Lycée Carnot PC

2025-2026

TP n°4 d’Informatique

Prog. dynamique : Distance de Levenshtein

Eléments de correction

1 |def levenshtein(s:str, t:str) -> int:
nmnn

3 Calcul de la distance d'édition entre deux mots. Retourne le nombre
4 d'opérations élémentaires nécessaires pour passer de s a t.

s win

6 n = len(s)

7 p = len(t)

8 # Création d'un tableau contenant les distances, de taille (un+1) * (p+1)
9 # avec d[i][0] = i pour tout i et d[0][j] = j pour tout j

10 d = []

11 for i in range(n + 1):

12 ligne = [i]

13 for j in range(p):

14 ligne.append(0)

15 d.append(ligne)

16 for j in range(p + 1):

17 dfo][j] = j
ou :
#d=[1[j for j in range(p+1)]]
20 # for i in range(n):
21 # L=1[1i1i+1] + [0] *p
#
#

18

19

22

d.append (L)

23 Remplissage dynamique d'aprés 1'équation de Bellman

2 for i in range(l, n+1):

25 for j in range(l, p+1):

26 if s[i-1] !'= t[j-1]:

27 delta = 1 # Substitution a réaliser entre les deux lettres

28 else:

29 delta = 0

30 dlil[j] = min(d[i-1]1(j] + 1, dA[i1[j-1] + 1, d[i-1]1[j-1] + delta)
31 return d[n] [p]

32
33 |# Essai

32 |print('Distance entre les mots "rouge" et "rose" :',levenshtein('rouge', 'rose'
35
36 |[def mindico(dico:dict):

mmnn
37

38 Recherche de la clé de la valeur minimale & 1'intérieur d'un dictionnaire
39 rwn

40 minimum = float('inf')

41 cle_min = []

42 for cle in dico:

43 if dicol[cle] < minimum:

44 minimum = dicol[cle]

45 cle_min = [clel

46 elif dicol[cle] == minimum:
a7 cle_min.append(cle)

48 return cle_min

))

TP n° 4 d’Informatique - Programmation dynamique : Distance de Levenshtein - Eléments de correction

1/2

Lycée Carnot PC 2025-2026

490 |# Essai
50 |exemple = {'a':2,'b':4,'c':1,'d"':2,'e':1}
51 |print("Clé du minimum du dictionnaire",exemple,":",mindico(exemple))

53 |def autocorrection_simple(mot:str, liste:list) -> str:

nnn

55 Recherche et retourne 1'élément de "liste" le plus proche de "mot"
56 rwn

57 # Génération du dictionnaire contenant les distances avec mot

58 dico = {}

59 for m in liste:

60 dico[m] = levenshtein(mot,m)

61 # Récupération du mot le plus proche

62 return mindico(dico) [0]

63
64 |# Essai

65 |exemple = ['essai', 'test', 'encore', 'maison']

66 |print("Autocorrection de \"esai\"
parmi",exemple,":",autocorrection_simple('esai',exemple))
67
6s |def autocorrection(recherche:str) -> list:

nmnn
69

70 Recherche et retourne la liste des mots du dictionnaire les plus proches

71 de la chaine '"recherche"

72 rwn

73 fichier = open("TP4-liste.txt")

74 distances = {}

75 for mot in fichier:

76 mot = mot[0:-1] # Suppression du caractére "retour & la ligne" & la fin
77 distances[mot] = levenshtein(recherche,mot)

78 fichier.close()

79 return mindico(distances)

80
s1 |# Essai

s2 |print ("Propositions d'autocorrection de 'aison' dans le dictionnaire
:" ,autocorrection('aison'))

Résultat
1 |Distance entre les mots "rouge" et "rose" : 2
2 |{Clé du minimum du dictionnaire {'a': 2, 'b': 4, '¢': 1, 'd': 2, 'e': 1} : ['c',
1 e 1 :l
3 |Autocorrection de "esai" parmi ['essai', 'test', 'encore', 'maison'] : essai
4 |Propositions d'autocorrection de 'aison' dans le dictionnaire : ['bison',
'maison', 'raison', 'saison']

TP n° 4 d’Informatique - Programmation dynamique : Distance de Levenshtein - Eléments de correction 2/2

