PC, A. Briand Couples de V.A. discrétes et résultats aymptotiques ~-1/12—

Table des matiéres

I Introduction 1
II Loi conjointe et lois marginales d’un couple de variables aléatoires 2
IIT Loi conditionnelle 3
IV Variables aléatoires indépendantes 4
IV.1 Rappels . . . . o e 4
IV.2 Variables aléatoires discrétes indépendantes . . . . . . . . . . . .o oL 4
IV.3 Extension de la notion d’indépendance au cas de n variables aléatoires . . . . . . . ... ... 5
V A propos d’espérance.... 6
V.1 Retour sur le théoréme de transfert . . . . . . . . . . ... 6
V.2 Calcul de E(XY) lorsque X et Y sont des variables aléatoires réelles . . . . . . ... ... .. 6
V.3 Inégalité de Cauchy-Schwarz . . . . . . . . . . . . 7
V.4 Séries génératrices et variables aléatoires indépendantes . . . . . . . .. ... oL 8
VI Covariance de deux V.A.R. et variance d’une somme 9
VIlnégalités probabilistes 10
VIlloi faible des grands nombres 12

I Introduction

Définition 1 Rappel : Variable aléatoire discréte. On se donne (92, 7).
Une application X définie sur (€2, 7) est une variable aléatoire discréte si

e X est définie sur 2.
o X(9) est fini ou dénombrable,

e image réciproque de tout élément de X (2) appartient & T c’est a dire :
Vee X(Q), X '({z}) ={weQtels que X(w) =z} €T

Si X (92) est fini, on a une variable aléatoire (discréte) finie et si X (§2) est dénombrable, on a une variable
aléatoire discréte infinie.

N.B. : ici une variable aléatoire n’est pas nécessairement réelle. X (w) peut aussi étre un vecteur par exemple....

Définition 2 Soient X et Y deux V.A. discrétes définies sur un méme espace probabilisé (2,7, P), a
valeurs dans E et F' respectivement. L’application

V: Q= ExF
w = (X (w), Y (w))

est un couple de V.A. discrétes.

Remarque 1 On a vu qu’un produit cartésien d’ensembles au plus dénombrables est au plus dénombrable.
Ici, on pourrait aussi considérer ’application V' comme une variable aléatoire discréte définie sur () et
a valeurs dans X (2) x Y(Q2). En effet :

e Pour tout (z,y) € X(Q)xY (), V-1{(z,y)}) = (X = 2)N(Y = y)) qui est bien un événement (intersection
de deux éléments de la tribu T par hypothése, donc ¢’est bien un élément de 7).

e X(Q) xY(Q) est au plus dénombrable (étant donné que X et Y sont des V.A. discrétes).
N.B. : Au lieu de noter ((X = z) N (Y =y)), on peut noter (X =z,Y = y).
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Exemple 1 On tire un dé n fois. On note X le plus petit des numéros tirés et Y le plus grand. Puis on pose
V=(X,Y).

Remarque 2 A propos de V().
Ona:VweQ, (X(w),Y(w)) e X(Q) xY(Q).
En toute rigueur, V(2) C X(Q) x Y(Q).

Par exemple, dans ’exemple précédent :

V(Q) =
X(Q) x Y(Q) =

Néanmoins, I'usage est de prendre V(Q) = X(Q) x Y(Q).

Pour certaines valeurs de z et de y, on pourra alors avoir (X = 2)N (Y =y) =0, donc P(X =2,V =y) = 0.
Autrement dit, pour certains v € V(2), on pourra avoir P(V = v) = 0.

Conséquence : Le systéme d’événements (X = ,Y = y))zex(Q),yey(Q) €st un systéme complet d’événements,
mais certains d’entre eux peuvent étre de probabilité nulle. Aussi lorsque ’on appliquera la formule des probabilités
totales, on précisera bien la convention usuelle :

II Loi conjointe et lois marginales d’un couple de variables aléatoires

Définition 3 Soit V = (X,Y’) un couple de V. A. discrétes.

La loi conjointe du couple V = (X,Y) est la loi de V' vu comme variable aléatoire (cf remarque 1).
C’est donc la donnée de V() = X () x Y(2) et des probabilités P(X = z,Y = y) pour tous les couples
(x,y) € V(Q).

Les lois de X et de Y sont appelées les lois marginales du couple (X,Y).

Quand les V.A. sont finies, on peut représenter la loi de V' = (X,Y’) dans un tableau.

Exemple 2 On lance successivement deux dés.
On note X=numéro du premier dé lancé. On note Y= somme des deux numéros tirés. Donner la loi de V = (X,Y).

Exemple 3 On lance deux dés (un vert et un rouge) équilibrés. On note X le plus petit numéro, Y le plus grand.
Loi conjointe du couple (X,Y")? Lois marginales de X et de Y ?

1
Exemple 4 Ondonne:V(i,j) € (N*)2, P(X =iY =j)= 57 Loi conjointe du couple (X,Y") ? Lois marginales
de X etdeY?

Proposition 1 La donnée de la loi conjointe d’un couple de V.A. permet toujours de calculer les lois
marginales. En effet : pour x € X(£2) en appliquant la formule des probabilités totales, on a :

P(X =z) =

et idem pour calculer la loi de Y.
La réciproque est fausse : la connaissance des lois marginales ne permet pas de calculer la loi conjointe !

Preuve Contre-exemple : On posséde une urne contenant 3 boule blanches et 4 boules noirs. On fait 2 tirages
successifs.

On pose X =1 si la premiére boule est blanche et X = 0 si elle est noire.

On pose Y =1 si la deuxiéme boule est blanche et Y = 0 si elle est noire.

Calculer la loi conjointe et les lois marginales : d’abord lorsque les tirages ont lieu sans remise, puis lorsque les tirages
ont lieu avec remise
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Remarque 3 On peut écrire : Z P(X =z)= Z ( Z P(X =2Y = Z/)) =1

zEX(Q) zeX(Q) \yeY(Q)

ctaussi: » P =y)= ) (Z P(X_z,Y_y))_l

yeY (Q) yeY (Q) \zeX(Q)

IIT Loi conditionnelle

ATTENTION : La notion d’événement conditionnel n’a AUCUN sens.
La notion de variable aléatoire conditionnelle non plus.

En revanche : on peut calculer la probabilité conditionnelle qu’'un événement soit réalisé.

Ou la loi d’une V.A. pour une probabilité conditionnelle donnée !

Définition 4 Soit A un événement de probabilité non nulle. La loi conditionnelle de X sachant A est
la loi de X pour la probabilité P4. C’est donc la donnée de X (€2) et de P4(X = x) pour z € X ().

& C’est la loi de X sachant A qui est conditionnelle, pas la V.A. X....

Définition 5 Soit (X,Y’) un couple de V.A. et z € X () tel que P(X = x) # 0.
La loi de Y sachant (X = x) est la loi de Y pour la probabilité Px—,.
C’est donc la donnée de Y (Q2) et de Px—,(Y =y) pour y € Y(92).

Exemple 5 Reprendre I’ exemple 3 et déterminer la loi conditionnelle de Y sachant que (X = 3).
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IV Variables aléatoires indépendantes

IV.1 Rappels

e La notion d’indépendance est souvent justifiée par les conditions de ’expérience.
Exemples : lancers successifs d'un dé donné (ou d’une piéce donnée), tirages avec remise dans une
urne.

e Deux événements A et B sont indépendants pour la probabilité P lorsque :

e La notion d’indépendance dépend de la probabilité considérée. Il est possible que A et B soient
indépents pour Po mais pas pour P. Par exemple :

e Si A et B sont indépendants pour la probabilité P, alors A et B le sont aussi, ainsi que A et B, ainsi
que A et B.

IV.2 Variables aléatoires discrétes indépendantes

Définition 6 Deux variables aléatoires discrétes X et Y définies sur un espace probabilisé (2, T, P)
sont dites indépendantes lorsque : pour tout A C X () et pour tout B C Y (£2), les événements (X € A)
et (Y € B) sont indépendants, c’est a dire :

VAC X(Q),VvBCY(), P(X€AYecB)=P(XecA)PY €B)

On note alors X 1L Y.

Remarque 4 Attention : on ne suppose pas que les V.A. sont réelles; la définition s’applique aussi a des vecteurs
aléatoires par exemple.

Proposition 2 Soient X, Y variables aléatoires discrétes définies sur un espace probabilisé (€2, T, P).
Alors X et Y sont indépendantes si et seulement si : pour tout (x,y) € X(2) x Y(Q),

PX=z,Y=y)=PX=2)P(Y =y)
Autrement dit : X 1L Y si et seulement si la distribution de probabilités de (X,Y") est donnée par :

P(X=zY=y)=PX=x)PY =y).

Exemple 6 Reprendre ’exemple 2. Les V.A. X et Y sont-elles indépendantes ?

Remarque 5 X et Y sont indépendantes si et seulement si :

P(X=zY=y)
P(X =x)

Ve e X(Q), tel que P(X =2) #0, Px—, (Y =vy) = =P(Y =y).

Donc les lois marginales sont égales aux lois conditionnelles.

Proposition 3 (dém.) Si X et Y sont indépendantes, et si f et g sont deux fonctions définies sur X (12)
et Y (Q) respectivement, alors f(X) et g(Y) sont indépendantes. Autrement dit :

X 1Y = f(X) L g(Y).

Exemple 7 Si X et Y sont indépendantes, alors X? et Y2 le sont aussi.
Si X = (X,Xs) et Y = (Y1,Y2,Y3) sont indépendantes, alors X7 + X5 et Y3 - Y5 sont indépendantes, etc...
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IV.3 Extension de la notion d’indépendance au cas de n variables aléatoires

Rappel : Soit (An)ne[[ 1; ] une famille d’événements. C’est une famille d’événements indépendants lorsque :

Theoréme-Definition 1 Extension de la notion d’indépendance a n variables aléatoires.

Soient X1, -+, X, des variables aléatoires définies sur un méme espace probabilisé (2,7, P). Les deux
affirmations suivantes sont équivalentes :

(a) VA C X1(Q),--- ,VA, C X,,(Q), P (ﬂ(Xi € Ai)) =[[PxieA).
i=1 i=1
(b) V(x1, -+ ,xn) € X1(Q) X -+ x X,(Q), les événements (X; = x;) sont indépendants.

Lorsque ces affirmations sont vraies, on dit que X1, -, X,, sont indépendantes.

Remarque 6 Application : Modélisation de n expériences aléatoires indépendantes par une suite finie
(Xi)1e[1;n7 de variables aléatoires indépendantes.
Exemple : On lance n fois une piéce, on pose X; = 1 si on obtient Pile au ¢-éme lancer et X; = 0 sinon. Les variables

n
aléatoires X; sont indépendantes. Le nombre de Pile obtenus est alors X = Z X;.

Attention |: Ne pas confondre les phrases suivantes, qui ne veulent pas dire la méme chose :
e «les V.A. X4, -+, X, sont deux & deux indépendantes »

e «les V.A. Xq,---, X, sont indépendantes »

Proposition 4 Lemme des coalitions.
Soit X1, -+, X, des variables aléatoires discrétes définies sur (Q,7,P). Soitme [1; n—1].

Soit f :+ X1(2) x -+ X () = Eetsoit g : Xppp1(Q) X - X () = E

Si Xy,---, X, sont indépendantes, alors f(X1, -, X;,) et g(Ximt1,- -+, Xy) le sont aussi.

Preuve On remarque tout d’abord que : si Xy, -- ,X,, sont indépendantes, alors :
Y =Xy, -, Xm) et Z=(Xpna1, -+ ,X,) sont des V.A. indépendantes.
On applique ensuite la proposition 3 aux V.A. Y et Z.

Remarque 7 On peut étendre ce lemme au cas de plus de deux coalitions :

Extension de la notion d’indépendances a des suites infinies de V.A.

Remarque 8 Xj,---, X, sont indépendantes si, et seulement si, pour tout J C [1; n], la famille de V. A discrétes
(X;)jes est une famille de V.A. indépendantes.

On admet l'existence d’espaces probabilisés contenant une suite (infinie) de variables aléatoires indépen-
dantes de lois discrétes données.

Définition 7 Soit (X,,)nen une suite de variables aléatoires discrétes.

e C’est une suite de variables aléatoires indépendantes lorsque, pour toute partie finie I de N, la
famille (X;);er est une famille de variables aléatoires indépendantes.

e C’est une suite de variables aléatoires identiquement distribuées lorsqu’elles ont toute la méme
loi.
Lorsque que (X,,)nen est une suite de variables aléatoires indépendantes Et identiquement distri-
buées, on peut écrire que c’est « une suite de variables aléatoires i.i.d. ».
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Exemple 8 Soit (X;);en+ une suite de variables aléatoires i.i.d., suivant toutes une loi de Bernoulli : X; ~ B(p).
Cette suite modélise le "jeu de Pile ou Face " (infinité de lancers d’une piéce, et X; = 1 si Pile au i-éme lancer).

V A propos d’espérance....

V.1 Retour sur le théoréme de transfert

Théoréme 1 Théoréme de transfert. Soit X une V.A. définie sur (2,7, P) et soit f une fonction
définie sur X (£2) et a valeurs dans R.

1. Si X(Q) ={z1, -+ ,x,} est fini, alors f(X) a une espérance et
E(f(X) =) f@)P(X =)
i=1
2. Si X(Q) = {x;, i € N}, alors :
+o00

f(X) est d’espérance finie si et seulement si Z f(zi)P(X = ;) est convergente.

i=0
Dans ce cas, on a :

+o00
E(f (X)) =) fla)P(X = ;).
i=0

Remarque 9 Dans ce théoréme, X est une variable aléatoire qui n’est pas nécessairement réelle. X peut étre un
vecteur aléatoire. En revanche, f étant a valeurs réelles, f(X) est bien une variable aléatoire réelle.

Si f est une fonction de deux variables, et (X,Y") un couple de V.A., on peut donc appliquer le théoréme de transfert
et écrire (sous réserve d’absolue convergence) :

E(f(X,Y)) = > f@y)P(X =2,V =y)

(2.9)EX(Q) XY ()

Cette formule peut aussi s’appliquer & des n-uplets de variables aléatoires....
V.2 Calcul de F(XY) lorsque X et Y sont des variables aléatoires réelles

Si X et Y sont deux V.A. réelles, alors le théoréme de transfert permet d’écrire, sous réserve d’absolue
convergence :
E(XY) = > wyP(X =2,Y =)
(z,y)EX(Q)xY(Q2)

Théoréme 2 (dém.) : Si X et Y sont deux V.A. réelles indépendantes et d’espérances finies, alors
XY est d’espérance finie et de plus E(XY) = E(X) E(Y).

Remarque 10 On peut étendre ce théoréme au cas de n variables aléatoires réelles :

& La réciproque est fausse! E(XY) = E(X) E(Y) #= X et Y indépendantes...

Contre-exemple : soit X telle que X (2) = {—1;1;0} muni de la loi uniforme. Soit ¥ = X?2.
X et Y sont-elle indépendantes ? Calculer E(XY), E(X) et E(Y). Conclure...
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V.3 Inégalité de Cauchy-Schwarz

Théoréme 3 Inégalité de Cauchy-Schwarz : si X2 et Y2 sont d’espérance finie, alors XY D'est aussi

et de plus
E(XY)? < E(X?)E(Y?).

On a égalité si et seulement si : I(a, B) € R?, tel que (a, B) # (0,0) et aX + Y = 0 presque stirement.

Preuve On suppose que X2 et Y2 sont d’espérance finie.
Montrons que XY est aussi d’espérance finie.
z? +y?

On sait montre sans peine que : V(z,y) € R?, |zy| <
X?24Y?

3 > est d’espérance finie.

D’aprés les hypothéses, on peut dire que (

o X2 472 .
L’inégalité | XY | < ———— permet alors d’affirmer que XY est d’espérance finie.

Posons H(u) = E ((uY + X)?). Alors
H(u) = E(u*Y? +2XYu + X?) = uw*E(Y?) + 2E(XY)u + E(X?).

ler cas : Supposons que F(Y?) # 0. Alors H est une fonction polynomiale du second degré. Comme elle est de
signe constant, son discriminant est négatif ou nul.

Or A =4E(XY)? —4E(Y?) x E(X?) donc
A<0 < E(XY)’<E(X?)E(Y?)
On a égalité si et seulement A = 0 ce qui est équivalent a dire que H admet une unique solution réelle :
Jup € R, H(ug) =0 cest a dire : E ((X 4+ uY)?) =0.

Rappel : si Z est une variable aléatoire réelle discréte positive et d’espérance nulle, alors (Z = 0) est presque
sar (Prop 4 page 4 du 2e poly de probas).
Ainsi en appliquant ce résultat & Z = (uY + X)?, on obtient :

Jug € R, tel que P(ugY + X =0) = 1.

Ou encore : il existe (a,b) # (0,0) tel que aX + bY = 0 presque srement.

2e cas : Supposons que E(Y?) = 0. Alors Y = 0 presque stirement.

D’une part, 'inégalité de Caucht-Scwarz est une égalité.

Par ailleurs, en prenant a =1 et b =0 on a : aX 4+ bY = 0 presque slirement.

Conclusion : Iinégalité de Cauchy-Schwarz est toujours vraie. Et elle est une égalité si et seulement si 3(a, 3) € R?
tel que (o, B) # (0,0) et aX + Y = 0 presque siirement.
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V.4 Séries génératrices et variables aléatoires indépendantes

Définition 8 (Rappel) Soit X une V.A. a valeurs dans N.On appelle série génératrice de X la série

“+o0o
Gx(t)=E(t*) => P(X =n)t"
n=0

Théoréme 4 (Rappel) En reprenant les notations de la définition 8, on a :

e [—1,1] C Dg, (en notant D¢, le domaine de définition de Gx).
Le rayon de convergence R de la série génératrice vérifie R > 1.

e Gx est de classe C*° au moins sur l'intervalle | — 1, 1[.
e Gx(1)=1.
e La loi d’une variable aléatoire a valeurs dans N est caractérisée par sa série génératrice Gx.
a™ (0)
_ X

Plus précisément : P(X =n) = '
n

Par conséquent, si X et ¥ sont deux V.A. a valeurs dans N, alors : (X ~Y) <= Gx = Gy.

e X admet une espérance E(X) si et seulement si Gx est dérivable (a gauche) en 1 et, si tel est
le cas : E(X) = G’y (1).

e X admet une variance si et seulement si Gx est deux fois dérivable (a gauche) en 1. Dans le cas
ott G% (1) existe, on a : V(X) = G% (1) + G (1) — G’y (1)2.

Théoréme 5 Série génératrice de la somme de deux V.A. indépendantes

Soient X,Y deux V.A. a valeurs dans N, indépendantes.

Soit Rx (respectivement Ry ) le rayon de convergence de Gx (resp. Gy) et soit Dx (respectivement Dy-)
le domaine de définition de Gx (resp. Y).

Alors le rayon de convergence Gx iy de X +Y vérifie : Rx 1y > min(Rx, Ry ). De plus :

Vt € Dx N Dy, G)(+y(7f) = Gx(t) Gy(t).

Extension au cas de n variables aléatoires indépendantes.

Exemple 9 Montrer les propositions suivantes :

Soit X ~ B(n,p) et Y ~ B(m,p), indépendantes. Alors X +Y ~ B(n + m,p)

Soit k € N. Si Xy,---, X, sont des V.A. indépendantes telles que : Vi € [1; k], X; ~ B(n;,p), alors
X1+...+XkNB(n1+...+nk7p)

Soit X ~ P(A) et Y ~ P(p), indépendantes. Alors X +Y ~ P(A+ p)

Soit k € N. Si Xy,---, X, sont des V.A. indépendantes telles que : Vi € [1; k], X; ~ P()\;) Alors
X1+"'+Xk’“7)(/\1+"'+)\k)
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VI Covariance de deux V.A.R. et variance d’une somme

Theoréme-Definition 2 Soient X et Y deux V.A.R. discrétes d’espérance finies, telles que E(XY)
existe.
Alors E((X — E(X)) (Y — E(Y))) existe est appelé covariance de X et de Y et est noté cov(X,Y).

Remarque 11 1. La covariance de X et Y peut étre négative.
2. V(X) =cov(X, X).
3. Rappelons des conditions suffisantes permettant d’assurer 'existence de cov(X,Y)
e Si X et Y sont des V.A.R. admettant un moment d’ordre 2, alors F(XY) existe.

e Si X et Y sont indépendantes et si leurs espérances existent, alors F(XY) existe et vaut :

Proposition 5 Si E(X), E(Y) et E(XY) existent alors

cov(X,Y)=E(XY)—-EX)E(Y) (formule de Huyghens).

Preuve C’est une conséquence de la linéarité de I'espérance. Remarquons tout d’abord que (X — E(X)) (Y —
EY)=XY-EX)Y -XEY)+ EX)E(®Y).

Ainsi (X — E(X)) (Y — E(Y)) estune somme de variables aléatoires d’espérances finies, donc c’est aussi une variable
aléatoire d’espérance finie.

cov(X,Y) = E[XY —E(X)Y - XE(Y)+ E(X)E(Y)]
= E[XY] — E[E(X)Y] — E[E(Y)X] + E[E(X)E(Y))]
= E(XY) —E(X)E(Y) - E(X)E(Y) + E(X)E(Y) = E(XY) — E(X) x E(Y)

Proposition 6 Si X et Y sont indépendantes et si E(X) et E(Y) existent, alors cov(X,Y) = 0.
& Attention : la réciproque est fausse.

Preuve La premiére affirmation est immédiate d’aprés le théoréme 2.
Nous avons déja montré que la réciproque est fausse.

Deéfinition 9 Deux variables aléatoires dont la covariance est nulle sont dites décorrélées.

Proposition 7 Si X et Y sont deux V.A.R. admettant des moments d’ordre 2, alors V(X+Y) existe et

VIX+Y)=V(X)+V(Y)+2cov(X,Y)

n
Proposition 8 Si Xy, -+, X, sont n VAR admettant des moment d’ordre 2, alors V' (Z X¢> existe
i=1

et vaut :

1% <§n: X,;) - En:V(XZ-) +2x Z cov(X;, X;j)
=1 1=1

1<i<j<n
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n

Preuve On suppose vérifiées les hypothéses du théoréme. Justifions que V <Z X7;> existe.
Posons Y = ZXi' Il faut donc justifier que Y2 est d’espérance finie. Or Y2 = ZXZQ + 2 Z X X;.

i=1 =1
Par hypothése : Vi € [1; n], E(X?) existe.
Par ailleurs, on sait que l’existence de moments d’ordre 2 pour X; et X; assure l'existence de E(X;X;) pour tout
1 # j (ainsi que celle de E(X;) pour tout ).
Donc E(Y?) existe, donc V(Y) existe.

() - (&) (%)

= E ix§+2 > XX —<i:E(Xi)>

i=1 1<i<j<n

1<i<j<n

= Y EX)+2 > EXX)- Y (BX))?+2 Y E(X)xEX))

i=1 1<i<j<n i=1 1<i<j<n
= Y (BXH - (BX)?) +2 Y (BXX)) - B(X)E(X;))
i=1 1<i<j<n
= ) V(X)) +2 ) cov(X;, X))
i=1 1<i<j<n
Corollaire 1 Si Xy, -+, X, sont n VAR admettant des moment d’ordre 2 et deux a deux décorrélées,
n n n
alors V (Z XZ-> existe et vaut : V (Z Xi> = Z V(X;)
i=1 i=1 i=1

Preuve Immédiat d’aprés la propriété précédente. Remarquons que 1’on peut appliquer ce théoréme au cas ou les
V.A. sont indépendantes car : si les V.A. sont indépendantes, elles sont a fortiori indépendantes 2 a 2 et donc 2 a 2

décorrélées.

VII Inégalités probabilistes

Théoréme 6 Inégalité de Markov.
Soit X une V.A.R. discréte a valeurs positives et d’espérance finie. Alors :

E(X)

Va >0, P(X >a) <

Preuve Soit a > 0 et soit Y la fonction définie sur 2 par
Y(w)=asia< X(w)et Y(w) =0 sinon.

Alors Yw € €, Y(w) < X (w). Par ailleurs Y est une variable aléatoire réelle discréte. En effet :
e clle est bien définie sur 2
e Y (Q) est fini
e Y'({a}) = (X > a) est bien un événement, ainsi que Y 1({0}) = (X < a)
Enfin, E(Y) existe car Y est une V.A.R. finie. De plus E(Y)=0-P(Y =0)+a-P(Y =a) =a- P(X > a).
Par croissance de lespérance : 0 < E(Y) < E(X) clest adire : a- P(X > a) < E(X).
Donc P(X 2 a) < @.
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Théoréme 7 Inégalité de Bienaymé-Tchébychev.
Soit X une VAR discréte admettant une espérance F(X) et un variance V(X). Alors :

Ve 0, P(X - B(X)| > ¢) < L0 _ (0x)°

g2 g2

Preuve 1l suffit d’appliquer I'inégalité de Markov & la variable aléatoire positive (X — E(X))2. On obtient alors,
pour a =¢€2>0:
V(X)

P((X-EX))?>¢e") < =

On remarque ensuite que : (X — BE(X))? > e? <= | X - B(X)| > ¢

don: P(|X - E(X)|>¢) <

Remarque 12 C’est 'inégalité¢ de Bienaymé-Tchébychev qui permet de comprendre ce que mesure la variance :
pour ¢ fixé, la probabilité que 1’écart entre X et F(X) soit supérieur a ¢ est d’autant plus petite que V(X)) est faible.
La variance donne donc une indication de la dispersion de X autour de son espérance, c’est & dire sa tendance a
s’écarter de sa moyenne.

Théoréme 8 Autre version de 'inégalité de Bienaymé-Tchébychev. En reprenant les mémes hypothéses

V(X
que précédemment, on a : P(| X — E(X)| <¢) > 1— (2 )
e
a1l V(X) , . 1o
Preuve On reprend l'inégalité P(|X — E(X)| 2 ¢) < poat Par passage au complémentaire, on en déduit :
V(X V(X
1-P(X-E(X)|<e) < 22 >, ce qui s’écrit : P(|X — E(X)| <e) > 1— 22 )

Exemple 10 On réalise 400 fois la méme expérience, dont la probabilité de succes est 0,8:%. On suppose que les
400 expériences sont indépendantes. Soit X le nombre de succés obtenus. Calculer E(X) puis donner un minorant
de P(300 < X < 340).

Exemple 11 On utilise un dé équilibré. Cherchons le nombre de lancers qu’il faut effectuer pour pouvoir affirmer

avec un risque d’erreur inférieur a 5%, que la fréquence d’apparition du numéro 1 au cours de ces n lancers sera dans

- 11 1, 179
Iintervalle | & — 15555 + 105 °
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VIII Loi faible des grands nombres

Théoréme 9 Loi faible des grands nombres.
Soit (Xp)n>1 une suite de variables aléatoires i.i.d. admettant un moment d’ordre 2.

n
Alors si S, = ZXk, m=E(X;) et o =0(X;),ona:
k=1

pour tout € > 0 : P<

Sn
——-—m|=ze)] ——0.

n n—00

S,
Plus précisément : Ve > 0, P(‘n — m‘ P E) < —-
n

Avant de le montrer, interprétons ce résultat. Considérons des lancers successifs d’une piéce équilibrée.

Nombre de lancers.

Intuitivement, la fréquence d’apparition de « Pile » lors d’un trés grand nombre de lancers devrait étre proche

de 7 Rien ne nous garantit qu’au cours d’une série particuliéere de 10 000 lancers d’une piéce équilibrée, la

1
fréquence d’apparition soit proche de —. En revanche, la probabilité que la fréquence soit proche de 1/2

tend vers 1 quand le nombre de tirage tend vers +oc0.

S
La V.A.R. =~ représente la fréquence de succés lors de n épreuves de Bernoulli indépendantes. Plus

généralement, réalisons une expérience aléatoire dont le résultat est une variable aléatoire X. La loi de X
est inconnue, mais on a bon espoir de la connaitre de mieux en mieux en répétant un grand nombre de fois
I’expérience. A chacune des expériences, correspond une variable aléatoire X7, Xo, -+ , X,,. Raisonnablement,
on peut supposer que les n variables aléatoires réelles sont indépendantes et suivant une méme loi (mais c’est
une hypothése...). Tout expérimentateur pensera a calculer la moyenne des valeurs observées

M, — X1+ + X, :&.
n n

Il est important de noter que M, est elle-méme une variable aléatoire, somme de n variables aléatoires

indépendantes. Il n’y a aucune raison de supposer que M,, suit la méme loi que X (et ce n’est généralement

pas le cas).

L’idée fondamentale est que M, représente une approximation « acceptable »de I'espérance de X et qu’elle

permet de s’en approcher de mieux en mieux au fur et & mesure de la répétition des expériences.

Sn
o) < VL
n S

Preuve D’aprés l'inégalité de Bienaymé-Tchebychev : P <

1
OrV (%) Y (Sn).-

Comme les X; sont indépendantes : V(X1 +---+ X,,) = Z V(X;) =nV(X1) et donc
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