1 Exercices pour les TD

*Exercice 1 Pour $(x,y) \in \mathbb{R}^2$, on pose : $N(x,y) = \sqrt{x^2 + 2xy + 3y^2}$.

Montrer que N définit une norme euclidienne sur \mathbb{R}^2 (penser aux identités de polarisation).

- ** \heartsuit Exercice 2 On considère $E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, \text{ telles que la série } \sum u_n^2 \text{ converge}\}.$
 - 1. Pour x et y réels, montrer que $|xy| \leq \frac{1}{2}(x^2 + y^2)$.
 - 2. Montrer que, si (u_n) et (v_n) sont des élements de E, alors la série $\sum u_n v_n$ converge absolument.
 - 3. Montrer que E est un $\mathbb R$ espace vectoriel.
 - 4. Montrer que Φ définie sur $E \times E$ par $\Phi((u_n), (v_n)) = \sum_{n=0}^{+\infty} u_n v_n$ est un produit scalaire sur E.

 \heartsuit^{**} Exercice 3 Soit $E = \mathcal{M}_n(\mathbb{R})$. On définit la trace d'une matrice $M = [a_{ij}]$ par $Tr(M) = \sum_{i=1}^n a_{ii}$.

Soit $\Phi: E \times E \to \mathbb{R}, (A, B) \to Tr({}^tA \cdot B).$

1. Montrer que Φ définit un produit scalaire sur $M_n(\mathbb{R})$. On notera <,> ce produit scalaire et $\|\cdot\|$ la norme euclidienne associée.

Exprimer $\Phi(A, B)$ en fonction des coefficients des matrices A et B. En déduire une base de E qui soit orthonormale pour ce produit scalaire.

- 2. Soit $A = (a_{ij})_{1 \le i,j \le n}$. Montrer que $\sum_{i=1}^n \sum_{j=1}^n a_{ij} \le n \times \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$. Cas d'égalité?
- 3. Soit F le sous-espace vectoriel des matrices symétriques. Déterminer l'orthogonal de F.
- 4. Soient A et B deux matrices de E. Montrer que $||AB|| \le ||A|| \ ||B||$.
- 5. Démontrer que : $\forall A \in E, \ Tr(A) \leq \sqrt{nTr(tA \cdot A)}$.
- ** \heartsuit **Exercice 4** Soit $E = \mathbb{R}[X]$. Soit $a, b \in \mathbb{R}$ (on suppose $(a, b) \in \mathbb{R}^2$, avec a < b).
 - 1. Montrer que l'application Φ_1 de $E \times E$ dans \mathbb{R} définie par $\Phi(P,Q) = \int_0^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt$ est un produit scalaire sur E.
 - 2. Montrer que l'application Φ_2 de $E \times E$ dans \mathbb{R} définie par $\Phi(P,Q) = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2}dt$ est un produit scalaire sur E.
 - 3. Soit ω une fonction continue sur]a,b[, à valeurs strictement positives, telle que, pour tout entier naturel n, l'intégrale $\int_a^b t^n \omega(t) dt$ soit convergente.

Montrer que l'application Φ de $E \times E$ dans $\mathbb R$ définie par $\Phi(P,Q) = \int_a^b P(t)Q(t)\omega(t)dt$ est un produit scalaire sur E.

- *Exercice 5 On se place dans \mathbb{R}^3 muni de sa structure euclidienne canonique. Soit $H = \{(x, y, z) \in \mathbb{R}^3, \ x + y + z = 0\}$. Donner une base orthonormée de H.
- *Exercice 6 On se place dans \mathbb{R}^n (avec $n \geq 2$) muni de son produit scalaire usuel. Trouver une base orthonormale de $F = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n, x_1 + x_2 + \dots + x_n = 0\}$.
- *Exercice 7 Soit $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$.

Pour tous polynômes $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$ appartenant à E, on définit : $\langle P, Q \rangle = \sum_{k=0}^{n} a_k b_k$.

- 1. Montrer que $\langle \ , \ \rangle$ est un produit scalaire sur E.
- 2. Soit $F = \{P \in E \mid P(0) = 0\}$. Déterminer F^{\perp} .
- 3. On suppose n=5 et on note $G=\operatorname{Vect}(X^2(X-1),X^3,X^4)$. Déterminer G^{\perp} .

*Exercice 8 Soit $E = \mathcal{C}^0([-1,1],\mathbb{R})$ muni du produit scalaire défini par : $\langle f,g\rangle = \int_{-1}^{1} f(t)g(t) dt$. On pose $F = \{ f \in E \mid \forall t \in [-1, 0], f(t) = 0 \}$ et $G = \{ g \in E \mid \forall t \in [0, 1], g(t) = 0 \}$.

- 1. Montrer que $F^{\perp} = G$
- 2. Les sous-espaces vectoriels F et G sont-ils supplémentaires?

Exercice 9 Soient $E = \mathbb{R}_3[X]$ et $H = \{P \in E, P(1) = 0\}$. On munit E du produit scalaire défini par

$$\langle a_0 + a_1 X + a_2 X^2 + a_3 X^3, b_0 + b_1 X + b_2 X^2 + b_3 X^3 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$$

- 1. Donner la dimension et une base de H.
- 2. Déterminer le projeté orthogonal de P sur H.

***Exercice 10 Polynômes de Legendre. Soit $E = \mathbb{R}[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$

Pour $n \in \mathbb{N}$, on pose $P_n = \frac{1}{2^n \times n!} Q_n^{(n)}$ avec $Q_n = (X^2 - 1)^n$.

- 1. Vérifier que le produit scalaire « annoncé » est bien un produit scalaire...
- 2. Calculer le degré et le coefficient dominant de P_n .
- 3. Etudier la parité de P_n .
- 4. Montrer que $(P_k)_{k=0..n}$ est une base de $\mathbb{R}_n[X]$.
- 5. En appliquant la formule de Leibniz, montrer que $P_n(X) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X+1)^{n-k} (X-1)^k$. En déduire $P_n(1)$ et $P_n(-1)$. Calculer $P_n(0)$.
- 6. Montrer que la famille $(P_k)_{k=0...n}$ est une famille orthogonale.
- 7. On admet le résultat suivant : $\int_{0}^{\pi/2} \cos^{2k+1}(t) dt = \frac{2^{2k}(k!)^2}{(2k+1)!}$ (intégrale de Wallis...) Calculer $||P_n||$

**Exercice 11 Polynômes de Lagrange. Soit $E = \mathbb{R}_n[X]$. Soient $(x_0, \dots, x_n) \in \mathbb{R}^{n+1}$ tel que $x_0 < x_1 < \dots < x_n$.

- 1. Montrer que l'application $\left((P,Q)\longrightarrow \sum_{i=0}^n P(x_i)Q(x_i)\right)$ définit un produit scalaire que l'on notera $<\cdot,\cdot>$.
- 2. Pour i=0,...,n, on note L_i le polynôme $L_i=\prod_{j=0...n,\ j\neq i}\frac{X-x_j}{x_i-x_j}.$ Montrer que $(L_0,...,L_n)$ est une base orthonormale de E.

Soit $P \in E$. Comment calculer les coordonnées de P dans cette base?

3. Soit $f \in \mathcal{C}^0([x_0, x_n], \mathbb{R})$. On appelle polynôme de Lagrange de f relativement aux points x_0, \dots, x_n le polynôme $P_f = \sum_{i=0}^n f(x_i) L_i.$ Vérifier que $P_f \in E$. Puis montrer que si p est un entier fixé appartenant à $\{1, \cdots, \deg(P_f)\}$, il existe un unique

polynôme noté S de degré inférieur ou égal à p tel que $\sum_{k=0}^{n} (S(x_k) - f(x_k))^2$ soit minimal.

** \heartsuit Exercice 12 Soit E un espace vectoriel euclidien et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si : $\forall x \in E, \|p(x)\| \leq \|x\|$.

(Pour la réciproque, considérer $x \in \text{Ker}(p)$, $y \in \text{Im}(p)$ puis utiliser le minimum de l'application $t \mapsto \|y + tx\|^2$.)

* \heartsuit Exercice 13 Soit A la matrice $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 5 \\ 1 & -1 & 1 \end{bmatrix}$ et $B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. On identifiera \mathbb{R}^3 à $\mathcal{M}_{3,1}(\mathbb{R})$. On suppose \mathbb{R}^3 muni

de sa structure euclidienne usuelle. Déterminer X dans \mathbb{R}^3 tel que ||AX - B|| soit minimale.

2 Exercices d'oral

Exercice 14 Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

- 1. (a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - (b) Dans quel cas a-t-on égalité? Le démontrer.
- 2. Soit $E = \{ f \in \mathcal{C}([a,b], \mathbb{R}), \forall x \in [a,b] \ f(x) > 0 \}$. Prouver que l'ensemble $\left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

Exercice 15 Soit a et b deux réels tels que a < b.

- 1. Soit h une fonction continue et positive de [a,b] dans \mathbb{R} . Démontrer que $\int_a^b h(x) \mathrm{d}x = 0 \Longrightarrow h = 0$.
- 2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On pose :
$$\forall (f,g) \in E^2$$
, $(f|g) = \int_a^b f(x)g(x)dx$.
Démontrer que l'on définit ainsi un produit scalaire sur E .

3. Majorer $\int_0^1 \sqrt{x}e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.

Exercice 16 Soit E l'espace vectoriel des applications continues et 2π -périodiques de $\mathbb R$ dans $\mathbb R$.

- 1. Démontrer que $(f \mid g) = \frac{1}{2\pi} \int_0^{2\pi} f(t) g(t) dt$ définit un produit scalaire sur E.
- 2. Soit F le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos (2x)$. Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2 x$.