Chapitre Suites et séries de fonctions

Dans tout ce chapitre \mathbb{K} désigne l'ensemble \mathbb{R} ou \mathbb{C} .

Soit I un intervalle de \mathbb{R} . On rappelle, que si I est un intervalle de \mathbb{R} , alors l'ensemble des fonctions bornées de I dans \mathbb{K} , $\mathcal{B}(I,\mathbb{K})$ est un espace vectoriel, que l'on munit de la norme uniforme

$$||f||_{\infty} = \sup_{x \in I} |f(x)|.$$

I Suites de fonctions

Pour $n \in \mathbb{N}$, on pose la fonction f_n définie sur un intervalle I à valeur dans \mathbb{K} . On va définir deux modes de convergence de la suite de fonctions $(f_n)_{n \in \mathbb{N}}$.

On veillera à faire la différence entre la nature des objets :

- f_n est une fonction de I dans \mathbb{K} soit un élément de \mathbb{K}^I
- pour $x \in I$, $f_n(x)$ est un nombre, un élément de \mathbb{K}
- $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions, soit un élément de $(\mathbb{K}^I)^{\mathbb{N}}$
- pour $x \in I$, $(f_n(x))_{n \in \mathbb{N}}$ est une suite de nombres, soit un élément de $\mathbb{K}^{\mathbb{N}}$.

I.1 Convergence simple

Définition (Convergence simple)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f si :

$$\forall x \in I$$
, $f_n(x) \underset{n \to +\infty}{\longrightarrow} f(x)$.

f est appelée la **limite simple** de f. On note note parfois $f_n \stackrel{cs}{\longrightarrow} f$.

Exemples Montrer que les suites de fonctions suivantes convergent simplement et donner la limite :

- 1) $f_n: x \mapsto x^n$ sur [0,1]. Faire un dessin.
- 2) $f_n: x \mapsto \begin{cases} 1 nx & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{si } x \in [\frac{1}{n}, 1] \end{cases}$ sur [0, 1]. Faire un dessin.
- 3) $f_n: x \mapsto \left(1 + \frac{x}{n}\right)^n \text{ sur } \mathbb{R}.$

Attention \triangle Si les f_n sont continues, la limite simple de la suite (f_n) n'est pas forcément continue. Contreexemple :

I.2 Convergence uniforme

Explication To no peut réécrire la définition de la convergence simple avec les ε , $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f si :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists N_{\varepsilon,x} \in \mathbb{N} \ / \ \forall n \geqslant N_{\varepsilon,x}, \ |f_n(x) - f(x)| \leqslant \varepsilon.$$

 $N_{\varepsilon,x}$ dépend de ε et x.

On adapte la définition en faisant en sorte que $N_{\varepsilon,x}$ ne dépende pas de x.

Définition (Convergence uniforme)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f si :

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \ / \ \forall n \geqslant N_{\varepsilon}, \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant \varepsilon.$$

On note note parfois $f_n \xrightarrow{cu} f$.

Théorème (Caractérisation de la convergence uniforme)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f si et seulement si :

- les $f_n f$ sont bornées à partir d'un certain rang
- $||f_n f||_{\infty} \xrightarrow[n \to +\infty]{} 0$

Propriétés (Convergence uniforme implique convergence simple.)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f alors elle converge simplement sur f vers I. Conséquence: la limite uniforme si elle existe est nécessairement la limite simple.

Méthode pratique (Étudier la convergence uniforme)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. Pour étudier la convergence uniforme :

- on détermine d'abord la limite simple f (si elle existe) de $(f_n)_{n\in\mathbb{N}}$, en calculant pour tout $x\in I$, la limite de $f_n(x)$
- puis, plusieurs options selon les situations.
 - 1) Pour obtenir la convergence uniforme. En majorant $|f_n(x) f(x)|$ on prouve l'existence d'une suite $(\alpha_n)_{n \in \mathbb{N}}$ indépendante de x de limite nulle telle que

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x) - f(x)| \leq \alpha_n.$$

- 2) On calcule explicitement $||f_n f||_{\infty}$ en étudiant les variations de la fonction $f_n f$, elles peuvent être évidentes, ou alors on fait une étude de fonction; ne reste plus qu'à calculer la limite de $||f_n f||_{\infty}$
- 3) Pour obtenir la non convergence uniforme. On peut déterminer une suite (a_n) d'éléments de I telle que $((f_n f)(a_n))$ ne converge pas vers 0.

Exemples

- 1) Soit $f_n: x \mapsto x^n$. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur [0, 1[, sur [0, 1]; mais qu'elle converge uniformément sur [0, a] pour tout $a \in [0, 1[$.
- 2) Soit $f_n: x \mapsto x^n(1-x)^n$ sur [0, 1]. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0, 1].
- 3) Soit $f_n: x \mapsto xe^{-n^2x}$ sur \mathbb{R}_+ . Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R}_+ .

- 4) Soit $f_n: x \mapsto \frac{\sin(nx)}{n^2 + x^2}$ sur \mathbb{R} . Montrer que $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur \mathbb{R} .
- 5) Bosses glissantes. Soit $f_n: x \mapsto \frac{1}{1 + (x n)^2}$ sur \mathbb{R} . Faire un dessin.

 Montrer que $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur \mathbb{R} mais converge uniformément sur tout segment [a, b] inclus dans \mathbb{R} .

I.3 Régularité de la limite

I.3.a Continuité

Motivation: si une suite (f_n) de fonctions **continues** converge (dans un sens à préciser) sur I vers f, a-t-on f continue sur I?

La réponse est NON, en général comme le prouve l'exemple $f_n(x) = x^n$ sur [0,1]. On a (f_n) convergeant simplement vers une fonction qui n'est pas continue sur [0,1].

La convergence simple ne suffit pas à garantir le transfert de continuité, la convergence uniforme OUI, comme l'énonce le théorème suivant.

Théorème (Continuité de la limite)

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. On suppose :

- pour tout $n \in \mathbb{N}$, f_n est continue sur I
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f.

Alors f est continue sur I.

Méthode pratique

(Pour montrer la non convergence uniforme)

Si une suite de fonctions **continues** sur I converge simplement vers une fonction qui n'est pas continue sur I alors la convergence ne peut pas être uniforme.

Exemples

- 1) Soit $f_n: x \mapsto x^n \text{ sur } [0,1].$
- 2) $f_n: x \mapsto \begin{cases} 1 nx & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{si } x \in [\frac{1}{n}, 1] \end{cases} \text{ sur } [0, 1].$

Voici un résultat très utile, qui sera souvent utilisé dans ce chapitre et dans d'autres chapitres.

Lemme (Caractérisation de la régularité sur un intervalle à l'aide de segments)

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} .

La fonction f est continue/dérivable/de classe C^k sur I si et seulement si elle est continue/dérivable/de classe C^k sur tout segment de I.

NB: ce résultat peut d'adapter à d'autres cas. La fonction f est continue/dérivable/de classe \mathcal{C}^k sur $]0, +\infty[$ si et seulement si elle est continue/dérivable/de classe \mathcal{C}^k sur tout intervalle de type $[a, +\infty[$ où a > 0.

Corollaire (Continuité de la limite)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f une fonction définie sur I. On suppose :

- pour tout $n \in \mathbb{N}$, f_n est continue sur I
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment inclus I vers f.

Alors f est continue sur I.

Exemple Retour sur l'exemple des bosses glissantes. Soit $f_n: x \mapsto \frac{1}{1 + (x - n)^2}$ sur \mathbb{R} .

 \triangle Attention \triangle La convergence uniforme sur tout segment de I n'implique pas la convergence uniforme sur I.

I.3.b Échange limite-intégrale

Motivation: si une suite de fonctions (f_n) converge (dans un sens à préciser) sur [a, b] vers f, a-t-on

$$\int_{a}^{b} f_{n}(t) dt \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} f(t) dt.$$

La réponse est NON, en général comme le prouve l'exemple

$$f_n(x) = \begin{cases} 2n^2 x & \text{si } x \in [0, \frac{1}{2n}] \\ 2 - 2n^2 x & \text{si } x \in [\frac{1}{2n}, \frac{1}{n}] \\ 0 & \text{si } x \in [\frac{1}{n}, 1] \end{cases}.$$

On a (f_n) convergeant simplement vers la fonction nulle sur [0,1] et $\int_0^1 f_n(t) dt = \frac{1}{2}$ qui ne tend pas vers $\int_0^1 0 dt = 0$. La convergence simple ne suffit pas à garantir l'échange de limite, la convergence uniforme OUI, comme l'énonce le théorème suivant.

Théorème (Échange limite-intégrale)

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un segment [a,b] et f une fonction définie sur [a,b]. On suppose :

- pour tout $n \in \mathbb{N}$, f_n est continue sur [a, b]
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers f.

Alors:

$$\int_a^b f_n(t) dt \underset{n \to +\infty}{\longrightarrow} \int_a^b f(t) dt.$$

Méthode pratique 🦠 (Pour montrer la non convergence uniforme)

Si $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f sur un segment [a,b] et $\int_0^b f(t) dt$ ne tend pas vers $\int_{0}^{b} f(t) dt \text{ alors } (f_{n})_{n \in \mathbb{N}} \text{ ne converge pas uniformément vers } f.$

Exemple L'exemple en préambule de cette partie.

Le théorème précédent n'est plus vrai lorsque l'on intègre sur un intervalle non bornée (intégrale impropre) comme le montre l'exemple suivant :

$$f_n(x) = \begin{cases} \frac{x}{n^2} & \text{si } x \in [0, n] \\ \frac{2}{n} - \frac{x}{n^2} & \text{si } x \in [n, 2n] \\ 0 & \text{si } x \geqslant 2n \end{cases}$$

La suite de fonctions converge uniformément vers la fonction nulle, les fonctions f_n sont intégrables sur \mathbb{R}_+ et pourtant $\int_0^{+\infty} f_n$ ne tend pas vers $\int_0^{+\infty} 0$. On verra d'autres théorème dans le chapitre "Convergence dominée".

I.3.c Dérivabilité

Motivation: si une suite de fonctions (f_n) de classe \mathcal{C}^1 converge (dans un sens à préciser) sur I vers f, a-t-on f de classe C^1 sur I?

La réponse est NON, en général comme le prouve l'exemple $f_n(x) = x^n$ sur [0,1]. On a (f_n) convergeant simplement vers une fonction qui n'est pas continue sur [0,1] et donc pas de classe \mathcal{C}^1 sur [0,1].

Pire, la convergence uniforme ne suffit même pas comme le prouve l'exemple $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ qui converge uniformément sur [-1,1] vers $x \mapsto |x|$ qui n'est pas de classe \mathcal{C}^1 sur [-1,1].

Théorème (Transfert de la classe \mathcal{C}^1)

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f, g deux fonctions définies sur I.

- pour tout $n \in \mathbb{N}$, f_n est de classe \mathcal{C}^1 sur I
- $(f_n)_{n\in\mathbb{N}}$ converge **simplement** sur I vers f
- $(f'_n)_{n\in\mathbb{N}}$ converge **uniformément** sur I vers g

Alors f est de classe C^1 sur I et f' = g.

NB: la conclusion subsiste si la convergence uniforme de (f'_n) vers g a lieu sur tout segment inclus dans I.

Théorème (Transfert de la classe C^p)

Soit $p \in \mathbb{N}^*$ et soient $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur un intervalle I et f, g deux fonctions définies sur I.

On suppose:

- pour tout $n \in \mathbb{N}$, f_n est de classe \mathcal{C}^p sur I
- $(f_n)_{n\in\mathbb{N}}$ converge **simplement** sur I vers f
- pour tout $k \in [1, p-1], (f_n^{(k)})_{n \in \mathbb{N}}$ converge **simplement** sur I
- $(f_n^{(p)})_{n\in\mathbb{N}}$ converge **uniformément** sur I vers g

Alors f est de classe C^p sur I et $f^{(p)} = g$.

NB: la conclusion subsiste si la convergence uniforme de $(f_n^{(p)})$ vers g a lieu sur tout segment inclus dans I.

II Séries de fonctions

Nous étudions maintenant le cas des séries de fonctions Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I.

Pour
$$n \in \mathbb{N}$$
, $x \in I$, on pose $S_n(x) = \sum_{k=0}^n u_k(x)$.

Étudier la série de fonctions $\sum u_n$ revient à étudier la suite de fonctions $(S_n)_{n\in\mathbb{N}}$. Tous les résultats relatifs aux suites de fonctions vont donc s'adapter naturellement aux séries de fonctions; mais pour ces dernières on dispose d'un nouveau type de convergence.

On veillera à faire la différence entre la nature des objets :

- $\sum u_n$ est une série de fonctions
- pour $x \in I$, $\sum u_n(x)$ est une série numérique
- pour $x \in I$, $\sum_{n=0}^{+\infty} u_n(x)$ un nombre, un élément de \mathbb{K}
- $x \mapsto \sum_{n=0}^{+\infty} u_n(x)$ est une fonction de I dans \mathbb{K}

II.1 Convergence simple, convergence uniforme

Définition (Convergence simple - Convegence uniforme)

On dit que la série de fonctions $\sum u_n$ converge simplement (resp. uniformément) si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ converge simplement (resp. uniformément) sur I.

Propriétés (Convergence uniforme implique convergence simple.)

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I et S une fonction définie sur I.

Si $\sum u_n$ converge uniformément sur I vers S alors elle converge simplement sur I vers S.

Conséquence: la limite uniforme si elle existe est nécessairement la limite simple.

Exemples Séries découlant des séries numériques usuelles

- 1) Série géométrique. Posons $u_n: x \mapsto x^n$. La série $\sum u_n$ converge simplement sur]-1,1[vers
- 2) Série exponentielle. Posons $u_n: x \mapsto \frac{x^n}{n!}$. La série $\sum u_n$ converge simplement sur \mathbb{R} vers
- 3) Série de Riemann. Posons $u_n: x \mapsto \frac{1}{n^x}$. La série $\sum u_n$ converge simplement sur $]1, +\infty[$. La fonction somme est notée $: \zeta: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$ appelée fonction dzeta de Riemann.

Exemple On pose pour tout $n \in \mathbb{N}$, $f_n(x) = e^{-nx}$. Étudier la convergence simple de $\sum u_n$.

Théorème (Caractérisation de la convergence uniforme à l'aide du reste)

Soit $\sum u_n$ une séries de fonctions définies sur un intervalle I que l'on suppose converger simplement. On pose pour tout $n \in \mathbb{N}$, $x \in I$, le reste :

$$R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x).$$

La série de fonctions $\sum u_n$ converge uniformément sur I si et seulement si la suite de fonctions $(R_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur I c'est-à-dire si et seulement si la suite $(\|R_n\|)_{\infty}$ converge vers 0.

Méthode pratique 🔌 (Convergence uniforme dans le cas d'une série alternée)

Lorsque u_n est de la forme $u_n(x) = (-1)^n \alpha_n(x)$ avec pour x fixé, la suite $(\alpha_n(x))_{n \in \mathbb{N}}$ décroissante de limite nulle, le critère spécial des séries alternées donne la majoration du reste :

$$\forall x \in I, \ \forall n \in \mathbb{N}, |R_n(x)| \leq |\alpha_n(x)|.$$

Ce qui en majorant $|\alpha_n(x)|$ permet parfois d'obtenir une majoration de $|R_n(x)|$ par une suite indépendante de x et de limite nulle; fournissant alors la convergence uniforme attendue de la suite des restes (R_n) vers la fonction nulle.

Exemple Pour $n \in \mathbb{N}$ et $x \in [1, +\infty[$, on pose $u_n(x) = \frac{(-1)^n}{n^x}$.

Montrer que la série de fonctions $\sum u_n$ converge uniformément sur $[1, +\infty[$.

II.2 Convergence normale

Définition (Convergence normale)

On dit que la série de fonctions $\sum u_n$ converge normalement si la série $\sum ||u_n||_{\infty}$ converge.

Remarques (Convergence normale \Rightarrow convergence absolue)

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I.

Si $\sum u_n$ converge normalement sur I alors pour tout $x \in I$, la série numérique $\sum_{n=1}^{\infty} u_n(x)$ converge absolument.

 \triangle **Attention** \triangle La notion de convergence absolue concerne des séries numériques pas des séries de fonctions.

Théorème (Convergence normale \Rightarrow Convergence uniforme)

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I.

Si $\sum u_n$ converge normalement sur I alors elle converge uniformément et simplement sur I.

Méthode pratique (Prouver la convergence normale)

Essentiellement deux méthodes:

- 1) on détermine explicitement $||u_n||_{\infty}$, une étude de fonctions est parfois nécessaire
- 2) \heartsuit le plus souvent, il suffit de trouver une majoration uniforme de $|u_n(x)|$ par une suite (α_n) (indépendante de x) telle que :

$$\forall n \in \mathbb{N}, \quad \forall x \in I, \quad |u_n(x)| \leq \alpha_n \quad \text{et} \quad \sum \alpha_n \text{ converge.}$$

Ce qui garantit $||u_n||_{\infty} \leq \alpha_n$ et donc par comparaison de séries à termes positifs, la série $\sum ||u_n||_{\infty}$ converge.

Exemples

- 1) Les séries de fonctions usuelles géométrique, exponentielle, Riemann.
- 2) Pour $n \in \mathbb{N}$ et $x \in [1, +\infty[$, on pose $u_n(x) = \frac{(-1)^n}{n^x}$. Montrer que la série $\sum u_n$ ne converge pas normalement sur $[1, +\infty[$.

C'est donc un exemple de série qui converge uniformément sur I sans converger normalement sur I.

- 3) Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $u_n(x) = \frac{1}{n^2 + x^2}$. Montrer que la série $\sum u_n$ converge normalement sur \mathbb{R} .
- 4) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}^+$, on pose $u_n(x) = x^2 e^{-nx}$. Montrer que la série $\sum u_n$ converge normalement sur \mathbb{R}_+ .

Méthode pratique 🔌 (Montrer la convergence uniforme d'une série de fonctions)

- 1) Dans la très grande majorité des cas, on prouve la convergence normale.
- 2) Si la série est alternée, on peut penser à utiliser la convergence uniforme de la suite des restes en utilisant la majoration du reste par son premier terme.
- 3) Sinon, on fait autrement, mais c'est forcément plus compliqué et très rare...

II.3 Régularité de la somme

II.3.a Continuité

Théorème (Transfert de continuité)

Soient $\sum u_n$ une série de fonctions définies sur un intervalle I. On suppose :

- pour tout $n \in \mathbb{N}$, u_n est continue sur I
- $\sum u_n$ converge uniformément sur I.

Alors la fonction $S: x \mapsto \sum_{n=1}^{+\infty} u_n(x)$ est continue sur I.

 \mathbf{NB} : la conclusion subsiste si la convergence uniforme de $\sum u_n$ a lieu sur tout segment inclus dans I.

 \triangle Attention \triangle La convergence uniforme/normale sur tout segment de I n'implique pas la convergence uniforme/normale sur I.

Exemples

- 1) Montrer que la fonction $x \mapsto \sum \frac{e^{i nx}}{n^2}$ est continue sur \mathbb{R} .
- 2) Montrer que la fonction $\zeta: x \mapsto \sum \frac{1}{n^x}$ est continue sur $]1, +\infty[$.
- 3) Montrer que la fonction $x \mapsto \sum \frac{(-1)^n}{n^x}$ sur \mathbb{R}_+^* .
- 4) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}^+$, on pose $u_n(x) = x^n x^{n+1}$. Montrer que la série $\sum u_n$ converge simplement sur [0,1] mais que la convergence n'est pas uniforme sur cet intervalle.

II.3.b Echange limite-somme

Théorème (Théorème de la double-limite)

Soient $\sum u_n$ une série de fonctions définies sur un intervalle I et a une borne de l'intervalle I (éventuellement infinie).

On suppose:

- pour tout $n \in \mathbb{N}$, u_n admet une limite finie en $a: l_n = \lim_{x \to a} u_n(x)$
- $\sum u_n$ converge uniformément sur I.

Alors la série $\sum l_n$ converge et

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} u_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} u_n(x) \right) = \sum_{n=0}^{+\infty} l_n.$$

II.3.c Échange limite-intégrale

Théorème (Intégration terme à terme sur un segment)

Soient $\sum u_n$ une suite de fonctions définies sur un segment [a,b]. On suppose :

- pour tout $n \in \mathbb{N}$, u_n est continue sur [a, b]
- $\sum u_n$ converge uniformément sur [a,b].

Alors:

$$\int_a^b \left(\sum_{n=0}^{+\infty} u_n(t) \, \mathrm{d}t \right) = \sum_{n=0}^{\infty} \left(\int_a^b u_n(t) \, \mathrm{d}t \right).$$

Exemples

1) Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{(n+1)2^n}$$
 en remarquant que $\frac{1}{n+1} = \int_0^1 t^n dt$.

2) Calculer
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$$
 en remarquant que $\frac{1}{n+1} = \int_0^1 t^n dt$.

⚠ Attention ⚠ Le théorème précédent n'est plus vrai lorsque l'on intègre sur un intervalle non bornée (intégrale impropre) comme le montre l'exemple suivant :

$$\forall x \in \mathbb{R}^+, \quad u_n(x) = \begin{cases} \frac{1}{n^3} (x - (n^2 - n)) & \text{si } x \in [n^2 - n, n^2] \\ -\frac{1}{n^3} (x - (n^2 + n)) & \text{si } x \in [n^2, n^2 + n] \\ 0 & \text{si } x \geqslant n^2 + n \text{ ou } x \leqslant n^2 - n \end{cases}.$$

La série $\sum u_n$ converge uniformément vers la fonction nulle, les fonctions u_n sont intégrables sur \mathbb{R}_+ et pourtant $\sum_{n=0}^{+\infty} \int_0^{+\infty} u_n$ ne converge pas.

On verra d'autres théorème dans le chapitre "Convergence dominée".

II.3.d Dérivabilité

Il est bien connu que la dérivée d'une somme finie de fonctions est la somme des dérivées. Le résultat subsite-t-il si la somme est infinie?

La réponse est NON en général. Là aussi la convergence uniforme est exigée.

Théorème (Transfert de la classe \mathcal{C}^1)

Soient $\sum u_n$ une suite de fonctions définies sur un intervalle I. On suppose :

- pour tout $n \in \mathbb{N}$, u_n est de classe \mathcal{C}^1 sur I
- la série $\sum u_n$ converge **simplement** sur I
- la série $\sum u'_n$ converge **uniformément** sur I.

Alors $x \mapsto \sum_{n=0}^{+\infty} u_n(x)$ est de classe \mathcal{C}^1 sur I et sa dérivée est $x \mapsto \sum_{n=0}^{+\infty} u_n'(x)$.

Autrement dit:

$$\left(\sum_{n=0}^{+\infty} u_n\right)' = \sum_{n=0}^{+\infty} u_n'.$$

NB: la conclusion subsiste si la convergence uniforme de $\sum u'_n$ a lieu sur tout segment inclus dans I.

Exemple Montrer que la fonction $x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$ est de classe \mathcal{C}^1 sur \mathbb{R} .

Théorème (Transfert de la classe C^p)

Soit $p \in \mathbb{N}^*$ et soient $\sum u_n$ une suite de fonctions définies sur un intervalle I. On suppose :

- pour tout $n \in \mathbb{N}$, u_n est de classe \mathcal{C}^p sur I
- $\bullet\,$ pour tout $k\in [\![0,p-1]\!],$ la série $\sum u_n^{(k)}$ converge $\mathbf{simplement}$ sur I
- la série $\sum u_n^{(p)}$ converge **uniformément** sur I.

Alors $S: x \mapsto \sum_{n=0}^{+\infty} u_n(x)$ est de classe \mathcal{C}^p sur I et

$$\forall k \in [0, p], \quad S^{(k)} = \sum_{n=0}^{+\infty} u_n^{(k)}.$$

NB: la conclusion subsiste si la convergence uniforme de $\sum u_n^{(p)}$ a lieu sur tout segment inclus dans I.

Exemple La fonction ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$.

II.4 Comparaison série intégrale

ig(extstyle extstyle

La méthode de comparaison série-intégrale permet parfois de calculer la limite ou un équivalent de la fonction somme $x\mapsto \sum_{n=0}^\infty u_n(x)$.

Il faut évidemment une hypothèse de monotonie, à x fixé, de la suite $(u_n(x))_{n\in\mathbb{N}}$.

Exemple Déterminer un équivalent de ζ en 1 et sa limite en $+\infty$ à l'aide d'une comparaison série-intégrale.

III Quelques conseils pratiques

Savoir-faire

- 1) Déterminer une norme infinie par une étude de fonctions.
- 2) Manipuler des inégalités pour majorer $|u_n(x)|$ par une suite indépendante de x.
- 3) Déterminer la convergence simple d'une suite/série de fonctions. On fixe x et on :
 - calcule la limite de la suite numérique $(f_n(x))$ dans le cas d'une suite de fonctions
 - on étudie la convergence de la série numérique $\sum u_n(x)$ dans le cas d'une série de fonctions (le calcul de la somme n'est pas toujours utile)
- 4) Etudier la convergence uniforme d'une suite/série de fonctions (cf. méthodes pratiques)
- 5) Connaître les modes de convergence simple/uniforme/normale : les différences et les liens entre elles.
- 6) Connaître précisément les théorème de transfert, vérifier soigneusement toutes les hypothèses. Il faut savoir refaire les exemples.
- 7) Penser à se rabattre sur la convergence normale sur tout segment de I, lorsque la convergence normale sur l'intervalle I n'est pas aisée à prouver.
- 8) Utilisation d'une comparaison série-intégrale pour obtenir une limite/un équivalent.

Pièges à éviter - Erreurs classiques

- Parler de convergence normale à propos d'une suite de fonctions (cette notion n'est valable que pour une série de fonctions).
- Parler de convergence absolue à propos d'une série de fonctions (cette notion n'est valable que pour une série numérique).
- Oublier l'existence de la notion de convergence normale sur tout segment.
- Penser que la "convergence simple" suffit pour les transferts de régularité (ce qui montrerait au passage qu'on n'a pas compris grand chose à ce chapitre...)
- Penser que la "convergence normale sur tout segement de I" implique implique la "convergence normale sur I".