

2

(
− 1

2t3/2
sh(λ

√
t) +

1√
t

λ

2
√
t
ch(λ

√
t)

)
On sait ensuite que E(Y ) = G′

Y (1) = e−λλ

2
sh(λ) =

λ

4
(1− e−2λ).

Puis par un calcul usuel :

V (Y ) = G′′
Y (1) +G′

Y (1)−G′
Y (1)

2 =
λe−λ

2

(
−1

2
sh(λ) +

λ

2
ch(λ)

)
+ e−λλ

2
sh(λ)− E(Y )2

V (Y ) =
λe−λ

2

e−λ

2
+ e−λλ

2
sh(λ)− e−2λλ

2

4
sh2(λ)...
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*Exercice 10 Soit X une variable aléatoire réelle telle que X(Ω) = N∗. Déterminer et reconnaître la loi de X dans
chacun des cas suivants :

1. il existe k ∈]0, 1[ tel que : ∀n ∈ N∗, P (X = n) = k × P (X ≥ n)

2. ∀n ∈ N∗, 4 · P (X = n+ 2) = 5 · P (X = n+ 1)− P (X = n)

3. Ici X(Ω) = N et ∀n ∈ N∗, P (X = n) =
3

n
P (X = n − 1). On pose P (X = 0) = p0. (Il faudra déterminer p0

pour que X soit bien une variable aléatoire réelle )

Solution:
1. Posons pn = P (X = n).

Alors p1 = kP (X ≥ 1) = kP (X ∈ N∗) = k × 1 = k.

Et pour n ≥ 2, P (X = n) = P (X ≥ n) − P (X ≥ n + 1) = (
1

k
)(P (X = n) − P (X = n + 1)) donc

P (X = n + 1) = (1 − k)P (X = n). Donc la suite (pn) est géométrique de raison (1 − k). Donc pn =
(1− k)n−1p1 = k(1− k)n−1. Conclusion : X ↪→ G(k)

2. Posons pn = P (X = n). La suite (pn) satisfait une récurrence linéaire d’ordre 2. Les racines de l’équation

caractéristique sont 1 et 1/4. Donc pn = a + b(1/4)n. En utilisant le fait que
+∞∑
n=1

= 1, on trouve a = 0 et

b = 3. Donc pn =
3

4
×
(
1

4

)n−1

et donc X ↪→ G(3/4)

3. Posons pn = P (X = n). On montre par récurrence que pn =
3n

n!
p0. Puis, de

+∞∑
n=1

= 1 on déduit que p0 = e−3

et donc X ↪→ P(3)

**♡Exercice 11 Une princesse est retenue prisonnière dans un chateau. Un prince charmant se met en tête de la
délivrer. Lorsqu’il arrive à l’entrée du chateau, il se trouve devant trois portes. Il en ouvre une au hasard (équiprobable).
Si il ouvre la première porte, un dragon apparait et le dévore.
Si il ouvre la deuxème, il délivre la princesse.
Si il ouvre la troisième, une sorcière lui fait boire un filtre, il oublie ce qu’il a fait et est remis à la porte du chateau.
Puis il retente de délivrer la princesse.
Le prince renouvelle ses tentatives jusqu’à ce qu’il délivre la princesse ou soit dévoré par le dragon.

1. Calculer la probabilité de l’événement Dk =“il délivre la princesse au k-ème essai.
2. Calculer la probabilité de l’événement D=”il délivre la princesse“.
3. On note T le nombre de tentatives du prince (c’est à dire le nombre de fois où il est amené à choisir une porte

à ouvrir). Donner la loi de T ainsi que son espérance.
4. On note R le nombre d’essais nécessaires pour délivrer la princesse. Si le prince échoue, on convient que R = 0.

Donner la loi de R ainsi que son espérance.
5. Quelle est la probabilité que le prince recommence indéfiniment ses tentatives ?
6. Si le prince échoue dans sa tâche, le syndicat des princes envoie immédiatement un autre prince (qui procède

de même), jusqu’à ce que la princesse soit délivrée. Calculer le nombre moyen de princes ”utilisés“ pour délivrer
la princesse.

Solution: On introduit les événements suivants :
Dk=« la princesse est délivrée au k-ème essai du prince ».
Sk=« le prince ouvre la porte de la sorcière à son k-ème essai ».
DRk=« le prince ouvre la porte du dragon à son k-ème essai ».

1. Remarquons que Dk = S1 ∩ · · · ∩ Sk−1 ∩Dk car le fait que la princesse soit délivrée au k-ème essai sous-
entend le fait que le prince a ouvert la porte de la sorcière toutes les fois précédentes. On utilise la formule
des probas composées :

P (Dk) = P (S1)× PS1(S2)× · · · × PS1∩···∩Sk−1
(Dk) =

(
1

3

)k−1

× 1

3
=

(
1

3

)k

2. P (D) = P

( ∞⋃
k=1

Dk

)
=

+∞∑
k=1

P (Dk) car l’union est disjointe. D’où

P (D) =

+∞∑
k=1

(
1

3

)k

=
1

3

+∞∑
k=1

(
1

3

)k−1

=
1

3
× 1

1− 1
3

=
1

2
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3. T (Ω) = N∗.
P (T = k) = P (Dk ∪ DRk) = P (Dk) + P (DRk) car l’union est disjointe. Le calcul de P (DRk) est le

même que celui de P (Dk). Donc P (T = k) = 2

(
1

3

)k

=
2

3
×
(
1

3

)k−1

donc T ↪→ G( 23 ). On en déduit que

E(T ) = 3
2 .

4. P (R = 0) = P (« il ne délivre pas la princesse »)= P (D̄) = 1− P (D) = 1
2 .

Pour k ≥ 1, on a : P (R = k) = P (Dk) =

(
1

3

)k

.

La fonction génératrice de R est : GR(t) =
1

2
+

+∞∑
k=1

(
t
1

3

)k

=
1

2
+

(
1

1− t
3

)
− 1 =

1

2
+

t

3− t
et cette série a

pour rayon de convergence 3 donc elle est dérivable en 1 ; l’espérance de R existe et de plus E(R) = G′
R(1)

avec G′
R(t) =

1

3
× 1

(1− (t/3))2
d’où E(R) = 3

4 .

5. P (« il recommence indéfiniment »)=P (

+∞⋂
k=1

Sk) = lim
n→+∞

P (

n⋂
k=1

Sk) d’après le théorème de continuité dé-

croissante appliqué à la suite d’événements (

n⋂
k=1

Sk)n∈N. On en déduit que P (« il recommence indéfini-

ment »)= lim
n→+∞

(
1

3

)n

= 0.

6. Remarque préliminaire : on a vu que la probabilité que le prince recommence indéfiniment est nulle. Donc
chaque prince fait presque surement un nombre fini de tentatives. Donc cela a un sens de dire qu’on va en
envoyer un dès que le premier aura fini, si il échoue : cela arrive presque surement.
Par ailleurs si on considère un prince donné, soit il est dévoré par le dragon, soit il délivre la princesse, soit il
recommence indéfiniment. Ces trois événements forment un système complet et la proba qu’il recommence
indéfiniment est nulle donc P (D) + P (« le prince est dévoré un jour »)=1. Donc P (« le prince est dévoré
un jour »)=1-(1/2)=1/2.
Notons N le nombre de princes utilisés
et Mk=« le k-ème prince est mangé »
et Rk=« le k-ème prince réussit à délivrer la princesse ».
On a évidemment N(Ω) = N∗.
P (N = 1) = P (D) = 1/2 (en reprenant la question 1).

P (N = 2) = P (M1 ∩R2) = P (M1)× pM1
(R2) = (

1

2
)2.

P (N = k) = P (M1 ∩ · · · ∩Mk−1 ∩Rk) = ... = (1/2)k.
Finalement, N ↪→ G(1/2) donc E(N) = 2. Il faut en moyenne deux princes pour délivrer la princesse....
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**♡Exercice 12
1. Soit X une variable aléatoire réelle telle que : X ↪→ P(λ) et soit p ∈]0, 1[ un réel fixé.

Soit Y une variable aléatoire réelle dont la loi conditionnée par (X = n) est la loi binomiale B(n, p) pour tout
n ∈ N.
En d’autres termes : P(X=n)(Y = k) =

(
n
k

)
pk(1− p)n−k pour k ≤ n et P(X=n)(Y = k) = 0 si k > n.

Quelle est la loi de Y ?
2. La loi de Poisson est couramment employée dans des problèmes de files d’attente. Elle modélise le nombre

de personnes arrivant à un guichet en une heure, le nombre de messages reçus par un ordinateur, etc.... Par
exemple le nombre de voitures se présentant en une heure à un péage est une variable aléatoire X ↪→ P(λ) (avec
λ > 0). A ce péage, il y a N barrières,chaque voiture choisit une barrière au hasard, de manière équiprobable
et indépendamment des autres voitures. On note Y le nombre de voitures se présentant à la barrière numéro 1.
(a) Quelle est la loi de Y conditionnée par (X = n) ? Autrement dit : quelle est la loi de Y pour la probabilité

PX=n ?
(b) En déduire la loi de Y .

Solution:
1. RQ préliminaire : Le support de Y est N : puisque le nombre de voitures se présentant au péage est un

entier quelconque, le nombre de voitures allant à la barrière 1 est aussi un entier quelconque.
Supposons que (X = n). D’après l’hypothèse, chaque voiture choisit le premier péage avec une probabilité
(1/N). Les choix se font de manière indépendante, ainsi on peut considérer que Y est le nombre de succès
dans une succession de n épreuve de Bernoulli indépendantes et de même paramètre (1/N) (un succès étant
« la voiture choisit la barrière 1 »). Donc la loi de Y pour la probabilité PX=n est une loi binomiale de
paramètre (1/N).

2. Notons : p = 1/N .
PX=n(Y = k) =

(
n
k

)
pk(1− p)n−k (avec la convention usuelle

(
n
k

)
= si k > n) donc Y (Ω) = N. On utilise le

système complet d’événements (X = n)n∈N et on applique la formule des probabilités totales. Alors k ∈ N :

P (Y = k) =

+∞∑
n=0

P (X = n)× PX=n(Y = k)

=

+∞∑
n=0

e−λλ
n

n!

(
n

k

)
pk(1− p)n−k

=

+∞∑
n=k

e−λλ
n

n!

(
n

k

)
pk(1− p)n−k

= e−λ × pkλk

k!

+∞∑
n=k

λn−k(1− p)n−k

(n− k)!

= e−λ (pλ)
k

k!
eλ(1−p) = e−λp (pλ)

k

k!

Donc Y ↪→ P
(

λ

N

)
.

*♡Exercice 13 Le service de dépannage d’un grand magasin dispose d’équipes intervenant sur appel de la clien-
tèle. Pour des raisons diverses, les interventions ont lieu parfois avec retard. On admet que les appels se produisent
indépendamment les uns des autres et que, pour chaque appel, la probabilité d’un retard est 0,25.

1. Un client appelle le service à 4 reprises. On désigne par X la variable aléatoire réelle prenant pour valeur le
nombre de fois où ce client a dû subir un retard.
(a) Déterminer la loi de probabilité de X, son espérance et sa variance.
(b) Calculer la probabilité de l’événement : “le client a subi au moins un retard”.

2. Au cours des années 2015 et 2016, le service après-vente enregistre une succession d’appels. Le rang du premier
appel pour lequel l’intervention s’effectue avec retard en 2015 (resp. 2016) définit une variable aléatoire réelle
Y (resp. Z).
(a) Déterminer les lois de Y et de Z.
(b) Calculer P (Y ≤ k) pour tout k ∈ N∗.

(c) On pose T = max(Y,Z).
Calculer P (T ≤ k) pour tout k ∈ N∗. En déduire la loi de T , puis son espérance.
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Solution:
1. (a) Notons R=« le client subit un retard ».

On a P (R) = 1/4 à chaque appel.
Les appels sont indépendants.
X compte donc le nombre de succès dans une suite de 4 épreuves de Bernoulli indépendantes. Donc
X ↪→ B(1/4). On en déduit que E(X) = 4× 1

4 = 1 et V (X) = ... = 3/4.

(b) L’événement « le client a subi au moins un retard »est en fait l’événement (X ≥ 1) donc P (X ≥ 1) =
1− P (X = 0) = 1− (3/4)4.

2. (a) Y est le rang d’apparition du premier succès dans une suite (éventuellement infinie, ou que l’on peut
considérer comme telle) d’épreuves de Bernoulli indépendantes et de même paramètre p = 1/4, donc
Y ↪→ P(1/4). Même raisonnement pour Z.

(b) P (Y ≤ k) =

k∑
i=1

P (Y = i) =

k∑
i=1

(1/4)× (3/4)k−1 = ... = 1− (3/4)k.

Autre méthode : Y suit une loi géométrique de paramètre p donc P (Y > k) = (1 − p)k et donc
P (Y ≤ k) = 1− P (Y > k) = 1− (3/4)k.

(c) On calcule la fonction de répartition de T , et on en déduira la loi de T .
P (T ≤ k) = P ((Y ≤ k)∩(Z ≤ k)) = P (Y ≤ k)×P (Z ≤ k) par indépendance de Y et Z (qui découle de
l’indépendance des appels successifs). Donc d’après la question précédente, P (T ≤ k) = (1− (3/4)k)2.
Puis P (T = k) = P (T ≤ k)− P (T ≤ k − 1) = (1− (3/4)k)2 − (1− (3/4)k−1)2 pour k ≥ 2.
Remarquons que cette formule est encore vraie pour k = 1 car P (T = 1) = P (Y = 1)P (Z = 1) et... (je
vous laisse le détail).
Donc

P (T = k) = (1− (3/4)k)2 − (1− (3/4)k−1)2

= (1− (3/4)k + 1− (3/4)k−1)× ((1− (3/4)k)− (1− (3/4)k−1))

=
(
2− (3/4)k − (3/4)k−1

)
× ((3/4)k − (3/4)k−1)

=
1

4
×
(
3

4

)k−1

×
(
2− 7

4
× (3/4)

k−1

)
.

On pose uk = kP (T = k) = 2× 1

4
× k

(
3

4

)k−1

− 7

4
× 1

4
× k((3/4)2)k−1. On reconnait une différence de

deux termes généraux de séries absolument convergentes, donc l’espérance existe.

Et de plus E(T ) = 2× 1

4
× 1

(1− (3/4))2
− 7

16

1

(1− (9/16))2
= ... = 40/7

Autre méthode, plus jolie, pour le calcul de l’espérance : on peut utiliser la formule d’antiré-
partition.

P (T ≥ k) = 1− P (T ≤ k − 1) = 1−
(
1− (3/4)k−1

)2
= 1−

(
1− 2

(
3

4

)k−1

+

(
3

4

)2(k−1)
)

= 2

(
3

4

)k−1

−
(
3

4

)2(k−1)

Or
∑(

3

4

)k−1

et
∑(

3

4

)2(k−1)

sont des séries convergentes. Donc
∑

P (T ≥ k) converge. Par le théo-

rème d’antirépartition, on en déduit que E(T ) existe et vaut

E(X) =

∞∑
k=1

P (T ≥ k) = 2× 1

1− (3/4)
− 1

1− (3/4)2
= 8− 16

16− 9

E(X) =
40

7

*Exercice 14 Le cueilleur de champignon. On désigne par N le nombre de champignons ramassés par un
cueilleur durant une période fixée. On suppose que N est une variable aléatoire à valeurs dans N∗, de fonction
génératrice G. On suppose de plus que la probabilité pour qu’un champignon cueilli soit comestible est p. En faisant
les hypothèses d’indépendance qui vont de soi, montrer que la probabilité pour que tous les champignons ramassés
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soient comestibles est G(p).

Solution: Désignons par C1, · · · , CN les champignons cueillis et notons
Ak=« Ck est comestible »
et A =« tous les champignons cueillis sont comestibles ».
On applique la formule des probabilités totales avec le système complet d’événements
((N = n))n∈N. Alors, avec la convention usuelle « P (A ∩B) = P (A)× PA(B) = 0 si P (A) = 0 », on obtient :

P (A) =

+∞∑
n=0

P ((N = n) ∩

(
n⋂

k=1

Ak

)
)

=

+∞∑
n=0

P (N = n)× PN=n

(
n⋂

k=1

Ak

)

On suppose que les événements Ai sont mutuellement indépendants pour la probabilité PN=n pour tout n, et tous
de même probabilité p et on obtient

P (A) =

+∞∑
n=0

P (N = n)× pn = G(p)

*Exercice 15 Soit x un réel strictement positif et X une variable aléatoire discrète à valeurs dans N dont la loi de

probabilités est définie par : ∀n ∈ N, P (X = n) =
1

ch(x)
x2n

(2n)!

1. Calculer sa fonction génératrice GX à l’aide des fonctions usuelles.
2. En déduire son espérance et sa variance.

Solution: PT* 2014 F25

*Exercice 16 Soit X une variable aléatoire à valeurs dans N.
On pose pn = P (X = n), rn = P (X > n) et on note G la fonction génératrice de X.

1. Quelle relation a-t-on entre la série
∑

pn et la suite (rn) ?
2. On considère la série entière

∑
rnt

n. Montrer que son rayon de convergence est supérieur ou égal à 1.

3. Pour |t| < 1, on pose : H(t) =
+∞∑
n=0

rnt
n. Montrer que H(t) =

1−G(t)

1− t
.

Solution: PT* 2014 F25

*Exercice 17 Soit X une variable aléatoire à valeurs dans N. On note GX sa fonction génératrice, définie sur un
intervalle ]−RX , RX [ (avec RX > 1).

1. Soit (a, b) ∈ N2. Justifier l’existence de la fonction génératrice de aX + b. La déterminer en fonction de GX ;
2. Justifier que GX est définie en 1 et en -1. En déduire que :

P (X est pair) =
GX(1) +GX(−1)

2
et P (X est impair) =

GX(1)−GX(−1)

2

3. Si X suit la loi de Poisson P(λ), quelle est la probabilité que X soit paire ? Et si X suit la loi géométrique
G(p) ?

Solution: exo pichaureau page 269


