CHAPITRE ESPACES VECTORIELS NORMÉS

Dans tout ce chapitre \mathbb{K} désigne l'ensemble \mathbb{R} ou \mathbb{C} .

I Définitions et exemples

I.1 Norme

E désigne un \mathbb{K} -espace vectoriel

Définition (Norme)

Une **norme** sur un K-espace vectoriel E est une application $N: E \to \mathbb{R}^+$ vérifiant :

- 1) $\forall x \in E$, $N(x) = 0 \Leftrightarrow x = 0_E$ (séparation)
- 2) $\forall x \in E$, $\forall \lambda \in \mathbb{K}$, $N(\lambda x) = |\lambda|N(x)$ (homogénéité)
- $3) \ \, \forall (x,y) \in E^2, \quad N(x+y) \leqslant N(x) + N(y) \quad \ (\text{in\'egalit\'e triangulaire}).$

Le couple (E, N) est alors un espace vectoriel normé.

La norme du vecteur x est souvent notée ||x||, l'espace vectoriel normé est alors noté $(E, ||\cdot||)$.

Exemple La valeur absolue $|\cdot|$ est une norme sur \mathbb{R} , le module $|\cdot|$ est une norme sur \mathbb{C} .

Remarques

L'homogénéité donne $N(0_E)=0$ car : $N(0_E)=N(0\times 0_E)=|0|N(0_E)=0$. On peut donc se contenter de prouver l'implication : $N(x)=0 \Rightarrow x=0_E$ dans la séparation.

Théorème (Inégalités découlant de l'inégalité triangulaire)

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- $\forall (x,y) \in E^2$, $|||x|| ||y||| \le ||x y||$.
- $\forall (x_1, \dots, x_n) \in E^n$, $\left\| \sum_{i=1}^n x_i \right\| \le \sum_{i=1}^n \|x_i\|$.

Définition (Distance)

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. La **distance** associée est l'application :

I.2 Exemples

On commence par quatre exemples de normes de cours à connaître. Puis on donne d'autres exemples.

I.2.a Normes sur \mathbb{K}^n

• Sur $E = \mathbb{K}^n$, soit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$,

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$

Dans le cas n=1, on retrouve la valeur absolue si $\mathbb{K}=\mathbb{R}$, ou le module si $\mathbb{K}=\mathbb{C}$. Dans le cas n=2,

$$||(x_1, x_2)||_1 = |x_1| + |x_2|$$
 $||(x_1, x_2)||_{\infty} = \max(|x_1|, |x_2|).$

• Sur $E = \mathbb{R}^n$, soit $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

C'est la norme euclidienne associée au produit scalaire usuel sur \mathbb{R}^n , $(x|y) = \sum_{i=1}^n x_i y_i$.

Dans le cas n=2,

$$\|(x_1, x_2)\|_2 = \sqrt{x_1^2 + x_2^2}.$$

I.2.b Norme sur $\mathcal{M}_n(\mathbb{K})$

Sur $E = \mathcal{M}_n(\mathbb{K})$, soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_{\infty} = \max_{1 \leqslant i,j \leqslant n} |a_{ij}|.$$

I.2.c Norme associée à un produit scalaire

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel. La norme euclidienne associée au produit scalaire définie par

$$\forall x \in E, \quad \|x\| = \sqrt{(x|x)}$$

est une norme sur E.

I.2.d Norme uniforme

Rappels et compléments sur la borne supérieure :

• (PCSI) **Théorème de la borne supérieure** : toute partie non vide A de \mathbb{R} admet une borne supérieure $M = \sup A$, défini comme le plus petit majorant de A. M est un majorant et tout autre majorant de A est plus grand que M.

Exemples : quelle est la borne supérieure de [0,2]? [0,2[?] $\{1-\frac{1}{n}/n \in \mathbb{N}^*\}$?

• Borne supérieure de kA. Soit A une partie de \mathbb{R} et k un réel strictement positif. On définit l'ensemble

$$kA = \{ka \mid a \in A\}.$$

Alors : sup(kA) = k sup A. (ce résultat peut être utilisé sans avoir à la reprouver).

• On peut définir la notion de **borne supérieure d'une fonction**. Soient X une partie de \mathbb{R} et une fonction $f: X \to \mathbb{R}$ **majorée**. L'ensemble

$$f(X) = \{ f(x) / \in X \}$$

est alors majoré et admet une borne supérieure appelée borne supérieure de f sur X, notée sup f ou sup f(x) $x \in X$

$$\sup_X f = \sup_{x \in X} f(x) = \sup f(X).$$

Exemples: quelle est la borne supérieure de cos sur \mathbb{R} ? Arctan sur \mathbb{R} ? $x \mapsto \frac{x}{1+x^2}$ sur \mathbb{R}^+ ?

Théorème-Définition (Norme uniforme)

Soit X une partie non vide de \mathbb{R} . On note $\mathcal{B}(X,\mathbb{K})$ l'ensemble des fonctions bornées de X dans \mathbb{K} . Soit $f \in \mathcal{B}(X,\mathbb{K})$. On définit :

$$||f||_{\infty} = \sup_{X} |f| = \sup_{x \in X} |f(x)|.$$

Alors $\|\cdot\|_{\infty}$ est une norme sur $\mathcal{B}(X,\mathbb{K})$. Cette norme est appelée **norme infini**, **norme uniforme** ou **norme de la convergence uniforme**.

Exemple Si X est un segment [a, b], les fonctions continues sur X sont bornées. Donc l'application $\|\cdot\|_{\infty}$ définit une norme sur l'espace vectoriel $\mathcal{C}([a, b], \mathbb{K})$.

Exemples

- 1) Montrer que la fonction $x \mapsto \frac{x}{1+x}$ est bornée sur \mathbb{R}_+ et calculer $||f||_{\infty}$.
- 2) Pour $n \in \mathbb{N}$, $x \in [0, 1]$, $f_n(x) = \frac{2^n x}{1 + n 2^n x^2}$. Déterminer $||f_n||_{\infty}$.

I.2.e D'autres exemples

- 1) Si I est un intervalle de \mathbb{R} , on note $\mathcal{L}_c(I,\mathbb{K})$ l'espace vectoriel des fonctions continues, intégrables sur I. Montrer que $f \mapsto ||f||_1 = \int_I |f|$ est une norme sur $\mathcal{L}_c(I,\mathbb{K})$.
- 2) Dans $\mathbb{K}_n[X]$. Montrer que $P \mapsto ||P||_1 = \int_0^1 |P(t)|$ est une norme sur $\mathbb{K}_n[X]$.

I.3 Boules, convexité

Dans cette section $(E, \|\cdot\|)$ est un evn et d la distance associée à $\|\cdot\|$.

Définition (Boules)

Soient $a \in E$ et r un réel strictement positif. On définit :

- la boule ouverte de centre a et de rayon r, $B(a,r) = \{x \in E \mid d(a,x) < r\} = \{x \in E \mid ||x-a|| < r\}$
- la boule fermée de centre a et de rayon r, $\overline{B}(a,r) = \{x \in E \mid d(a,x) \leqslant r\} = \{x \in E \mid \|x-a\| \leqslant r\}$
- la sphère de centre a et de rayon r, $S(a,r) = \{x \in E \mid d(a,x) = r\} = \{x \in E \mid ||x-a|| = r\}.$

Exemples

- 1) Dans \mathbb{R} , muni de la norme usuelle, si $a \in \mathbb{R}$ et r > 0. B(a,r) =]a r, a + r[et $\overline{B}(a,r) = [a r, a + r]$.
- 2) Dans \mathbb{R}^2 . On note O=(0,0). Représenter les boules B(O,1) pour les trois normes $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$.

Définition (Segment)

Soient a, b deux vecteurs de E. Le **segment** d'extrémités a et b est l'ensemble noté [a, b] défini par

$$[a,b] = \{ta + (1-t)b / t \in [0,1]\}.$$

Définition (Convexité)

Une partie A non vide de E est dite **convexe** si et seulement si pour tous $(a,b) \in A^2$, le segment [a,b] est inclus dans A.

Exemple E est convexe, tout sev de E est convexe.

Théorème (Convexité des boules)

Toute boule ouverte, fermée est convexe.

I.4 Parties bornées, fonctions bornées, suites bornées

Dans cette section $(E,\|\cdot\|)$ est un ev
n et d la distance associée à $\|\cdot\|.$

Définition (Partie bornée)

Une partie A de E est **bornée** s'il existe un réel positif M tel que :

$$\forall x \in A, \qquad \|x\| \leqslant M.$$

Cela revient à dire qu'il existe M tel que : $A \subset \overline{B}(O, M)$ où O est le neutre de E.

Définition (Fonction bornée)

Soit X un ensemble et $f: X \to E$ une application.

On dit que f est **bornée** s'il existe un réel positif tel que :

$$\forall x \in X, \quad ||f(x)|| \leq M.$$

II Suite d'éléments d'un evn

Dans cette section $(E, \|\cdot\|)$ est un espace vectoriel normé.

Définition (Suite bornée)

Soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans E.

On dit que $(x_n)_{n\in\mathbb{N}}$ est **bornée** s'il existe un réel positif tel que :

$$\forall n \in \mathbb{N}, \quad ||x_n|| \leqslant M.$$

Rappel de la définition de la convergence d'une suite réelle $(x_n)_{n\in\mathbb{N}}$ vers $l\in\mathbb{R}$:

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N} / \forall n \geqslant N, \quad |x_n - l| \leqslant \varepsilon.$$

Définition (Convergence d'une suite à valeurs dans un evn)

Soient $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans E et $l\in E$.

• On dit que $(x_n)_{n\in\mathbb{N}}$ converge vers l, noté $x_n \underset{n\to+\infty}{\longrightarrow} l$ si la suite numérique

$$(d(x_n - l))_{n \in \mathbb{N}} = (\|x_n - l\|)_{n \in \mathbb{N}}$$

converge vers 0:

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N} / \forall n \geqslant N, \quad ||x_n - l|| \leqslant \varepsilon.$$

• Si la suite n'est pas convergente, elle est dite divergente.

Remarques

- Dans le cas de suite réelles, la norme choisie est la valeur absolue.
- Cette notion de convergence d'une suite d'éléments de E dépend du choix d'une norme sur l'evn E. Il est possible que pour une certaine norme, la suite $(x_n)_{n\in\mathbb{N}}$ converge, mais que ce ne soit plus vrai pour une autre norme (cf. exemples ci-dessous)

Exemples

- 1) Considérons la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues sur [0,1], $f_n(x)=x^n$. On pose f la fonction nulle. Montrer que (f_n) converge vers f pour la norme $||g||_1 = \int_0^1 |g(t)| dt$ mais pas pour la norme uniforme.
- 2) Considérons la suite $(g_n)_{n\in\mathbb{N}}$ de fonctions continues sur \mathbb{R}_+ ,

$$g_n(x) = \begin{cases} 0 & \text{si } x \geqslant 2n \\ \frac{1}{n^2}x & \text{si } x \in [0, n] \\ \frac{2}{n} - \frac{1}{n^2}x & \text{si } x \in [n, 2n] \end{cases}$$
 Faire un dessin

Montrer que (g_n) converge vers la fonction nulle pour la norme uniforme $\|\cdot\|_{\infty}$ mais pas pour la norme $\|\cdot\|_{1}$.

Théorème (Unicité de la limite)

La limite d'une suite convergente est unique.

Théorème (Convergente \Rightarrow Bornée)

Toute suite convergente est bornée.

⚠ Attention ⚠ La réciproque est fausse. Contre-exemple :

Théorème (Convergence de suites extraites)

Toute suite extraite d'une suite convergente est convergente vers la même limite.

⚠ Attention ⚠ Une suite extraite peut converger sans que la suite entière ne converge. Contre-exemple :

Théorème (Opérations linéaires sur les limites)

Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites d'éléments de E, $\lambda\in\mathbb{K}$ et l_1,l_2 deux éléments de E. On suppose que :

$$x_n \xrightarrow[n \to +\infty]{} l_1 \qquad y_n \xrightarrow[n \to +\infty]{} l_2.$$

Alors

$$\lambda x_n + y_n \underset{n \to +\infty}{\longrightarrow} \lambda l_1 + l_2.$$

III Normes équivalentes

Définition (Normes équivalentes)

Soient N_1 et N_2 deux normes sur un \mathbb{K} -ev E. N_1 est dite **équivalente** à N_2 s'il existe deux réels α et β strictement positifs tels que :

$$\forall x \in E, \quad \alpha N_2(x) \leqslant N_1(x) \leqslant \beta N_2(x).$$

Remarques

On peut échanger les rôles N_1 et N_2 dans l'encadrement ci-dessus car si cet encadrement est vérifié alors

$$\alpha' N_1(x) \leqslant N_2(x) \leqslant \beta' N_1(x)$$
 avec $\alpha' = \frac{1}{\beta}$ et $\beta' = \frac{1}{\alpha}$

Exemples Dans \mathbb{R}^2 les trois normes $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_\infty$ sont équivalentes.

Propriétés (Suite bornée et équivalence de normes)

Soient N_1 et N_2 deux normes équivalentes sur un \mathbb{K} -ev E et soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans E. Cette suite est bornée pour la norme N_1 si et seulement si elle est bornée pour la norme N_2 .

Théorème (Convergence et équivalence de normes)

Soient N_1 et N_2 deux normes équivalentes sur un \mathbb{K} -ev E et soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans E. Cette suite converge au sens de la norme N_1 si et seulement si elle converge au sens de la norme N_2 . Dans ce cas la limite est la même pour les deux normes.

Méthode (Montrer que deux normes ne sont pas équivalentes)

Pour montrer que deux normes N_1 et N_2 ne sont pas équivalentes, on peut exhiber deux suites (x_n) et (y_n) telles

- la suite $(N_1(x_n))$ converge vers 0 mais pas la suite $(N_2(y_n))$
- ou bien : la suite $(N_1(x_n))$ est bornée mais pas la suite $(N_2(y_n))$

Exemple Montrer que, sur $\mathcal{C}([0,1],\mathbb{R})$, les deux normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ ne sont pas équivalentes.

Théorème (Equivalence des normes en dimension finie)

Soit E un \mathbb{K} -ev de **dimension finie**.

Toutes les normes sur E sont équivalentes.

Démonstration : admise.

Explication: en dimension finie, on pourra donc choisir la norme la plus adaptée pour traiter le problème à résoudre.

Théorème (Convergence et coordonnées)

Soit E un evn de dimension finie p muni d'une base (e_1, \ldots, e_p) .

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. Pour $n\in\mathbb{N}$, notons $(x_{1,n},\ldots,x_{p,n})$ les coordonnées de x_n dans E c'est-à-dire

$$x_n = \sum_{i=1}^p x_{i,n} e_i.$$

La suite (x_n) converge si et seulement si les suites de coordonnées $(x_{i,n})$ convergent pour tout $i \in [1, p]$. Dans ce cas, si on note $l_i = \lim_{n \to +\infty} x_{i,n}$, alors

$$x_n \xrightarrow[n \to +\infty]{} \sum_{i=1}^p l_i e_i.$$

Idée forte de la démonstration : elle repose sur le choix d'une norme judicieuse sur E. Pour tout $x \in E$, x se décompose $\sum_{i=1}^{p} x_i e_i$. On pose alors

$$||x|| = \max_{1 \leqslant i \leqslant n} |x_i|.$$

On montre d'abord que c'est bien une norme.

Explication: autrement dit pour étudier la convergence d'une suite d'un espace vectoriel de dimension finie il suffit d'étudier la convergence des coordonnées (une base étant fixée).

Exemples

- 1) Soit $(x_n)_{n\in\mathbb{N}} = ((a_n, b_n))_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 . La suite (x_n) converge (dans \mathbb{R}^2) si et seulement si les deux suites (a_n) et (b_n) convergent. Si on note a et b leurs limites respectives, alors $x_n \underset{n\to+\infty}{\longrightarrow} (a,b)$.
- 2) Pour étudier la convergence d'une suite de matrices, il suffit d'étudier la convergence des suites de coefficients. On pose pour tout $n \in \mathbb{N}$, $A_n = \begin{pmatrix} \frac{1}{2^n} & 3 + \frac{1}{n} \\ 2 + \frac{2}{n} & 1 + \frac{1}{n} \end{pmatrix}$. Déterminer la limite de la suite (A_n) .

On définira dans un chapitre ultérieur, la continuité des applications définies sur un evn et à valeurs dans un evn. Pour des besoins utiles, on introduit dès maintenant sans démonstration ce théorème qui caractérise la continuité des applications linéaires.

Théorème (Caractérisation séquentielle de la continuité des applications linéaires)

Soient $(E, \|\cdot\|_E)$ un espace vectoriel normé de **dimension finie** et $(F, \|\cdot\|_F)$ un espace vectoriel normé, et soit une application linéaire $f \in \mathcal{L}(E, F)$.

Si $(x_n)_{n\in\mathbb{N}}$ est une suite d'éléments de E qui converge ves $l\in E$ alors la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(l).

Démonstration : elle repose sur le lemme suivant : sous les hypothèses du théorème, il existe $K \in \mathbb{R}^+$ tel que :

$$\forall x \in E, \quad \|f(x)\|_F \leqslant K \|x\|_E.$$

Exemples Suites de matrices

- 1) Soit (A_n) une suite de matrices de $\mathcal{M}_p(\mathbb{K})$ et $P \in \mathrm{GL}_p(\mathbb{R})$. On suppose que la suite (A_n) converge vers une matrice L. Montrer que $(P^{-1}A_nP)$ converge vers $P^{-1}LP$.
- 2) On pose $D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ et on suppose qu'une matrice $A \in \mathcal{M}_2(\mathbb{R})$ est semblable à D. Montrer que la suite des itérés (A^n) converge.