
Lycée Carnot PC 2025-2026

TP no 4 d’Informatique
Programmation dynamique

Distance de Levenshtein

Objectif du TP

La programmation dynamique est une technique évoluée de conception d’algorithmes. Ces algorithmes ont
pour but de résoudre des problèmes de calculs ou d’optimisation et le font souvent de manière récursive,
mais sans refaire plusieurs fois le même calcul.

Pour que l’on puisse utiliser la programmation dynamique, il faut avoir :
– la propriété de sous-structure optimale du problème (principe d’optimalité de Bellman) : une partie

de la solution optimale du problème global est elle-même la solution optimale du sous-problème corres-
pondant.

– le chevauchement des sous-problèmes : le calcul de la solution optimale d’un sous-problème fait
intervenir le calcul de celle d’un sous-problème différent ; les sous-problèmes ne sont pas indépendants.
Remarque : s’ils le sont, les algorithmes de type diviser pour régner sont à considérer.

On appelle « équation de Bellman » l’équation de récurrence qui permet de calculer le coût d’un sous-
problème à partir des sous-problèmes déjà traités.

On souhaite mettre en place un calcul efficace de « distance d’édition » entre deux mots, afin d’aboutir à
un système de correction automatisée d’une saisie de texte.

Distance d’édition

La « distance d’édition » ou « distance de Levenshtein » (Vladimir Levenshtein, 1965) est la distance qui
sépare deux chaînes de caractères : il s’agit du nombre minimal d’opérations élémentaires à réaliser pour
transformer une chaîne de caractères en une autre.

Les opérations élémentaires considérées sont au nombre de trois :
– substitution d’un caractère (« abcde » → « abfde »)
– insertion d’un caractère (« abcde » → « abcfde »)
– suppression d’un caractère (« abcde » → « abde »)

La distance de Levenshtein est une distance au sens mathématique du terme. Pour tout couple de chaînes
de caractères (s,t), elle vérifie en effet les propriétés :
– d(s,t) ≥ 0
– d(s,t) = 0 ⇐⇒ s = t

– d(s,t) = d(t,s)
– d(s,t) ≥ d(s,u) + d(u,t) ∀u

TP no 4 d’Informatique - Programmation dynamique - Distance de Levenshtein 1/2

Lycée Carnot PC 2025-2026

1 Équation de Bellman et programmation

Afin d’obtenir l’équation de Bellman, on cherche à décomposer le problème en sous-problèmes.

On note n et p les nombres respectifs de caractères des chaînes s et t.

On remarque qu’un sous-problème consistant à prendre en compte les i premiers caractères de s, notés si,
et les j premiers caractères de t, notés tj, peut être résolu (si i > 1 et j > 1) à l’aide des sous-problèmes de
taille directement inférieure :
– si on connaît d(si−1,tj), on peut réaliser une suppression de si à si−1 et obtenir d(si,tj).
– si on connaît d(si,tj−1), on peut réaliser une insertion de tj−1 à tj et obtenir d(si,tj).
– si on connaît d(si−1,tj−1), on peut réaliser une substitution entre le ie caractère de s et le je de t si besoin,

puis obtenir d(si,tj). On note δi,j = 0 si les deux caractères sont identiques, 1 s’ils sont différents.
Pour simplifier la suite, on note d(i,j) la distance d(si,tj).

1. Déterminer l’équation de Bellman vérifiée par d, pour i > 1 et j > 1.
2. Combien vaut d(0,0) ? d(i,0) ? d(j,0) ?
3. Écrire une fonction levenshtein qui prend en argument deux chaînes de caractères s et t et qui

retourne la distance de Levenshtein les séparant.
Quelle est la distance en les mots « rouge » et « rose » ?

2 Autocorrection

On souhaite utiliser ce calcul de distance pour déterminer, parmi des mots d’une liste donnée, le mot le plus
proche d’un mot saisi par l’utilisateur. Pour ce faire, on imagine utiliser une structure de dictionnaire, ayant
pour clé chaque mot de la liste et pour valeur la distance avec le mot saisi.

4. Écrire une fonction mindico ayant comme argument un dictionnaire et retournant, sous forme de liste,
la ou les clés correspondant à la valeur minimale présente dans le dictionnaire.
La tester ensuite avec le dictionnaire {"a":2, "b":4, "c":1, "d":2, "e":1}.

5. Écrire la fonction autocorrection_simple ayant comme argument un mot mot et une liste liste

de mots, qui retourne la liste des mots de liste les plus proches de mot au sens de la distance de
Levenshtein.
Parmi les mots essai, test, encore, maison, lequel est le plus proche de esai ?

On peut facilement récupérer l’ensemble des mots de la langue française. On se propose d’utiliser ici un
dictionnaire de 20000 mots environ. Il est à récupérer sur le site de la classe, sous forme texte.

Rappel : pour lire un fichier ligne à ligne, la syntaxe est la suivante :

1 fichier = open("TP4-liste.txt")

2 for mot in fichier:

3 [instructions utilisant la variable mot]

4 fichier.close()

De plus, la variable mot contient alors toute une ligne, y compris le caractère \n « retour à la ligne », qu’il
faut supprimer en écrivant par exemple mot = mot[:-1].

6. Écrire une fonction autocorrection prenant un unique argument mot de type chaîne de caractère et
retournant la liste des mots les plus proches de mot.

TP no 4 d’Informatique - Programmation dynamique - Distance de Levenshtein 2/2

	Équation de Bellman et programmation
	Autocorrection

