Exercice 1 Soit $E = \mathbb{K}^n$, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Notons

$$||x||_1 = \sum_{i=1}^n |x_i| \quad ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} \quad ||x||_{\infty} = \sup_{1 \le i \le n} |x_i|$$

- 1) Montrer que ce sont des normes.
- 2) Montrer que, pour tout $x \in E$,

$$||x||_1 \leqslant \sqrt{n} ||x||_2$$
 $||x||_2 \leqslant \sqrt{n} ||x||_{\infty}$ $||x||_{\infty} \leqslant ||x||_1$.

Que déduire des trois normes?

Exercice 2 On pose $E = \mathcal{C}^1([0,1],\mathbb{R})$ et pour $f \in E$,

$$||f|| = |f(0)| + ||f'||_{\infty}$$

- 1) Montrer $\|\cdot\|$ définit une norme sur E.
- 2) Démontrer que, pour toute fonction $f \in E$, on a $||f||_{\infty} \leq ||f||$.
- 3) Démontrer qu'il n'existe aucune constante K telle que, pour toute fonction $f \in E$, on ait $||f|| \leq K||f||_{\infty}$. Indication: on pourra chercher une suite (f_n) de fonctions vérifiant que $||f_n||_{\infty} \xrightarrow[n \to \infty]{} 0$, alors que $||f_n||$ ne tend pas vers 0 (penser à des oscillations de plus en plus rapides).

Exercice 3

Pour
$$P \in \mathbb{R}[X]$$
, on pose $N(P) = \int_0^{+\infty} |P(t)| e^{-t} dt$.

- 1) Justifier l'existence de N(P) pour $P \in \mathbb{R}[X]$.
- 2) Démontrer que N est une norme sur $\mathbb{R}[X]$.

Exercice 4 Soit $A \in \mathcal{M}_n(\mathbb{K})$ tel que $(A^k)_{k \in \mathbb{N}}$ converge vers M. Montrer que M est la matrice d'un projecteur. *Indication : quelle est la limite de la suite* $(A^{2n})_{n \in \mathbb{N}}$.

Exercice 5 Soient $A, B \in \mathcal{M}_p(\mathbb{R})$. On suppose $(AB)^n \to O_p$. Montrer que $(BA)^n \to O_p$.

Exercice 6 Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & \frac{1}{2} & -1 \\ \frac{-1}{2} & 0 & \frac{-1}{2} \end{pmatrix}$$
.

- 1) Montrer que A est semblable à $T = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 2) En déduire que la suite $(A^n)_{n\in\mathbb{N}}$ converge vers la matrice nulle.

Exercice 7 Dans un espace probabilisé (Ω, \mathcal{A}, P) , on considère une suite $(X_i)_{i \in \mathbb{N}^*}$ de variables aléatoires indépendantes et suivant toutes la même loi : pour tout i, $P(X_i = 1) = p$ et $P(X_i = -1) = q = 1 - p$ avec $p \in]0; 1[$.

Pour $n \in \mathbb{N}^*$, on pose $Z_n = \prod_{i=1}^n X_i$. Pour $n \in \mathbb{N}^*$, on note $U_n = \begin{pmatrix} P(Z_n = 1) \\ P(Z_n = -1) \end{pmatrix}$

- 1) Déterminer une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que, pour tout $n \in \mathbb{N}^*$, $U_{n+1} = AU_n$.
- 2) Soit f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A et u=(1,1), v=(1,-1). Démontrer que (u,v) est une base de \mathbb{R}^2 et déterminer la matrice de f dans cette base; cette matrice sera notée D.
- 3) Démontrer que la suite (A^n) converge (sans chercher à déterminer sa limite).
- 4) Démontrer que la suite (U_n) converge; on note L sa limite.
- 5) Montrer que L = AL puis déterminer L.

Exercice 8 On considère deux suites (u_n) , (v_n) et (w_n) réelles définies par $(u_0, v_0) \in \mathbb{R}^2$ et, pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} &= \frac{1}{3}u_n - \frac{1}{6}v_n + \frac{1}{2} \\ v_{n+1} &= \frac{1}{3}u_n - \frac{1}{2}v_n + \frac{1}{3} \end{cases}$$

On pose, pour $n \in \mathbb{N}$, $X_n = (u_n v_n)^T \in \mathcal{M}_{2,1}(\mathbb{R})$.

- 1) Montrer que la suite (X_n) vérifie une relation matricielle de la forme $X_{n+1} = AX_n + B$.
- 2) Montrer que, pour tout vecteur $X \in \mathcal{M}_{2,1}(\mathbb{R}), ||AX||_{\infty} \leqslant k||X||_{\infty}$ où k est un réel de]0;1[.
- 3) Montrer que l'équation X = AX + B admet une unique solution L dans $\mathcal{M}_{2,1}(\mathbb{R})$.
- 4) Donner une majoration de $||X_n L||_{\infty}$ et conclure quant à la convergence de (X_n) .