
Lycée Carnot PC 2025-2026

TP no 4 d’Informatique
Prog. dynamique : Distance de Levenshtein

Éléments de correction
1 def levenshtein(s:str, t:str) -> int:

2 """

3 Calcul de la distance d'édition entre deux mots. Retourne le nombre

4 d'opérations élémentaires nécessaires pour passer de s à t.

5 """

6 n = len(s)

7 p = len(t)

8 # Création d'un tableau contenant les distances, de taille (n+1) * (p+1)

9 # avec d[i][0] = i pour tout i et d[0][j] = j pour tout j

10 d = []

11 for i in range(n + 1):

12 ligne = [i]

13 for j in range(p):

14 ligne.append(0)

15 d.append(ligne)

16 for j in range(p + 1):

17 d[0][j] = j

18 # ou :

19 # d = [[j for j in range(p+1)]]

20 # for i in range(n):

21 # L = [i+1] + [0] * p

22 # d.append(L)

23 # Remplissage dynamique d'après l'équation de Bellman

24 for i in range(1, n+1):

25 for j in range(1, p+1):

26 if s[i-1] != t[j-1]:

27 delta = 1 # Substitution à réaliser entre les deux lettres

28 else:

29 delta = 0

30 d[i][j] = min(d[i-1][j] + 1, d[i][j-1] + 1, d[i-1][j-1] + delta)

31 return d[n][p]

32

33 # Essai

34 print('Distance entre les mots "rouge" et "rose" :',levenshtein('rouge','rose'))

35

36 def mindico(dico:dict):

37 """

38 Recherche de la clé de la valeur minimale à l'intérieur d'un dictionnaire

39 """

40 minimum = float('inf')

41 cle_min = []

42 for cle in dico:

43 if dico[cle] < minimum:

44 minimum = dico[cle]

45 cle_min = [cle]

46 elif dico[cle] == minimum:

47 cle_min.append(cle)

48 return cle_min

TP no 4 d’Informatique - Programmation dynamique : Distance de Levenshtein - Éléments de correction 1/2

Lycée Carnot PC 2025-2026

49 # Essai

50 exemple = {'a':2,'b':4,'c':1,'d':2,'e':1}

51 print("Clé du minimum du dictionnaire",exemple,":",mindico(exemple))

52

53 def autocorrection_simple(mot:str, liste:list) -> str:

54 """

55 Recherche et retourne l'élément de "liste" le plus proche de "mot"

56 """

57 # Génération du dictionnaire contenant les distances avec mot

58 dico = {}

59 for m in liste:

60 dico[m] = levenshtein(mot,m)

61 # Récupération du mot le plus proche

62 return mindico(dico)[0]

63

64 # Essai

65 exemple = ['essai','test','encore','maison']

66 print("Autocorrection de \"esai\"

parmi",exemple,":",autocorrection_simple('esai',exemple))

67

68 def autocorrection(recherche:str) -> list:

69 """

70 Recherche et retourne la liste des mots du dictionnaire les plus proches

71 de la chaîne "recherche"

72 """

73 fichier = open("TP4-liste.txt")

74 distances = {}

75 for mot in fichier:

76 mot = mot[0:-1] # Suppression du caractère "retour à la ligne" à la fin

77 distances[mot] = levenshtein(recherche,mot)

78 fichier.close()

79 return mindico(distances)

80

81 # Essai

82 print("Propositions d'autocorrection de 'aison' dans le dictionnaire

:",autocorrection('aison'))

Résultat

1 Distance entre les mots "rouge" et "rose" : 2

2 Clé du minimum du dictionnaire {'a': 2, 'b': 4, 'c': 1, 'd': 2, 'e': 1} : ['c',

'e']

3 Autocorrection de "esai" parmi ['essai', 'test', 'encore', 'maison'] : essai

4 Propositions d'autocorrection de 'aison' dans le dictionnaire : ['bison',

'maison', 'raison', 'saison']

TP no 4 d’Informatique - Programmation dynamique : Distance de Levenshtein - Éléments de correction 2/2

