Lycée Carnot PC 2025-2026

TP n°4 d’Informatique
Programmation dynamique
Distance de Levenshtein

Objectif du TP

La programmation dynamique est une technique évoluée de conception d’algorithmes. Ces algorithmes ont
pour but de résoudre des problémes de calculs ou d’optimisation et le font souvent de maniere récursive,
mais sans refaire plusieurs fois le méme calcul.

Pour que 'on puisse utiliser la programmation dynamique, il faut avoir :

— la propriété de sous-structure optimale du probléme (principe d’optimalité de Bellman) : une partie
de la solution optimale du probléme global est elle-méme la solution optimale du sous-probléme corres-
pondant.

— le chevauchement des sous-problémes : le calcul de la solution optimale d’un sous-probleme fait
intervenir le calcul de celle d'un sous-probléeme différent ; les sous-problémes ne sont pas indépendants.
Remarque : s’ils le sont, les algorithmes de type diviser pour régner sont a considérer.

On appelle « équation de Bellman » I’équation de récurrence qui permet de calculer le cofit d’un sous-

probleme a partir des sous-probléemes déja traités.

On souhaite mettre en place un calcul efficace de « distance d’édition » entre deux mots, afin d’aboutir a
un systeme de correction automatisée d’une saisie de texte.

Distance d’édition

La « distance d’édition » ou « distance de Levenshtein » (Vladimir Levenshtein, 1965) est la distance qui
sépare deux chaines de caracteres : il s’agit du nombre minimal d’opérations élémentaires a réaliser pour
transformer une chaine de caractéres en une autre.

Les opérations élémentaires considérées sont au nombre de trois :
— substitution d’un caractére (« abcde » — « abfde »)

— insertion d’un caractére (« abcde » — « abcfde »)

— suppression d’un caractére (« abcde » — « abde »)

La distance de Levenshtein est une distance au sens mathématique du terme. Pour tout couple de chaines
de caractéres (s,t), elle vérifie en effet les propriétés :

—d(s,t) >0

—d(st) =0 <= s=t

— d(s,t) = d(t,s)

— d(s,t) > d(s,u) + d(u,t) Vu

TP n°4 d’Informatique - Programmation dynamique - Distance de Levenshtein 1/2

Lycée Carnot PC 2025-2026

1 Equation de Bellman et programmation

Afin d’obtenir I’équation de Bellman, on cherche a décomposer le probleme en sous-problémes.
On note n et p les nombres respectifs de caractéres des chalnes s et t.

On remarque qu’un sous-probléme consistant & prendre en compte les ¢ premiers caracteres de s, notés s;,

et les j premiers caracteres de t, notés t;, peut étre résolu (sii > 1 et j > 1) a 'aide des sous-problemes de

taille directement inférieure :

— si on connait d(s;—1,t;), on peut réaliser une suppression de s; a s;_1 et obtenir d(s;,t;).

— si on connait d(s;,tj_1), on peut réaliser une insertion de ¢;_; a t; et obtenir d(s;,t;).

— si on connait d(s;—1,tj—1), on peut réaliser une substitution entre le i¢ caractére de s et le j° de t si besoin,
puis obtenir d(s;,t;). On note ¢; ; = 0 si les deux caracteres sont identiques, 1 s’ils sont différents.

Pour simplifier la suite, on note d(4,5) la distance d(s;,t;).

1. Déterminer I’équation de Bellman vérifiée par d, pour ¢ > 1 et j > 1.

2. Combien vaut d(0,0) ? d(,0) 7 d(4,0) ?

3. Ecrire une fonction levenshtein qui prend en argument deux chaines de caracteres s et t et qui
retourne la distance de Levenshtein les séparant.
Quelle est la distance en les mots « rouge » et « rose » ?

2 Autocorrection

On souhaite utiliser ce calcul de distance pour déterminer, parmi des mots d’une liste donnée, le mot le plus
proche d’un mot saisi par 'utilisateur. Pour ce faire, on imagine utiliser une structure de dictionnaire, ayant
pour clé chaque mot de la liste et pour valeur la distance avec le mot saisi.

4. Ecrire une fonction mindico ayant comme argument un dictionnaire et retournant, sous forme de liste,
la ou les clés correspondant a la valeur minimale présente dans le dictionnaire.
La tester ensuite avec le dictionnaire {"a":2, "b":4, "c":1, "d":2, "e":1}.

5. Ecrire la fonction autocorrection_simple ayant comme argument un mot mot et une liste liste
de mots, qui retourne la liste des mots de liste les plus proches de mot au sens de la distance de
Levenshtein.

Parmi les mots essai, test, encore, maison, lequel est le plus proche de esai?

On peut facilement récupérer I’ensemble des mots de la langue francaise. On se propose d’utiliser ici un
dictionnaire de 20000 mots environ. Il est a récupérer sur le site de la classe, sous forme texte.

Rappel : pour lire un fichier ligne a ligne, la syntaxe est la suivante :

1 |fichier = open("TP4-liste.txt")

2 |for mot in fichier:

3 [instructions utilisant la variable mot]
4 |fichier.close()

De plus, la variable mot contient alors toute une ligne, y compris le caractere \n « retour a la ligne », qu’il
faut supprimer en écrivant par exemple mot = mot[:-1].

6. Ecrire une fonction autocorrection prenant un unique argument mot de type chaine de caractere et
retournant la liste des mots les plus proches de mot.

TP n°4 d’Informatique - Programmation dynamique - Distance de Levenshtein 2/2

	Équation de Bellman et programmation
	Autocorrection

