Espaces vectoriels normés

Contenus	CAPACITÉS & COMMENTAIRES
Normes	
Norme sur un espace vectoriel réel ou complexe.	Normes usuelles $\ \ _1$, $\ \ _2$ et $\ \ _{\infty}$ sur \mathbb{K}^n .
Espace vectoriel normé.	Norme $\ \ _{\infty}$ sur un espace de fonctions bornées à valeurs
Norme associée à un produit scalaire sur un espace pré-	dans K.
hilbertien réel.	L'égalité $\sup(kA) = k \sup(A)$ pour A partie non vide de \mathbb{R} et $k \in \mathbb{R}^+$ peut être directement utilisée.
Distance associée à une norme.	
Boule ouverte, boule fermée, sphère.	
Partie convexe.	Convexité des boules.
Partie bornée, suite bornée, fonction bornée.	
Suites d'éléments d'un espace vectoriel normé	
Convergence et divergence d'une suite.	Exemples dans des espaces de matrices, dans des espaces
Unicité de la limite. Opérations sur les limites.	de fonctions.
Une suite convergente est bornée.	
Toute suite extraite d'une suite convergente est convergente.	
Topologie d'un espace vectoriel normé	
Point intérieur à une partie.	
Ouvert d'un espace normé.	Une boule ouverte est un ouvert.
Stabilité par réunion quelconque, par intersection finie.	
Fermé d'un espace normé.	Caractérisation séquentielle.
	Une boule fermée, une sphère, sont des fermés.
Stabilité par réunion finie, par intersection quelconque.	
Point adhérent à une partie, adhérence.	L'adhérence est l'ensemble des points adhérents.
	Caractérisation séquentielle. Toute autre propriété de
Partie dense.	l'adhérence est hors programme.
Limite et continuité en un point	
Limite d'une fonction en un point adhérent à son domaine de définition.	Caractérisation séquentielle.
Opérations algébriques sur les limites, composition.	

Durant la colle, des questions de cours pourront être posées.

Questions de cours possibles

Continuité en un point.

- La démonstration d'une propriété parmi les suivantes :
 - \triangleright Soit *n* ∈ \mathbb{N}^* . L'application

$$(\alpha_1, \dots, \alpha_n) \mapsto \|(\alpha_1, \dots, \alpha_n)\|_2 = \sqrt{\sum_{i=1}^n |\alpha_i|^2}$$

Caractérisation séquentielle.

est une norme sur \mathbb{R}^n et sur \mathbb{C}^n .

- ightharpoonup Une boule ouverte de $(E, \|\cdot\|)$ est une partie ouverte de E.
- ightharpoonup Une réunion quelconque de parties ouvertes de $(E, \|\cdot\|)$ est une partie ouverte de E.
- \triangleright Une intersection finie de parties ouvertes de $(E, \|\cdot\|)$ est une partie ouverte de E.
- ightharpoonup Caractérisation séquentielle des parties fermées d'un \mathbb{K} -espace vectoriel normé E.
- Un énoncé d'une proposition, d'un théorème ou d'une définition.

Espaces vectoriels normés.			

Prochain programme