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I Introduction

Définition 1 Rappel : Variable aléatoire discrète. On se donne (Ω, T ).
Une application X définie sur (Ω, T ) est une variable aléatoire discrète si

• X est définie sur Ω.

• X(Ω) est fini ou dénombrable,

• l’image réciproque de tout élément de X(Ω) appartient à T c’est à dire :

∀x ∈ X(Ω), X−1({x}) = {ω ∈ Ω tels que X(ω) = x} ∈ T

Si X(Ω) est fini, on a une variable aléatoire (discrète) finie et si X(Ω) est dénombrable, on a une variable
aléatoire discrète infinie.

N.B. : ici une variable aléatoire n’est pas nécessairement réelle. X(ω) peut aussi être un vecteur par exemple....

Définition 2 Soient X et Y deux V.A. discrètes définies sur un même espace probabilisé (Ω, T , P ), à
valeurs dans E et F respectivement. L’application

V : Ω → E × F
ω 7→ (X(ω), Y (ω))

est un couple de V.A. discrètes.

Remarque 1 On a vu qu’un produit cartésien d’ensembles au plus dénombrables est au plus dénombrable.
Ici, on pourrait aussi considérer l’application V comme une variable aléatoire discrète définie sur Ω et
à valeurs dans X(Ω)× Y (Ω). En effet :

• Pour tout (x, y) ∈ X(Ω)×Y (Ω), V −1({(x, y)}) = ((X = x)∩(Y = y)) qui est bien un événement (intersection
de deux éléments de la tribu T par hypothèse, donc c’est bien un élément de T ).

• X(Ω)× Y (Ω) est au plus dénombrable (étant donné que X et Y sont des V.A. discrètes).

N.B. : Au lieu de noter ((X = x) ∩ (Y = y)), on peut noter (X = x, Y = y).
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Exemple 1 On tire un dé n fois. On note X le plus petit des numéros tirés et Y le plus grand. Puis on pose
V = (X,Y ).

Remarque 2 A propos de V (Ω).
On a : ∀ω ∈ Ω, (X(ω), Y (ω)) ∈ X(Ω)× Y (Ω).

En toute rigueur, V (Ω) ⊂ X(Ω)× Y (Ω).

Par exemple, dans l’exemple précédent :

V (Ω) =

X(Ω)× Y (Ω) =

Néanmoins, l’usage est de prendre V (Ω) = X(Ω)× Y (Ω).
Pour certaines valeurs de x et de y, on pourra alors avoir (X = x) ∩ (Y = y) = ∅ , donc P (X = x, Y = y) = 0.
Autrement dit, pour certains v ∈ V (Ω), on pourra avoir P (V = v) = 0.
Conséquence : Le système d’événements ((X = x, Y = y))x∈X(Ω),y∈Y (Ω) est un système complet d’événements,
mais certains d’entre eux peuvent être de probabilité nulle. Aussi lorsque l’on appliquera la formule des probabilités
totales, on précisera bien la convention usuelle :

II Loi conjointe et lois marginales d’un couple de variables aléatoires

Définition 3 Soit V = (X,Y ) un couple de V.A. discrètes.
La loi conjointe du couple V = (X,Y ) est la loi de V vu comme variable aléatoire (cf remarque 1).
C’est donc la donnée de V (Ω) = X(Ω)×Y (Ω) et des probabilités P (X = x, Y = y) pour tous les couples
(x, y) ∈ V (Ω).
Les lois de X et de Y sont appelées les lois marginales du couple (X,Y ).

Quand les V.A. sont finies, on peut représenter la loi de V = (X,Y ) dans un tableau.

Exemple 2 On lance successivement deux dés.
On note X=numéro du premier dé lancé. On note Y = somme des deux numéros tirés. Donner la loi de V = (X,Y ).

Exemple 3 On lance deux dés (un vert et un rouge) équilibrés. On note X le plus petit numéro, Y le plus grand.
Loi conjointe du couple (X,Y ) ? Lois marginales de X et de Y ?

Exemple 4 On donne : ∀(i, j) ∈ (N∗)2, P (X = i, Y = j) =
1

2i+j
. Loi conjointe du couple (X,Y ) ? Lois marginales

de X et de Y ?

Proposition 1 La donnée de la loi conjointe d’un couple de V.A. permet toujours de calculer les lois
marginales. En effet : pour x ∈ X(Ω) en appliquant la formule des probabilités totales, on a :

P (X = x) =

et idem pour calculer la loi de Y .
La réciproque est fausse : la connaissance des lois marginales ne permet pas de calculer la loi conjointe !

Preuve Contre-exemple : On possède une urne contenant 3 boule blanches et 4 boules noirs. On fait 2 tirages
successifs.
On pose X = 1 si la première boule est blanche et X = 0 si elle est noire.
On pose Y = 1 si la deuxième boule est blanche et Y = 0 si elle est noire.
Calculer la loi conjointe et les lois marginales : d’abord lorsque les tirages ont lieu sans remise, puis lorsque les tirages
ont lieu avec remise
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Remarque 3 On peut écrire :
∑

x∈X(Ω)

P (X = x) =
∑

x∈X(Ω)

 ∑
y∈Y (Ω)

P (X = x, Y = y)

 = 1

et aussi :
∑

y∈Y (Ω)

P (Y = y) =
∑

y∈Y (Ω)

 ∑
x∈X(Ω)

P (X = x, Y = y)

 = 1

III Loi conditionnelle

ATTENTION : La notion d’événement conditionnel n’a AUCUN sens.
La notion de variable aléatoire conditionnelle non plus.
En revanche : on peut calculer la probabilité conditionnelle qu’un événement soit réalisé.
Ou la loi d’une V.A. pour une probabilité conditionnelle donnée !

Définition 4 Soit A un événement de probabilité non nulle. La loi conditionnelle de X sachant A est
la loi de X pour la probabilité PA. C’est donc la donnée de X(Ω) et de PA(X = x) pour x ∈ X(Ω).

C’est la loi de X sachant A qui est conditionnelle, pas la V.A. X....

Définition 5 Soit (X,Y ) un couple de V.A. et x ∈ X(Ω) tel que P (X = x) ̸= 0.
La loi de Y sachant (X = x) est la loi de Y pour la probabilité PX=x.
C’est donc la donnée de Y (Ω) et de PX=x(Y = y) pour y ∈ Y (Ω).

Exemple 5 Reprendre l’ exemple 3 et déterminer la loi conditionnelle de Y sachant que (X = 3).
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IV Variables aléatoires indépendantes

IV.1 Rappels

• La notion d’indépendance est souvent justifiée par les conditions de l’expérience.
Exemples : lancers successifs d’un dé donné (ou d’une pièce donnée), tirages avec remise dans une
urne.

• Deux événements A et B sont indépendants pour la probabilité P lorsque :

• La notion d’indépendance dépend de la probabilité considérée. Il est possible que A et B soient
indépents pour PC mais pas pour P . Par exemple :

• Si A et B sont indépendants pour la probabilité P , alors A et B̄ le sont aussi, ainsi que Ā et B, ainsi
que Ā et B̄.

IV.2 Variables aléatoires discrètes indépendantes

Définition 6 Deux variables aléatoires discrètes X et Y définies sur un espace probabilisé (Ω, T , P )
sont dites indépendantes lorsque : pour tout A ⊂ X(Ω) et pour tout B ⊂ Y (Ω), les événements (X ∈ A)
et (Y ∈ B) sont indépendants, c’est à dire :

∀A ⊂ X(Ω), ∀B ⊂ Y (Ω), P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

On note alors X ⊥⊥Y .

Remarque 4 Attention : on ne suppose pas que les V.A. sont réelles ; la définition s’applique aussi à des vecteurs
aléatoires par exemple.

Proposition 2 Soient X, Y variables aléatoires discrètes définies sur un espace probabilisé (Ω, T , P ).
Alors X et Y sont indépendantes si et seulement si : pour tout (x, y) ∈ X(Ω)× Y (Ω),

P (X = x, Y = y) = P (X = x)P (Y = y)

Autrement dit : X ⊥⊥Y si et seulement si la distribution de probabilités de (X,Y ) est donnée par :

P (X = x, Y = y) = P (X = x)P (Y = y).

Exemple 6 Reprendre l’exemple 2. Les V.A. X et Y sont-elles indépendantes ?

Remarque 5 X et Y sont indépendantes si et seulement si :

∀x ∈ X(Ω), tel que P (X = x) ̸= 0, PX=x(Y = y) =
P (X = x, Y = y)

P (X = x)
= P (Y = y).

Donc les lois marginales sont égales aux lois conditionnelles.

Proposition 3 (dém.) Si X et Y sont indépendantes, et si f et g sont deux fonctions définies sur X(Ω)
et Y (Ω) respectivement, alors f(X) et g(Y ) sont indépendantes. Autrement dit :

X ⊥⊥Y =⇒ f(X)⊥⊥ g(Y ).

Exemple 7 Si X et Y sont indépendantes, alors X2 et Y 2 le sont aussi.
Si X = (X1, X2) et Y = (Y1, Y2, Y3) sont indépendantes, alors X1 +X2 et Y1 · Y2 sont indépendantes, etc...
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IV.3 Extension de la notion d’indépendance au cas de n variables aléatoires

Rappel : Soit (An)n∈[[ 1 ;N ]] une famille d’événements. C’est une famille d’événements indépendants lorsque :

Theorème-Definition 1 Extension de la notion d’indépendance à n variables aléatoires.

Soient X1, · · · , Xn des variables aléatoires définies sur un même espace probabilisé (Ω, T , P ). Les deux
affirmations suivantes sont équivalentes :

(a) ∀A1 ⊂ X1(Ω), · · · , ∀An ⊂ Xn(Ω), P

(
n⋂

i=1

(Xi ∈ Ai)

)
=

n∏
i=1

P (Xi ∈ Ai) .

(b) ∀(x1, · · · , xn) ∈ X1(Ω)× · · · ×Xn(Ω), les événements (Xi = xi) sont indépendants.

Lorsque ces affirmations sont vraies, on dit que X1, · · · , Xn sont indépendantes.

Remarque 6 Application : Modélisation de n expériences aléatoires indépendantes par une suite finie
(Xi)1∈[[ 1 ; n ]] de variables aléatoires indépendantes.
Exemple : On lance n fois une pièce, on pose Xi = 1 si on obtient Pile au i-ème lancer et Xi = 0 sinon. Les variables

aléatoires Xi sont indépendantes. Le nombre de Pile obtenus est alors X =

n∑
i=

Xi.

Attention : Ne pas confondre les phrases suivantes, qui ne veulent pas dire la même chose :
• « les V.A. X1, · · · , Xn sont deux à deux indépendantes »
• « les V.A. X1, · · · , Xn sont indépendantes »

Proposition 4 Lemme des coalitions.
Soit X1, · · · , Xn des variables aléatoires discrètes définies sur (Ω, T , P ). Soit m ∈ [[ 1 ; n− 1 ]].

Soit f : X1(Ω)× · · ·Xm(Ω) → E et soit g : Xm+1(Ω)× · · ·Xn(Ω) → E

Si X1, · · · , Xn sont indépendantes, alors f(X1, · · · , Xm) et g(Xm+1, · · · , Xn) le sont aussi.

Preuve On remarque tout d’abord que : si X1, · · · , Xn sont indépendantes, alors :
Y = (X1, · · · , Xm) et Z = (Xm+1, · · · , Xn) sont des V.A. indépendantes.
On applique ensuite la proposition 3 aux V.A. Y et Z.

Remarque 7 On peut étendre ce lemme au cas de plus de deux coalitions :

Extension de la notion d’indépendances à des suites infinies de V.A.

Remarque 8 X1, · · · , Xn sont indépendantes si, et seulement si, pour tout J ⊂ [[ 1 ; n ]] , la famille de V.A discrètes
(Xj)j∈J est une famille de V.A. indépendantes.

On admet l’existence d’espaces probabilisés contenant une suite (infinie) de variables aléatoires indépen-
dantes de lois discrètes données.

Définition 7 Soit (Xn)n∈N une suite de variables aléatoires discrètes.

• C’est une suite de variables aléatoires indépendantes lorsque, pour toute partie finie I de N, la
famille (Xi)i∈I est une famille de variables aléatoires indépendantes.

• C’est une suite de variables aléatoires identiquement distribuées lorsqu’elles ont toute la même
loi.

Lorsque que (Xn)n∈N est une suite de variables aléatoires indépendantes Et identiquement distri-
buées, on peut écrire que c’est « une suite de variables aléatoires i.i.d. ».
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Exemple 8 Soit (Xi)i∈N∗ une suite de variables aléatoires i.i.d., suivant toutes une loi de Bernoulli : Xi ∼ B(p).
Cette suite modélise le "jeu de Pile ou Face " (infinité de lancers d’une pièce, et Xi = 1 si Pile au i-ème lancer).

V A propos d’espérance....

V.1 Retour sur le théorème de transfert

Théorème 1 Théorème de transfert. Soit X une V.A. définie sur (Ω, T , P ) et soit f une fonction
définie sur X(Ω) et à valeurs dans R.

1. Si X(Ω) = {x1, · · · , xn} est fini, alors f(X) a une espérance et

E (f (X)) =
n∑

i=1

f(xi)P (X = xi)

2. Si X(Ω) = {xi, i ∈ N}, alors :

f(X) est d’espérance finie si et seulement si
+∞∑
i=0

f(xi)P (X = xi) est absolument convergente.

Dans ce cas, on a :

E (f (X)) =
+∞∑
i=0

f(xi)P (X = xi).

Remarque 9 Dans ce théorème, X est une variable aléatoire qui n’est pas nécessairement réelle. X peut être un
vecteur aléatoire. En revanche, f étant à valeurs réelles, f(X) est bien une variable aléatoire réelle.
Si f est une fonction de deux variables, et (X,Y ) un couple de V.A., on peut donc appliquer le théorème de transfert
et écrire (sous réserve d’absolue convergence) :

E(f(X,Y )) =
∑

(x,y)∈X(Ω)×Y (Ω)

f(x, y)P (X = x, Y = y)

Cette formule peut aussi s’appliquer à des n-uplets de variables aléatoires....

V.2 Calcul de E(XY ) lorsque X et Y sont des variables aléatoires réelles

Si X et Y sont deux V.A. réelles, alors le théorème de transfert permet d’écrire, sous réserve d’absolue
convergence :

E(XY ) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x, Y = y)

Théorème 2 (dém.) : Si X et Y sont deux V.A. réelles indépendantes et d’espérances finies, alors
XY est d’espérance finie et de plus E(XY ) = E(X) E(Y ).

Remarque 10 On peut étendre ce théorème au cas de n variables aléatoires réelles :

La réciproque est fausse ! E(XY ) = E(X) E(Y ) ̸=⇒ X et Y indépendantes...

Contre-exemple : soit X telle que X(Ω) = {−1; 1; 0} muni de la loi uniforme. Soit Y = X2.
X et Y sont-elle indépendantes ? Calculer E(XY ), E(X) et E(Y ). Conclure...
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V.3 Inégalité de Cauchy-Schwarz

Théorème 3 Inégalité de Cauchy-Schwarz : si X2 et Y 2 sont d’espérance finie, alors XY l’est aussi
et de plus

E(XY )2 ⩽ E(X2)E(Y 2).

On a égalité si et seulement si : ∃(α, β) ∈ R2, tel que (α, β) ̸= (0, 0) et αX + βY = 0 presque sûrement.

Preuve On suppose que X2 et Y 2 sont d’espérance finie.
Montrons que XY est aussi d’espérance finie.

On sait montre sans peine que : ∀(x, y) ∈ R2, |xy| ≤ x2 + y2

2
.

D’après les hypothèses, on peut dire que
(
X2 + Y 2

2

)
est d’espérance finie.

L’inégalité |XY | ≤ X2 + Y 2

2
permet alors d’affirmer que XY est d’espérance finie.

Posons H(u) = E
(
(uY +X)2

)
. Alors

H(u) = E(u2Y 2 + 2XY u+X2) = u2E(Y 2) + 2E(XY )u+ E(X2).

1er cas : Supposons que E(Y 2) ̸= 0. Alors H est une fonction polynomiale du second degré. Comme elle est de
signe constant, son discriminant est négatif ou nul.
Or ∆ = 4E(XY )2 − 4E(Y 2)× E(X2) donc

∆ ≤ 0 ⇐⇒ E(XY )2 ≤ E(X2)E(Y 2)

On a égalité si et seulement ∆ = 0 ce qui est équivalent à dire que H admet une unique solution réelle :

∃u0 ∈ R, H(u0) = 0 c’est à dire : E
(
(X + u0Y )2

)
= 0.

Rappel : si Z est une variable aléatoire réelle discrète positive et d’espérance nulle, alors (Z = 0) est presque
sûr (Prop 4 page 4 du 2e poly de probas).
Ainsi en appliquant ce résultat à Z = (uY +X)2, on obtient :

∃u0 ∈ R, tel que P (u0Y +X = 0) = 1.

Ou encore : il existe (a, b) ̸= (0, 0) tel que aX + bY = 0 presque sûrement.
2e cas : Supposons que E(Y 2) = 0. Alors Y = 0 presque sûrement.
D’une part, l’inégalité de Caucht-Scwarz est une égalité.
Par ailleurs, en prenant a = 1 et b = 0 on a : aX + bY = 0 presque sûrement.
Conclusion : l’inégalité de Cauchy-Schwarz est toujours vraie. Et elle est une égalité si et seulement si ∃(α, β) ∈ R2

tel que (α, β) ̸= (0, 0) et αX + βY = 0 presque sûrement.
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V.4 Séries génératrices et variables aléatoires indépendantes

Définition 8 (Rappel) Soit X une V.A. à valeurs dans N.On appelle série génératrice de X la série

GX(t) = E
(
tX
)
=

+∞∑
n=0

P (X = n) tn

Théorème 4 (Rappel) En reprenant les notations de la définition 8, on a :

• [−1, 1] ⊂ DGX
(en notant DGX

le domaine de définition de GX).
Le rayon de convergence R de la série génératrice vérifie R ⩾ 1.

• GX est de classe C∞ au moins sur l’intervalle ]− 1, 1[.

• GX(1) = 1.

• La loi d’une variable aléatoire à valeurs dans N est caractérisée par sa série génératrice GX .

Plus précisément : P (X = n) =
G

(n)
X (0)

n!
.

Par conséquent, si X et Y sont deux V.A. à valeurs dans N, alors : (X ∼ Y ) ⇐⇒ GX = GY .

• X admet une espérance E(X) si et seulement si GX est dérivable (à gauche) en 1 et, si tel est
le cas : E(X) = G′

X(1).

• X admet une variance si et seulement si GX est deux fois dérivable (à gauche) en 1. Dans le cas
où G′′

X(1) existe, on a : V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2.

Théorème 5 Série génératrice de la somme de deux V.A. indépendantes
Soient X,Y deux V.A. à valeurs dans N, indépendantes.
Soit RX (respectivement RY ) le rayon de convergence de GX (resp. GY ) et soit DX (respectivement DY )
le domaine de définition de GX (resp. Y ).
Alors le rayon de convergence GX+Y de X + Y vérifie : RX+Y ⩾ min(RX , RY ). De plus :

∀t ∈ DX ∩ DY , GX+Y (t) = GX(t)GY (t).

Extension au cas de n variables aléatoires indépendantes.

Exemple 9 Montrer les propositions suivantes :
• Soit X ∼ B(n, p) et Y ∼ B(m, p), indépendantes. Alors X + Y ∼ B(n+m, p)

• Soit k ∈ N. Si X1, · · · , Xk sont des V.A. indépendantes telles que : ∀i ∈ [[ 1 ; k ]] , Xi ∼ B(ni, p), alors
X1 + · · ·+Xk ∼ B(n1 + · · ·+ nk, p)

• Soit X ∼ P(λ) et Y ∼ P(µ), indépendantes. Alors X + Y ∼ P(λ+ µ)

• Soit k ∈ N. Si X1, · · · , Xk sont des V.A. indépendantes telles que : ∀i ∈ [[ 1 ; k ]] , Xi ∼ P(λi) Alors
X1 + · · ·+Xk ∼ P(λ1 + · · ·+ λk)
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VI Covariance de deux V.A.R. et variance d’une somme

Theorème-Definition 2 Soient X et Y deux V.A.R. discrètes d’espérance finies, telles que E(XY )
existe.
Alors E( (X − E(X)) (Y − E(Y )) ) existe est appelé covariance de X et de Y et est noté cov(X,Y ).

Remarque 11 1. La covariance de X et Y peut être négative.
2. V (X) =cov(X,X).
3. Rappelons des conditions suffisantes permettant d’assurer l’existence de cov(X,Y )

• Si X et Y sont des V.A.R. admettant un moment d’ordre 2, alors E(XY ) existe.
• Si X et Y sont indépendantes et si leurs espérances existent, alors E(XY ) existe et vaut :

Proposition 5 Si E(X), E(Y ) et E(XY ) existent alors

cov(X,Y ) = E(XY )− E(X)E(Y ) (formule de Huyghens).

Preuve C’est une conséquence de la linéarité de l’espérance. Remarquons tout d’abord que (X − E(X)) (Y −
E(Y )) = XY − E(X)Y −XE(Y ) + E(X)E(Y ).
Ainsi (X −E(X)) (Y −E(Y )) estune somme de variables aléatoires d’espérances finies, donc c’est aussi une variable
aléatoire d’espérance finie.

cov(X,Y ) = E
[
XY − E(X)Y −XE(Y ) + E(X)E(Y )

]
= E[XY ] − E[E(X)Y ] − E[E(Y )X] + E[E(X)E(Y )]

= E(XY ) − E(X)E(Y ) − E(X)E(Y ) + E(X)E(Y ) = E(XY )− E(X)× E(Y )

Proposition 6 Si X et Y sont indépendantes et si E(X) et E(Y ) existent, alors cov(X,Y ) = 0.

Attention : la réciproque est fausse.

Preuve La première affirmation est immédiate d’après le théorème 2.
Nous avons déjà montré que la réciproque est fausse.

Définition 9 Deux variables aléatoires dont la covariance est nulle sont dites décorrélées.

Proposition 7 Si X et Y sont deux V.A.R. admettant des moments d’ordre 2, alors V(X+Y) existe et

V (X + Y ) = V (X) + V (Y ) + 2 cov(X,Y )

Proposition 8 Si X1, · · · , Xn sont n VAR admettant des moment d’ordre 2, alors V

(
n∑

i=1

Xi

)
existe

et vaut :

V

(
n∑

i=1

Xi

)
=

n∑
i=1

V (Xi) + 2×
∑

1≤i<j≤n

cov(Xi, Xj)
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Preuve On suppose vérifiées les hypothèses du théorème. Justifions que V

(
n∑

i=1

Xi

)
existe.

Posons Y =

n∑
i=1

Xi. Il faut donc justifier que Y 2 est d’espérance finie. Or Y 2 =

n∑
i=1

X2
i + 2

∑
1≤i<j≤n

XiXj .

Par hypothèse : ∀i ∈ [[ 1 ; n ]] , E(X2
i ) existe.

Par ailleurs, on sait que l’existence de moments d’ordre 2 pour Xi et Xj assure l’existence de E(XiXj) pour tout
i ̸= j (ainsi que celle de E(Xi) pour tout i).
Donc E(Y 2) existe, donc V (Y ) existe.

V

(
n∑

i=1

Xi

)
= E

( n∑
i=1

Xi

)2
−

(
E

(
n∑

i=1

Xi

))2

= E

 n∑
i=1

X2
i + 2

∑
1≤i<j≤n

XiXj

−

(
n∑

i=1

E (Xi)

)2

=

n∑
i=1

E(X2
i ) + 2

∑
1≤i<j≤n

E(XiXj)−

 n∑
i=1

(E (Xi))
2
+ 2

∑
1≤i<j≤n

E(Xi)× E(Xj)


=

n∑
i=1

(
E(X2

i )− (E(Xi))
2
)
+ 2

∑
1≤i<j≤n

(E(XiXj)− E(Xi)E(Xj))

=

n∑
i=1

V (Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj)

Corollaire 1 Si X1, · · · , Xn sont n VAR admettant des moment d’ordre 2 et deux à deux décorrélées,

alors V

(
n∑

i=1

Xi

)
existe et vaut : V

(
n∑

i=1

Xi

)
=

n∑
i=1

V (Xi)

Preuve Immédiat d’après la propriété précédente. Remarquons que l’on peut appliquer ce théorème au cas où les
V.A. sont indépendantes car : si les V.A. sont indépendantes, elles sont a fortiori indépendantes 2 à 2 et donc 2 à 2
décorrélées.

VII Inégalités probabilistes

Théorème 6 Inégalité de Markov.
Soit X une V.A.R. discrète à valeurs positives et d’espérance finie. Alors :

∀a > 0, P (X ⩾ a) ≤ E(X)

a

Preuve Soit a > 0 et soit Y la fonction définie sur Ω par

Y (ω) = a si a ⩽ X(ω) et Y (ω) = 0 sinon.

Alors ∀ω ∈ Ω, Y (ω) ⩽ X(ω). Par ailleurs Y est une variable aléatoire réelle discrète. En effet :
• elle est bien définie sur Ω

• Y (Ω) est fini
• Y −1({a}) = (X ⩾ a) est bien un événement, ainsi que Y −1({0}) = (X < a)

Enfin, E(Y ) existe car Y est une V.A.R. finie. De plus E(Y ) = 0 · P (Y = 0) + a · P (Y = a) = a · P (X ⩾ a).
Par croissance de l’espérance : 0 ⩽ E(Y ) ⩽ E(X) c’est à dire : a · P (X ⩾ a) ⩽ E(X).

Donc P (X ⩾ a) ⩽
E(X)

a
.
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Théorème 7 Inégalité de Bienaymé-Tchébychev.
Soit X une VAR discrète admettant une espérance E(X) et un variance V (X). Alors :

∀ε > 0, P (|X − E(X)| ⩾ ε) ⩽
V (X)

ε2
=

(σX)2

ε2
.

Preuve Il suffit d’appliquer l’inégalité de Markov à la variable aléatoire positive (X − E(X))2. On obtient alors,
pour a = ϵ2 > 0 :

P
(
(X − E(X))2 ⩾ ε2

)
⩽

V (X)

ε2

On remarque ensuite que : (X − E(X))2 ⩾ ε2 ⇐⇒ |X − E(X)| ⩾ ε

d’où : P ( |X − E(X)| ⩾ ε ) ⩽
V (X)

ε2

Remarque 12 C’est l’inégalité de Bienaymé-Tchébychev qui permet de comprendre ce que mesure la variance :
pour ε fixé, la probabilité que l’écart entre X et E(X) soit supérieur à ε est d’autant plus petite que V (X) est faible.
La variance donne donc une indication de la dispersion de X autour de son espérance, c’est à dire sa tendance à
s’écarter de sa moyenne.

Théorème 8 Autre version de l’inégalité de Bienaymé-Tchébychev. En reprenant les mêmes hypothèses

que précédemment, on a : P (|X − E(X)| < ε) ⩾ 1− V (X)

ε2

Preuve On reprend l’inégalité P (|X − E(X)| ⩾ ε) ≤ V (X)

ε2
. Par passage au complémentaire, on en déduit :

1− P (|X − E(X)| < ε) ≤ V (X)

ε2
, ce qui s’écrit : P (|X − E(X)| < ε) ⩾ 1− V (X)

ε2

Exemple 10 On réalise 400 fois la même expérience, dont la probabilité de succès est 0,8= 4
5 . On suppose que les

400 expériences sont indépendantes. Soit X le nombre de succès obtenus. Calculer E(X) puis donner un minorant
de P (300 < X < 340).

Exemple 11 On utilise un dé équilibré. Cherchons le nombre de lancers qu’il faut effectuer pour pouvoir affirmer
avec un risque d’erreur inférieur à 5%, que la fréquence d’apparition du numéro 1 au cours de ces n lancers sera dans
l’intervalle ] 16 − 1

100 ,
1
6 + 1

100 [ ?
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VIII Loi faible des grands nombres

Théorème 9 Loi faible des grands nombres.
Soit (Xn)n⩾1 une suite de variables aléatoires i.i.d. admettant un moment d’ordre 2.

Alors si Sn =
n∑

k=1

Xk, m = E(X1) et σ = σ(X1), on a :

pour tout ε > 0 : P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

)
−−−→
n→∞

0.

Plus précisément : ∀ε > 0, P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

)
⩽

σ2

nε2
.

Avant de le montrer, interprétons ce résultat. Considérons des lancers successifs d’une pièce équilibrée.

Intuitivement, la fréquence d’apparition de « Pile » lors d’un très grand nombre de lancers devrait être proche

de
1

2
. Rien ne nous garantit qu’au cours d’une série particulière de 10 000 lancers d’une pièce équilibrée, la

fréquence d’apparition soit proche de
1

2
. En revanche, la probabilité que la fréquence soit proche de 1/2

tend vers 1 quand le nombre de tirage tend vers +∞.

La V.A.R.
Sn

n
représente la fréquence de succès lors de n épreuves de Bernoulli indépendantes. Plus

généralement, réalisons une expérience aléatoire dont le résultat est une variable aléatoire X. La loi de X
est inconnue, mais on a bon espoir de la connaître de mieux en mieux en répétant un grand nombre de fois
l’expérience. A chacune des expériences, correspond une variable aléatoire X1, X2, · · · , Xn. Raisonnablement,
on peut supposer que les n variables aléatoires réelles sont indépendantes et suivant une même loi (mais c’est
une hypothèse...). Tout expérimentateur pensera à calculer la moyenne des valeurs observées

Mn =
X1 + · · ·+Xn

n
=

Sn

n
.

Il est important de noter que Mn est elle-même une variable aléatoire, somme de n variables aléatoires
indépendantes. Il n’y a aucune raison de supposer que Mn suit la même loi que X (et ce n’est généralement
pas le cas).
L’idée fondamentale est que Mn représente une approximation « acceptable »de l’espérance de X et qu’elle
permet de s’en approcher de mieux en mieux au fur et à mesure de la répétition des expériences.

Preuve D’après l’inégalité de Bienaymé-Tchebychev : P
(∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

)
⩽

V
(
Sn

n

)
ε2

.

Or V
(
Sn

n

)
=

1

n2
V (Sn).

Comme les Xi sont indépendantes : V (X1 + · · ·+Xn) =

n∑
i=1

V (Xi) = nV (X1) et donc

V

(
Sn

n

)
=

nV (X1)

n2
=

σ2

n
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