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I Introduction et rappels

Un espace euclidien est un espace préhilbertien réel de dimension finie.

Dans tout ce qui suit, £ désignera un espace euclidien de dimension n # 0.

Un espace euclidien posséde des bases orthonormales (que je noterai parfois, trés abusivement « BON »).

Soit B = (e1, -+ ,ey,) une BON de E, donnée pour toute cette partie I.

Expression du produit scalaire et de la norme dans une BON.
n

Soit z = Zaziei. Alors z; = (x,e;) et ||z Zaz
k=1

Si on note X = Mpg(z) et Y = Mp(y), alors (x,y) =XT. Vet |z>=XT.X.

Matrice d’'un endomorphisme dans une BON.
Soit f € L(E) et soit A = (aj ;)i j=1.n sa matrice dans la base B.
Alors pour tout (i,7) € [1; n]]Q, a;j = (e, f(ej)).

Existence d’un supplémentaire orthogonal pour tout SEV de E.

Si F est un sous-espace vectoriel de E, alors F' @ F+ = E. En particulier : dim(F)+dim(F+)=dim(E).
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Ceci est vrai car E est de dimension finie et donc F' est un SEV de dimension finie. (cf théoréme du
supplémentaire orthogonal pour un SEV de dimension dinie d’un espace préhilbertien réel).

Rappelons enfin que F+ =

Equations d’un hyperplan de E. Soit H un hyperplan de E. Alors H* est de dimension 1.
n

Soit a € HY, a #0, a = Zaiei. Alors H* = vect(a). On en déduit que H = vect(a)® c’est & dire :

i=1

re€H < x € vect(a)®

n
ce qui s’écrit dans la BON B:x € H <— Zaimi =0.
i=1

On dit alors que a est un vecteur normal a I’hyperplan H (cf vecteur normal & une droite dans le plan,

vecteur normal & un plan de lespace).

Projecteur orthogonal :
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II Le groupe orthogonal

II.1 Isomeétries vectorielles

II.1.a Définition, exemples

Définition 1 Une isométrie vectorielle de E (ou endomorphisme orthogonal de E) est un endomor-
phisme u € L(E) qui conserve la norme, c’est & dire que :

Ve € B, |lu(z)|| = |l

On note O(E) I'ensemble des isométries vectorielles de E et on appelle « groupe orthogonal (de E) ».

Remarque 1 Une application définie sur E et a valeurs dans E est une isométrie vectorielle de E si et
seulement si : elle est linéaire et conserve la norme.

Attention : une application qui conserve la norme n’est pas toujours linéaire.

Prendre par exemple : v : = — ||z|lel o e; est un vecteur unitaire fixé.

Conclusion : Quand on vous demande de montrer qu'une application est une isométrie, il ne faut surtout

pas oublier de mentionner qu’elle est linéaire!

Exemple 1 1. Quelles sont les homothéties de E qui sont aussi des isométries vectorielles ?
2. Décrire O(E) si dim(E)=1.
3. Quelles isométries du plan avez-vous vues en PCSI?
Rappels sur les symétries vectorielles Si F = F & G, alors pour tout x € FE, il existe un unique

(xp,zq) € F x G, tel que x = 2 + x¢. On appelle alors on appelle symétrie (vectorielle) par rapport
a F et parallélement a G 'application : = — zp — zg.

Soit f € L(F). Alors f est une symétrie vectorielle si et seulement si fo f = Idg.
Dans ce cas : c’est la symétrie par rapport a Ker(f — Idg) et parallélement a Ker(f + Idg).

Définition 2 Symeétries orthogonales.
Soit s une symétrie vectorielle par rapport & F et parallelement & G. On dit que s est une symétrie
orthogonale lorsque G = F*.

Proposition 1 (dem) Une symétrie orthogonale est une isométrie.

I Remarque 2 Si f est une isométrie et si f o f = Idg, alors f est une symétrie orthogonale.

Définition 3 Réflexions. Une symétrie (vectorielle) orthogonale par rapport & un hyperplan de F est
appelée réflexion de E.

Par exemple : dans le plan R?, une symétrie orthogonale par rapport a une droite vectorielle est une réflexion
(du plan).
Dans I'espace R? : une symétrie orthogonale par rapport & un plan vectoriel est une réflexion (de I’espace).

Exemple 2 Important.
Soit F' un sous-espace vectoriel de F et soit s la symétrie orthogonale par rapport & F.

1. Comment calculer I’image par s d’un vecteur de £ ?

2. Cas particulier des réflexions.
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II1.1.b Caractérisations

Proposition 2 Caractérisation par la conservation du produit scalaire (dem).
Soit u € L(FE). Alors :

uec O(E) < Y(z,y) € E?, (u(z),u(y)) = (z,y)

Exercice 1 Soit u une application définie sur E, telle que ¥(z,y) € E2, (z,y) = (u(z), u(y)).
Montrer que u est une isométrie vectorielle.

Théoréme 1 Caractérisation par ’image d’une base orthonormale (dem).
Soit u € L(E) (o E # {0g}). Soit B une base orthonormale de E.
Alors u € O(E) si et seulement si 'image de B par u est aussi une base orthonormale.

II.1.c Propriétés

Remarque 3 Soit v une isométrie vectorielle de E.

Les seules valeurs propres possibles de u sont :

On en déduit notamment que 0 n’est pas valeur propre de u et donc que :
Enfin, comme E est de dimension finie, on en déduit que u est :

Théoréme 2 (a) Une isométrie vectorielle de E est un automorphisme de E i.e. O(F) C G{(E).
(b) Idg € O(FE)
(c) La composée de deux isométries vectorielles est une isométrie vectorielle.

On dit que O(F) est stable par composition.

(d) Une isométrie vectorielle est bijective et sa réciproque est une isométrie vectorielle.
On dit que O(E) est stable par passage a l'inverse.

Théoréme 3 (dem) Soit u € O(E).
Si F' est un sous-espace vectoriel de E stable par u, alors :
e u induit une isométrie vectorielle sur ', c’est a dire ujp € O(F)

e [ est aussi stable par u.
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I1.2 Représentation matricielle des isométries, matrices orthogonales
I1I.2.a Introduction

Rappel Si B est une BON de E, si x et y sont des vecteurs de E dont les coordonnées dans B sont données
par les matrices colonnes X et Y, alors : <,y >= X .YV =XT.Y.

Proposition 3 Soit B une base orthonormeée de E et soit u € L(E).
Alors u € O(E) si et seulement sa matrice M par rapport a B vérifie : M7 x M = I,.

Définition 4 Soit M € M, (R). On dit que M est orthogonale lorsque M* - M = I,,.
On note O, (R) ou O(n) 'ensemble des matrices orthogonales de taille n et on I’appelle groupe orthogonal

d’ordre n.

I1.2.b Caractérisations

Remarque 4 Soit M € M, (R).
Alors : M € On(R) <= ( M est inversible et son inverse est M7 (ou 'M)).
Donc : M € Oy(R) <= M -MT =1,

Remarque 5 Soit A = (a;;)1<ij<n € Mn(R).

e A est une matrice orthogonale += AT .- A =1,.

Or AT . A = I, signifie que ses vecteurs colonnes forment une base orthonormale de M, 1 (R) muni
du produit scalaire usuel.

Cest adire : AT-A=1, — (V(p,q)e[[l;n]] (Cp, Cy) Zazpazq

e AcO(n) < A-AT =, donc A est orthogonale si et seulement si ses vecteurs lignes forment
une base orthonormale de M ,(R).

Théoréme 4 Soit A € M, (R). Les assertions suivantes sont équivalentes :
(a) A est orthogonale.
(b) La famille des colonnes de A, est une famille orthonormale de M,, 1 (R)
(c) A =1,
(d) La famille des lignes de A, est une famille orthonormale de M; ,,(R)
yA-AT =1,
)

f) A est inversible et son inverse est AT (ou tA)).

e

(
(

1 /1 -2
Exemple 3 Montrer que la matrice A = — ( 1 ) est orthogonale est calculer A~

V5 \2
1/vV/3 1/vV2  1/V6
Montrer que la matrice B = | 1/v/3 —1/v/2 1/v/6 | est orthogonale et donner son inverse.
1/V3 0 —2/v/6
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11.2.c Propriétés, applications

Proposition 4 Changement de base orthonormale.
Soient B une base orthonormale de E et soit B’ une base de E. Soit P la matrice de passage de B a B'.
Alors : B’ est une base orthonormale <= P est orthogonale.

Théoréme 5 ( Propriétés de O, (R) )
e Toute matrice orthogonale est inversible. Ainsi : O, (R) C G/, (R).
e [, € O(n)
e O, (R) est stable par produit.
Autrement dit : le produit de deux matrices orthogonales est une matrice orthogonale

e O, (R) est stable par passage a l'inverse.

Autrement dit : une matrice orthogonale est inversible et son inverse est orthogonale

Proposition 5 Le déterminant d’une matrice orthogonale vaut :

Par conséquent le déterminant d’une isométrie vectorielle vaut :

Définition 5 e Isométries vectorielles directes, indirectes.
On appelle isométrie vectorielle directe toute isométrie vectorielle dont le déterminant vaut 1.
On appelle isométrie vectorielle indirecte toute isométrie vectorielle dont le déterminant vaut -1.
On appelle "groupe spécial orthogonal de E", et on note SO(F) 'ensemble des isométries vecto-
rielles directes de F.
e Matrices orthogonales directes, indirectes.

On apppelle matrice orthogonale directe toute matrice orthogonale dont le déterminant vaut +1.
On appelle matrice orthogonale indirecte toute matrice orthogonale dont le déterminant vaut -1.

On appelle "groupe spécial orthogonal de R™" (ou de degré n sur R), et on note SO,(R) ou
SO(n), Pensemble des matrices orthogonales directes de taille n.

Théoréme 6 Groupe spécial orthogonal.
e SO(E) C O(F) C GUE).
De plus SO(FE) contient Idg, SO(F) est stable par composition et par passage a 'inverse.
e SO,L(R) C O,(R) C GLy(R).
De plus SO, (R) contient I,,, SO, (R) est stable par multiplication et par passage a I'inverse.

Bases orthonormeées directes.

Rappel : Soit By une base de référence (définissant I'orientation de E).

Si Detp,(B1) > 0, on dit que By est directe.

Si Detp,(B1) < 0, on dit que By est indirecte.

Une base est dite "orthonormée directe" lorsqu’elle est a la fois orthonormée et directe.

Exemple 4 On suppose avoir choisi une orientation de FE, espace euclidien de dimension n.

1. Soit B’ une autre base orthonormée directe de E et soit (uq,--- ,u,) une famille de vecteurs de E.
Montrer que : Detg(uq, -« ,u,) = Detg(ug, -+ ,up).

2. Soit u € L(F) et soit B une base orthonormée directe.
Montrer que : u € SO(E) <= u(B) est une base orthonormée directe.
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III Isométries vectorielles d’un plan euclidien

III.1 Matrices orthogonales de taille 2

Proposition 6 (Matrices orthogonales de taille 2 (dem)) Soit A € M>(R).
e A e SO(2) siet seulement si : 30 € R tel que A = C?S(G) —sin(9) :
sin(f)  cos(6)
cos(f)  sin(0)

e AcO(2) et A¢ SO(2) si et seulement si : 30 € R tel que A = <sin(9) — cos(8)

) avec 6 € R.

Définition 6 Pour 6 € R, on appelle « matrice de rotation d’angle 8 » la matrice

oy = () o)

Proposition 7 (Propriété) Pour 6 € R, on pose R(0) = (Z?IT((ZS ;Z:Eé?)

Alors : V(61,602) € R?,  R(01)R(02) = R(01 + 02) = R(62)R(61).

I11.2 Isométries directes d’un espace de dimension 2

Théoréme 7 (Isométries directes d’un espace de dimension 2. (dem))
Soit F un espace euclidien orienté de dimension 2.
Soit B une base orthonormée directe de F et soit v un endomorphisme de E.

cos(f) —sin(0)

weSO(E) «= WeR, Mglu) = (Sm(e) cos(6) ) = R(0)

Le réel 0, unique a 27 prés, ne dépend pas de la base orthonormée directe B.

Définition 7 Soit E un espace euclidien orienté de dimension 2 et soit u € SO(FE).
Alors on dit que « u est la rotation d’angle 6 » si 6 est 'unique réel (modulo 27) tel que la matrice de
0) —sin(0
u dans toute base orthonormée directe soit R() = C?S( ) —sin(9) .
sin(f)  cos(6)

0 est appelé angle de la rotation wu.

Remarque 6 (Représentation complexe d’une rotation.(dem))
Soit B = (e1, e2) une base orthonormée directe de E.
A tout vecteur u = xe; + yea, on associe son affixe z = x + iy.

L’image du vecteur u par la rotation d’angle 6 est le vecteur d’affixe 2/ = €%z.
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Proposition 8 (Propriétés. (dem)) Notons 7(6) la rotation vectorielle d’angle 6. Alors :
° 7“(01) o 7“(92) = 7“(02) o 7“(01) = 7“(01 + 92)
e 7(01) est bijective et (r(61)) " = r(—0;)

I11.3 Angle de deux vecteurs

Proposition 9 (Résultat préliminaire.(dem)) Soient u et v deux vecteurs unitaires d’un espace
euclidien de dimension 2. Il existe une unique rotation r telle que r(u) = v.

Définition 8 (Angle de deux vecteurs)
v

Soient U et V deux vecteurs non nuls. On pose u = m et v = m

—

On définit alors l'angle orienté de U et V, noté (U, V) comme 'angle de I'unique rotation r vérifiant
r(u) = v.

Proposition 10 (Propriétés.) Les propriétés des rotations permettent de montrer que :

—_—

o @l{/) = (lL‘Q—i— (V,W)[27]. (Chasles)
o (‘L\)E —(%[277].

Proposition 11 (Détermination (pratique) de (ﬁ))

Si on note € une mesure de (U, V), et B une base orthonormée directe de F, on a alors :

(U, V) = U]V cos(8) et dets(U,V) = [[U]].|[V]| sin(8)

Remarque 7 Si r est une rotation d’angle 6 alors Tr(r) = 2 cos(6).
De plus, si u est un vecteur unitaire de E, alors cos(6) = (u,r(u)) et sin(f) = det(u, r(u)).

Veérifiez-le avec la rotation d’angle 7/3

II1.3.a Isométries indirectes d’un espace de dimension 2

Proposition 12 (Isométries indirectes d’un espace de dimension 2)
Soit E un espace euclidien orienté de dimension 2.
Soit B = (e1, e2) une base orthonormée directe de E et soit u un endomorphisme de E.
cos(f)  sin(h) >
sin(f) — cos(0)
e Si tel est le cas, alors u est une réflexion par rapport a la droite vectorielle Vect(x)
ot x = cos(f/2)e; + sin(0/2)es.

e u est une isométrie indirecte <= IR, Mp(u)= <

Remarque 8 Soit £ un espace euclidien orienté de dimension 2.
La composée de deux réflexions de F est une rotation de E.

Toute rotation peut étre vue comme la composée de deux réflexions.
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IV Endomorphismes autoadjoints

IV.1 Généralités

Définition 9 (Endomorphisme autoadjoint (ou symétrique) )
Soit f un endomorphisme d’un espace euclidien E.
f est dit autoadjoint (ou symétrique) lorsque :  V(z,y) € E?, (f(x),y) = (z, f(y))

Proposition 13
L’ensemble des endomorphismes autoadjoints de E est un sous-espace vectoriel de L(E). Il est noté S(E).

Proposition 14 (Caractérisation matricielle des endomorphismes autoadjoints. (dem))
Soit f un endomorphisme d’une espace euclidien E. Soit B une base orthonormée de E. Alors :

f est autoadjoint <= Matg(f) est une matrice symétrique.

Proposition 15 (projecteur, symétrie et endomorphismes autoadjoints. (dem) )

e Soit p un projecteur d’un espace euclidien.
Alors p est un projecteur orthogonal si et seulement si p est autoadjoint.

e Soit s une symétrie d’un espace euclidien.
Alors s est une symétrie orthogonale si et seulement si s est autoadjoint.

Proposition 16 (Caractérisation matricielle des symétries orthogonales.(dem))
Soit s un endomorphisme de E, et soit B une base orthonormée . Alors :

s est une symétrie orthogonale de E <= la matrice Matg(s) est symétrique et orthogonale.

Exemple 5 Donner un exemple de matrice de symétrie orthogonale dans E = R? (muni du produit scalaire
canonique et de la base canonique).
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IV.2 Reéduction des endomorphismes autoadjoints

Proposition 17 (Propriétés) Soit f un endomorphisme autoadjoint d’un espace euclidien E.
e Le polynome caractéristique de f est scindé sur R.
e Les sous-espaces propres de f sont deux & deux orthogonaux.
e Si F est un sous-espace stable par f, alors F- est stable par f.
e Si F est stable par f, alors les endomorphismes induits par f sur F' et F- sont autoadjoints

Proposition 18 (Theoréme spectral) Soit f un endomorphisme autoadjoint d’un espace euclidien.
Alors f est diagonalisable dans une base orthonormée de F.
Autrement dit : il existe une base orthonormée de F, formée de vecteurs propres de f.

Proposition 19 (Version matricielle) Soit A une matrice symétrique .

Alors il existe une matrice diagonale (réelle) D et une matrice orthogonale P telle que P~ 'AP = D.

Remarque 9 ATTENTION : une matrice symétrique complexe n’est pas toujours diagonalisable.
]

1
Considérer la matrice A = <

i —
1

) . Elle est bien symétrique. Est-elle diagonalisable ?

-1
Exemple 6 Soit A = < 11 ) Justifier que A est diagonalisable et diagonaliser A.

Exemple 7 Soit a € R et soit A la matrice qui contient des 1 sur la diagonale, des a juste au dessus et juste en
dessous de la diagonale, et des 0 partout ailleurs :

1 0o --- 0

a 1 a 0 0

0 a 1 a 0
A:

: " . 1 a

0 oo eee ann a 1

Justifier que A est diagonalisable. Diagonaliser A lorsque A € M3(R).
IV.3 Endomorphisme autoadjoint positif, défini positif

Définition 10 Soit f un endomorphisme autoadjoint d’un espace euclidien E.
e f est dit « positif » lorsque : Vz € E, (f(x),x) > 0.
On note ST (E) I'ensemble des endomorphismes autoadjoints positifs de E.
o f est dit « défini positif » lorsque : Vo € E, z # 0= (f(z),z) > 0.
On note STT(E) l'ensemble des endomorphismes autoadjoints définis positifs de E.

Définition 11 Soit A une matrice symétrique réelle.
e Aest positivesi : VX € M,1(R), XTAX > 0.
On note S, (R) ensemble des matrices symétriques réelles positives.
e A est définie positive si : VX € M, 1(R), X #0, XTAX > 0.
On note S;F 7 (R) I'ensemble des matrices symétriques réelles définies positives.

Proposition 20 (Caractérisation des endomorphismes autoadjoints positifs)
Soit f un endomorphisme autoadjoint d’'un espace euclidien E.
e f est positif si et seulement si toutes ses valeurs propres sont positives ou nulles.
e f est défini positif si et seulement si toutes ses valeurs propres sont strictement positives .
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