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ESPACES VECTORIELS NORMES
Dans tout le chapitre K désigne R ou C.

I Normes sur un espace vectoriel

I.1 Norme et distance

Définition 1 (Norme)
Soit E un K-espace vectoriel. Une norme sur E est une application N : E → R+ vérifiant :

• ∀x ∈ E, N(x) ⩾ 0 et N(x) = 0 ⇐⇒ x = 0.
• ∀x ∈ E,∀λ ∈ K, N(λx) = |λ|N(x).
• ∀(x, y) ∈ E2, N(x+ y) ⩽ N(x) +N(y) (Inégalité triangulaire)

Notation : ∥x∥ = N(x)
Un vecteur x de E est dit unitaire si sa norme ∥x∥ = 1.

Exemple 1 Si E est un R espace vectoriel muni d’un produit scalaire <,>, on définit la norme associée au produit
scalaire en posant ∀x ∈ E, ∥x∥ =

√
< x, x >.

Dans ce cas particulier, on dispose de l’inégalité de Cauchy-Schwarz :
∀(x, y) ∈ E2, | < x, y > | ⩽ ∥x∥.∥y∥

Exemple 2 Si E = R, la fonction valeur absolue est une norme sur R.

Exemple 3 Si E = C, la fonction z 7→ |z| est une norme sur C.

Proposition 1 (Une deuxiè‘me inégalité triangulaire)
Dans un espace vectoriel normé, on a, pour tous (x, y) de E2 :

|∥x∥ − ∥y∥| ⩽ ∥x− y∥

Définition 2 (Distance associée à une norme) Soit E un espace vectoriel muni d’une norme ∥.∥. La distance
associée à cette norme est l’application {

E × E → R+

(x, y) 7→ d(x, y) = ∥x− y∥
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Proposition 2 Les propriétés de la norme donnent :
• ∀(x, y) ∈ E2, d(x, y) = d(y, x)

• ∀(x, y) ∈ E2, d(x, y) = 0 ⇐⇒ x = y

• ∀(x, y, z) ∈ E3, d(x, z) ⩽ d(x, y) + d(y, z)

I.2 Normes usuelles.

Exemple 4 (Norme euclidienne sur Rn.) ∀x = (x1, ...xn) ∈ Rn, ∥x∥2 =
√
x2
1 + .....+ x2

n

Exemple 5 (Norme hermitienne sur Cn.) ∀x = (x1, ...xn) ∈ Cn, ∥x∥2 =
√
|x1|2 + .....+ |xn|2

Vérifier que c’est une norme.

Exemple 6 (La norme ∥.∥1 sur Kn.) ∀x = (x1, ...xn) ∈ Kn, ∥x∥1 = |x1|+ .....+ |xn|
Nous avons déjà rencontré cette norme dans R2 (cours "espaces préhilbertiens"). Nous avons vu que c’était une
norme, mais que ce n’était pas une norme euclidienne.

Exemple 7 (La norme ∥.∥∞ sur Kn.) ∀x = (x1, ...xn) ∈ Kn, ∥x∥∞ = max(|x1|, ...., |xn|)

Exemple 8 (Une norme sur Mn(R).) ∀A ∈ Mn(R), ∥A∥ =
√

Tr(ATA).

I.3 Normes dans un espace de fonction

Exemple 9 (Norme uniforme)
Ici, E désigne l’ensemble des fonctions bornées d’un intervalle I de R à valeurs dans K.

∀f ∈ E, ∥f∥∞ = sup
t∈I

{|f(t)|}

∥.∥∞ est appelée norme uniforme ou aussi norme infini.

Exemple 10 (Norme de la convergence en moyenne)
Ici, E désigne l’ensemble des fonctions continues sur un intervalle I de R, à valeurs dans K et intégrables.

∀f ∈ E, ∥f∥1 =

∫
I

|f(t)|dt

Exemple 11 Ici, E désigne l’ensemble des fonctions continues sur [a, b], à valeurs dans R.

Vérifier que (f, g) 7→
∫ b

a

f(t)g(t)dt définit un produit scalaire sur E.

Quelle est la norme associée ?

I.4 Partie bornée pour une norme donnée

Définition 3 Soit E un K-espace vectoriel muni d’une norme ∥.∥ et soit A une partie de E.
On dit que A est une partie bornée de E (pour la norme ∥.∥) lorsque :

∃K ∈ R+∗, tel que ∀x ∈ A, ∥x∥ ≤ K.

Exemple 12 Donner des exemples de parties bornées, dans différents contextes...

II Suites à valeurs dans un espace vectoriel normé

Définition 4 (Convergence d’une suite à valeurs dans un espace vectoriel normé)
Soit (xn)n∈N une suite à valeurs dans E et soit ℓ ∈ E. On dit que la suite (xn)n∈N converge vers ℓ si et seulement
si suite numérique d(xn, ℓ) tend vers 0, lorsque n tend vers ∞.(

xn −→
n→∞

ℓ
)

⇐⇒
(
lim
n→∞

d(xn, ℓ) = 0
)

⇐⇒ (∀ε > 0, ∃n0 ∈ N, ∀n ⩾ n0 d(xn, ℓ) ⩽ ε)

Une suite est dite convergente lorsqu’un tel ℓ existe.

Proposition 3 (Unicité de la limite)
Soit (xn) une suite à valeurs dans E, on note ℓ1 et ℓ2 deux éléments de E.
Si xn −→

n→∞
ℓ1 et xn −→

n→∞
ℓ2 alors ℓ1 = ℓ2
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Conséquence : Lorsqu’une suite admet une limite, on peut alors parler de la limite de la suite et on note :

ℓ = lim
n→∞

xn.

Remarque 1 Cette notion de convergence d’une suite d’éléments de E dépend du choix de la norme.

Exemple 13 Soit E l’ensemble des fonctions bornées continues et intégrables sur R+.

fn(x) =


0 si x ⩽ n− 1

n
ou x ⩾ n+

1

n

n(x− (n− 1

n
)) si x ∈ [n− 1

n
;n]

−n(x− (n+
1

n
)) si x ∈ [n;n+

1

n
]

Tracer l’allure de la courbe représentative de fn.
On note f la fonction nulle. Etudier ∥fn − f∥∞ et ∥fn − f∥1

Proposition 4 (Convergence des suites extraites) Soit (xn)n une suite d’éléments de E.
• Si la suite converge, alors toute suite extraite converge vers la même limite.
• Réciproquement, s’il existe un élément ℓ de E tel que les deux suites extraites (x2n) et (x2n+1) convergent

vers ℓ, alors la suite (xn)n converge vers ℓ

Proposition 5 Soient (xn)n et (yn)n deux suites d’éléments de E et soit λ un scalaire.
On suppose que xn −→ ℓ1 et yn −→ ℓ2 ; alors (xn + λyn) −→ ℓ1 + λℓ2

Définition 5 Une suite (xn)n est bornée si il existe un réel M ⩾ 0 tel que : ∀n ∈ N, ∥xn∥ ⩽ M .

Proposition 6 Toute suite convergente est bornée.
La réciproque est fausse

III Comparaison des normes

Définition 6 (Normes équivalentes) Soit E un espace vectoriel.
Deux normes N et N ′ définies sur E sont dites équivalentes lorsqu’il existe deux réels α > 0 et β > 0 tels que :

∀x ∈ E, N(x) ⩽ αN ′(x) et N ′(x) ⩽ βN(x)

Proposition 7 (Invariance du caractère borné et de la convergence.)
Si deux normes N et N ′ sont équivalentes sur E, alors :

• Toute partie, toute suite, toute application bornée pour l’une, l’est pour l’autre.
• Si une suite converge vers ℓ pour l’une, alors elle converge vers ℓ pour l’autre.

Exemple 14 Utilisation de suites pour montrer que deux normes ne sont pas équivalentes : On reprend
l’exemple 13. Les normes ∥.∥∞ et ∥.∥1 de E sont-elles équivalentes ?

Exemple 15 Soit E = Rn. Montrer que ∥.∥∞ et ∥.∥1 (de Rn) sont équivalentes.

Exemple 16 Faire l’exercice 1 de la feuille d’exercices.
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IV Topologie d’un espace vectoriel normé
E désigne un K-espace vectoriel muni d’une norme ∥.∥. La distance associée est notée d.

IV.1 Ouvert, fermé

Définition 7 (Boules et spheres) Soit a ∈ E et soit r un réel strictement positif.
La boule ouverte de centre a et de rayon r est B(a, r) = {x ∈ E, d(a, x) < r}
La boule fermée de centre a et de rayon r est Bf (a, r) = {x ∈ E, d(a, x) ⩽ r}
La sphere de centre a et de rayon r est S(a, r) = {x ∈ E, d(a, x) = r}

Exemple 17 Dans R2 et R3 décrire B(a, r) pour les différentes normes.

Remarque 2 On peut reformuler la définition d’une partie bornée de la manière suivante : Une partie A de E est
dite bornée lorsque : il existe un réel R > 0 tel que A ⊂ B(0E , R).

Définition 8 (Partie ouverte) Une partie U de E est dite ouverte lorsque :

∀a ∈ U, ∃ε > 0, B(a, ε) ⊂ U

Exemple 18 ∅ et E sont des ouverts.

Exemple 19 Dans E = R2 muni de la norme euclidienne, U = {(x, y) ∈ R2, y > 0}

Exemple 20 U = {(x, y) ∈ R2, x ⩽ 0}

Exemple 21 Une boule ouverte B(a, r) est ouverte.
Une boule fermée Bf (a, r) n’est pas ouverte.

Définition 9 (Partie fermée)
Une partie A de E est dite fermée lorsque son complémentaire est ouvert.

Exemple 22 L’ensemble vide est un fermé de E.
A = {(x, y) ∈ R2, x ⩽ 0} est une partie fermée de E.

Exemple 23 Dans E = R muni de la valeur absolue, I = [2, 5], J = [1; 6[ et K = [4;+∞[ sont ils ouverts, fermés ?

Proposition 8 (Caractérisation séquentielle des fermés) Soit A ⊂ E. Alors A est une partie fermée de E
si et seulement si toute suite convergente d’éléments de A a sa limite dans A, autrement dit :

∀(un) ∈ AN, lim
n→+∞

un = ℓ =⇒ ℓ ∈ A.

Proposition 9 (Intersection et réunion d’ouverts ou de fermés)

• Toute réunion d’ouverts est un ouvert.
• Toute intersection finie A1 ∩ .... ∩An d’ouverts est un ouvert.
• Toute intersection de fermés est un fermé.
• Toute réunion finie B1 ∪ ... ∪Bn de fermé est un fermé.

Remarque 3 Une intersection quelconque d’ouverts n’est pas nécessairement un ouvert :

Dans R, on a
⋂

n∈N∗

]− 1

n
; 1 +

1

n
[= [0, 1]
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IV.2 Intérieur, adhérence

Définition 10 (Intérieur) Soit A une partie de E.
Un point a ∈ A est dit intérieur à A lorsqu’il existe un réel ε > 0 tel que B(a, ε) ⊂ A.

L’ensemble des points intérieurs à A est noté :
o

A, c’est l’intérieur de A.

Remarque 4 Une partie A est ouverte si et seulement si elle est égale à son intérieur.

Définition 11 (Adhérence) Soit A une partie de E.
Un point x ∈ E est dit adhérent à A lorsque toute boule de centre x rencontre A.
On appelle adhérence de A, et on note Ā, l’ensemble des points adhérents à A.

Remarque 5 Une partie A est fermée si et seulement si elle est égale à son adhérence

Proposition 10 (Caractérisation séquentielle de l’adhérence)
Soit A une partie de E et a un point de E.
Le point a est adhérent à A si et seulement si il existe une suite d’éléments de A qui converge vers a.

Remarque 6 Soit A une partie de E. Les 3 propositions suivantes sont équivalentes
• A est fermée .
• A = Ā.
• La limite de toute suite convergente de A est dans A.

Définition 12 (Partie dense) Soit A une partie d’un espace vectoriel normé E.
La partie A est dense si son adhérence Ā = E.

Exemple 24 L’ensemble des nombres rationnels est dense dans R.

Définition 13 (Frontière) La frontière d’une partie A de E est l’ensemble Fr(A) = Ā \
o

A

Exemple 25 Dans E = R2 muni de la norme euclidienne, on considère
A = {(x, y) ∈ R2, 1 < x ⩽ 3 et − 1 ⩽ y < 2}.
Le point ((3; 0) est-il un point intérieur à A ? le point (2, 1) ?
Le point (1, 2) est-il adhérent à A ?
Déterminer la frontière de A.

IV.3 Partie Convexe

Définition 14 (segment) Soient a et b deux vecteurs de E. Le segment d’extremité a et b est
l’ensemble des vecteurs x de E pouvant s’écrire sous la forme x = ta+ (1− t)b avec t ∈ [0; 1].
Notation : [a; b] = {ta+ (1− t)b, t ∈ [0; 1]}

Définition 15 (Partie convexe)
Une partie A de E est dite convexe lorsque pour tous a et b dans A, le segment [a; b] est inclus dans A.

Exemple 26 L’ensemble vide et E sont convexes.

Proposition 11 (Convexité des boules) Toute boule ouverte ou fermée est une partie convexe.
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Exemple 27 On peut faire ici (avec profit) l’exercice 7 de la feuille d’exercices

V Limite/continuité d’une fonction f : E → F avec E et F e v n
Dans tout ce paragraphe, E et F sont des espaces vectoriels normés ; les normes sont notées ∥.∥E et ∥.∥F ; les distances
associées sont notées dE et dF

V.1 Définitions, Premières propriétés

Définition 16 (Limite d’une fonction) Soit A une partie de E, soit f : A → F une fonction et soit a un point
adhérent à A. Soit b ∈ F
On dit que f admet pour limite b, en a si et seulement si

∀ε > 0, ∃α > 0, ∀x ∈ A, (∥x− a∥E ⩽ α =⇒ ∥f(x)− b∥F ⩽ ε)

Si f admet deux limites b1 et b2 en a, alors b1 = b2.
Conséquence : lorsque f admet une limite en a, celle ci est appelée la limite de f , et est notée ℓ = lim

x→a
f(x)

Proposition 12 (Caractérisation séquentielle de la limite)
Soit A une partie de E, soit f : A → F une fonction. Soit a un point adhérent à A et soit ℓ ∈ F . Alors :(

ℓ = lim
x→a

f(x)
)

⇐⇒
(
∀(xn) ∈ AN, lim

n→+∞
xn = a ⇒ lim

n→+∞
f(xn) = ℓ

)
.

Proposition 13 (Composition des limites)
Soit f : A → B et g : B → G avec A ⊂ E et B ⊂ F . Soit a ∈ Ā et soit b ∈ B̄. Soit c ∈ G.

On suppose que lim
x→a

f(x) = b et que lim
x→b

g(x) = c ; alors lim
x→a

g(f(x)) = c.

Proposition 14 (Combinaisons linéaires)
Soient f et g deux fonctions de A → F . Soit a ∈ Ā et soit λ ∈ K.

On suppose que lim
x→a

f(x) = b1 et que lim
x→a

g(x) = b2.

Alors lim
x→a

(f + λg)(x) = b1 + λb2

V.2 Continuité et ouverts/fermés

Définition 17 (Continuité) Soit f : A → F et soit a ∈ A.
On dit que l’application f est continue en a lorsque lim

x→a
f(x) = f(a).

On dit que f est continue sur A lorsque f est continue en tout point a de A.

Remarque 7 Si f admet une limite b en a, et si a ̸∈ A, on peut alors prolonger f en a en posant f(a) = b.
Ce prolongement, noté abusivement f est alors continu en a

Proposition 15 (Continuité d’une composée)
Soit f : A → B et g : B → G avec A ⊂ E et B ⊂ F . Soit a ∈ A et on note b = f(a) ∈ B.

• Si f est continue en a et si g est continue en b = f(a), alors gof est continue en a.
• Si f est continue sur A et si g est continue sur B, alors g ◦ f est continue sur A.

Proposition 16 (Combinaisons linéaires)
Soient f et g deux fonctions de A → F . Soit a ∈ A et λ ∈ K.
Si f et g sont continues sur A, alors f + λg est continue sur A.
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Théorème 1 (Image réciproque d’un ouvert, d’un fermé)
Soit f : E → F une fonction continue. Alors :

• l’image réciproque d’un ouvert B ⊂ F est un ouvert de E :

B ouvert de F ⇒ f−1(B) = {x ∈ E, f(x) ∈ B} est un ouvert de E

• l’image réciproque d’un fermé de F est un fermé de E :

B fermé de F ⇒ f−1(B) = {x ∈ E, f(x) ∈ B} est un fermé de E

Proposition 17 (Cas particulier F = R) Soit f : E → R une application continue. Alors :

• L’ensemble U = {x ∈ E, f(x) > 0} est un ouvert de E.

• Les ensembles V = {x ∈ E, f(x) ⩾ 0} et W = {x ∈ E, f(x) = 0} sont des fermés de E.

Exemple 28 E = R3 et U = {(x, y, z) ∈ R3, x+ 2y − 7z ⩾ 0}

V.3 Application Lipschitzienne

Définition 18 Une application f : A → F , avec A partie de E, est dite lipschitzienne lorsqu’il existe un réel k
tel que :

∀(x, y) ∈ A2, ∥f(x)− f(y)∥F ⩽ k∥x− y∥E

Proposition 18 (Continuité des applications lipschitziennes)
Toute application lipschitzienne est continue.

Exemple 29 L’application "norme" : E → R est lipschitzienne

VI Espace vectoriel de dimension finie

VI.1 Equivalence des normes en dimension finie

Théorème 2 (Equivalence des normes (admis))
Toutes les normes d’un espace vectoriel normé E de dimension finie sont équivalentes.
Conséquence : en dimension finie, la convergence d’une suite et la valeur de sa limite ne dépendent pas du choix
de la norme.

VI.2 Utilisation des coordonnées

Proposition 19 (Convergence et coordonnées) E est un espace vectoriel normé de dimension p. On note
B = {ε1, ..., εp} une base de E.
Soit (xn) une suite d’éléments de E et soit ℓ ∈ E. On note (x1,n, .....xp,n) et (ℓ1, ..., ℓp) les coordonnées de (xn) et
de ℓ dans cette base.
La suite (xn) converge vers ℓ si et seulement si pour chaque entier k ∈ {1, ..., p}, la suite (xk,n) converge vers ℓk

Exemple 30 Dans E = M3(K), on considere la suite (An) avec An =

an bn cn
a′n b′n c′n
a′′n b′′n c′′n


Proposition 20 (Fonctions coordonnées)
Soit f : A → E (avec A partie d’un espace vectoriel normé F ). Soit a ∈ Ā et soit b ∈ E.
On note f1, ....fp les fonctions coordonnées de f et (b1, ....bp) les coordonnées de b dans la base B = {ε1, ..., εp}.

lim
x→a

f(x) = b ⇐⇒ ∀k ∈ {1, .., p}, lim
x→a

fk(x) = bk
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Exemple 31 Dans E = M2(K), on considere la fonction f avec ∀x ∈ R, f(x) =
(
a(x) b(x)
c(x) d(x)

)

Proposition 21 (Continuité et coordonnées)
Soit f : A → E (avec A partie d’un espace vectoriel normé F ). Soit a un point de A.
f est continue en a si et seulement si chaque fonction coordonnées fk est continue en a.

VI.3 Fonction continue sur une partie fermée bornée

Théorème 3 (Extrema d’une fonction numérique sur une partie fermée bornée d’un espace vectoriel
normé)
Soit E un espace vectoriel normé de dimension finie. Soit A une partie fermée bornée de E.
Soit f : A → R une fonction continue.

Alors f est bornée et atteint ses bornes.

Remarque 8 Traduire le résultat précédent lorsque E = R.

VI.4 Cas particuliers : fonctions linéaires, polynomiales, multilinéaires

Théorème 4 (Continuité des applications linéaires en dimension finie)
Soient E et F deux espaces vectoriels normés . On suppose E de dimension finie.
Toute application linéaire f : E → F est lipschitzienne donc continue.

Théorème 5 (Continuité des applications bilinéaires en dimension finie)
Soient E et F , 2 espaces vectoriels normés de dimension finie. Et soit G un espace vectoriel normé.
Toute application bilinéaire B : E × F → G est continue.

Théorème 6 (Continuité des applications multilinéaires en dimension finie)
Soient E1, ...., Ep p espaces vectoriels. Et soit F un espace vectoriel. On considère :

f :

{
E1 × E2...× Ep → F
(x1, x2, ...xp) 7→ f(x1, x2, ..., xp)

On rappelle que f est p-linéaire si pour tout i ∈ {1, .., p} et pour tout (x1, x2, ..., xp) de E1 × E2...× Ep,
l’application partielle t 7→ f(x1, ..., xi−1, t, xi+1, ....xp) est une application linéaire de Ei vers F .
Si f est p-linéaire et si les E1, ...., Ep sont de dimension finie, alors f est continue.

Proposition 22 (Continuité de l’application déterminant)
L’application det : Mn(K) → K est continue.

Remarque 9 Conséquence : l’ensemble GLn(K) est un ouvert de Mn(K).

Définition 19 (Fonction polynomiale)
Soit A une partie de E, K-espace vectoriel normé de dimension finie.
Une fonction f : A → K est dite polynomiale lorsqu’il existe une base B de E telle que l’expression de f(x) soit
un polynome en les coordonnées de x dans B.

Proposition 23 (Continuité) Toute fonction polynomiale est continue.
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