Intégrales sur un segment

Exercice 1. ($\heartsuit \heartsuit$) On définit pour $n \in \mathbb{N}$, $I_n = \int_0^{\pi} \frac{\sin x}{n+x} dx$. Déterminer la limite de I_n . Déterminer un équivalent de I_n . [On se souviendra que pour déterminer un équivalent, on peut tenter d'encadrer par deux suites qui admettent un équivalent

Exercice 2. (**)mais un grand classique...

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 . Montrer que $\int_{a\to+\infty}^b f(t)\cos(nt)\,\mathrm{d}t \underset{a\to+\infty}{\longrightarrow} 0$.

Exercice 3. ($\heartsuit \heartsuit$) Déterminer les limites suivantes:

1)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\mathrm{d}t}{\ln t}$$

2)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\sin t}{t} dt$$
 et $\lim_{x \to 0} \int_{x}^{2x} \frac{\sin t}{t} dt$

Exercice 4. (\heartsuit) Calculer les limites des suites définies par les termes généraux suivants

1)
$$\frac{1}{n} \sum_{k=0}^{n-1} \cos^2 \frac{k\pi}{n}$$

3)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$$

$$5) (\heartsuit\heartsuit) \sum_{k=1}^{2n} \frac{k}{n^2 + k^2}$$

2)
$$\sum_{k=0}^{n-1} \frac{1}{3n+2k}$$

4)
$$(\heartsuit\heartsuit)\sum_{k=1}^{n} \frac{k^2}{n^3 + k^3} \operatorname{et} \sum_{k=1}^{n} \frac{n + k^2}{n^3 + k^3}$$
 6) $(*)u_n = \left(\frac{(2n)!}{n!n^n}\right)^{\frac{1}{n}}$

6)
$$(*)u_n = \left(\frac{(2n)!}{n!n^n}\right)^{\frac{1}{n}}$$

Exercice 5. (*) En faisant apparaître une somme de Riemann, déterminer un équivalent simple de $S_n = \sum \sqrt{k}$.

Exercice 6. ($\heartsuit \heartsuit$) On pose $f(x) = \int_{-x}^{2x} \frac{\sinh(t)}{t} dt$.

- 1) Déterminer l'ensemble de définition de f. Étudier la parité de f, puis son signe.
- 2) Calculer la limite de f en 0.
- 3) Montrer que f est de classe C^1 et calculer sa dérivée.

Exercice 7. (*) Soit f la fonction définie par $f(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$

- 1) Démontrer que f est définie sur $D =]0; 1[\cup]1; +\infty[$.
- 2) Montrer que f est de classe C^1 sur D; étudier les variations de f.
- 3) Déterminer les limites de f en 0 et en $+\infty$.
- 4) Montrer que $\phi: t \mapsto \frac{1}{\ln t} \frac{1}{t-1}$ est prolongeable en une fonction continue sur \mathbb{R}^{+*} .
- 5) En déduire la limite de f en 1.
- 6) Montrer que f est prolongeable en une fonction de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .

Intégrales généralisées

Exercice 8. (©) Montrer que les intégrales suivantes convergent et calculer leur valeur

1)
$$\int_0^{+\infty} \frac{3x^2 + 1}{x^3 + x + 4} \, \mathrm{d}x$$

1)
$$\int_0^{+\infty} \frac{3x^2 + 1}{x^3 + x + 4} dx$$
 3) $\int_1^{+\infty} \frac{1}{x^2 + 3x + 2} dx$ 5) $\int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} dx$ 7) $\int_{-1}^1 \frac{1}{\sqrt{1 - x^2}} dx$

$$5) \int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} \, \mathrm{d}x$$

$$7) \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x$$

2)
$$\int_{0}^{+\infty} \frac{1}{x^2 + 4x + 4} dx$$

2)
$$\int_0^{+\infty} \frac{1}{x^2 + 4x + 4} dx$$
 4) $\int_1^{+\infty} \frac{1}{x(x+1)(x+2)} dx$ 6) $\int_1^{+\infty} \frac{1}{x^2 + 2x + 5} dx$ 8) $\int_{-1}^1 \frac{x}{\sqrt{1-x^2}} dx$

6)
$$\int_{1}^{+\infty} \frac{1}{x^2 + 2x + 5} \, \mathrm{d}x$$

8)
$$\int_{-1}^{1} \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x$$

Exercice 9. ($\heartsuit \heartsuit$) Étudier en fonction du réel α la convergence de l'intégrale $\int_{0}^{+\infty} \frac{(\ln(x))^{\alpha}}{x} dx$.

Exercice 10. (*)

- 1) Montrer que l'intégrale $I = \int_0^1 \frac{e^{-1/t}}{t^2} dt$ converge et la calculer.
- 2) Déterminer un équivalent de $S_n = \sum_{k=1}^{n} \frac{e^{-k/n}}{k^2}$.

Exercice 11. (\heartsuit) À l'aide d'une intégration par parties montrer la convergence des intégrales suivantes et les calculer.

1)
$$I = \int_1^{+\infty} \frac{\ln t}{t^2} dt$$

2)
$$J = \int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$

2)
$$J = \int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$
 3) $(\heartsuit \heartsuit)K = \int_{0}^{1} \frac{\ln t}{(1+t)^2} dt$

Exercice 12. (©) À l'aide du changement de variable indiqué, montrer que l'intégrale est convergente et la calculer.

1)
$$I = \int_1^3 \frac{1}{\sqrt{(3-t)(t-1)}} dt$$
 avec $x = t+2$.

2)
$$I = \int_0^{+\infty} \frac{\ln t}{1 + t^2} dt$$
 avec $x = \frac{1}{t}$.

Exercice 13. (*) Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue par morceaux décroissante telle que $\int_0^{+\infty} f(t) dt$ converge. Montrer que $f(t) \xrightarrow[t \to +\infty]{} 0$.

Exercice 14. (*) Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{1}{(1+x^2)^n} dx$.

- 1) Soit $n \in \mathbb{N}^*$. À l'aide du changement de variable $x = \tan(t)$ montrer que I_n converge.
- 2) Montrer que la suite (I_n) converge.
- 3) Déterminer pour $n \in \mathbb{N}^*$ une relation de récurrence entre I_{n+1} et I_n .
- 4) En étudiant la suite $(\ln(I_n))$ déterminer la limite de (I_n) .
- 5) Etudier la convergence de la série $\sum (-1)^n I_n$.
- 6) Déterminer une expression de I_n en fonction de n.

Exercice 15. (*)Comparaison série-intégrale Soient $N \in \mathbb{N}^*$ et f une fonction continue, décroissante à valeurs positives sur $[N; +\infty[$.

- 1. Montrer que la série $\sum f(n)$ et l'intégrale $\int_N^{+\infty} f(t) dt$ ont même nature.
- 2. Pour $n \ge N+1$, on pose $w_n = \int_{n-1}^n f(t)dt f(n)$. Montrer que la série $\sum w_n$ converge