
Chapitre

Variables aléatoires

I Variables aléatoires discrètes

I.1 Quelques rappels

Soit (Ω,A) un espace probabilisable. Une variable aléatoire discrète sur (Ω,A) est une application de Ω
dans un ensemble E telle que :

• l’image de Ω, X(Ω) est une partie au plus dénombrable de E

• pour tout x ∈ X(Ω), X−1({x}) est un événement, c’est-à-dire un élément de A.

Définition (Variable aléatoire discrète)

Rappels définitions et notations.

• X(Ω) = {X(ω) / ω ∈ Ω} est l’ensemble des valeurs prises par X , appelé univers-image de X .
Il est au plus dénombrable, ce sera souvent N, N∗, Z.

• L’ensemble X−1({x}) = {ω ∈ Ω / X(ω) = x} est un événement (un élément de la tribu) noté (X = x).

• Pour toute partie B de E, X−1(B) = {ω ∈ Ω / X(ω) ∈ B} est un événement noté (X ∈ B).
Dans le cas où B = {x}, il est noté (X = x).
Dans le cas ou B =]−∞, x], il est noté (X 6 x).
Dans le cas ou B = [x,+∞[, il est noté (X > x).

• On considère f une application définie sur X(Ω) à valeurs dans un ensemble E.
Alors f ◦X est une variable aléatoire, que l’on note f(X). Exemple : X2, |X |...

• Loi PX de X . On définit la probabilité PX sur X(Ω) Pour toute partie B de X(Ω), si B = {bi / i ∈ I} où I est
au plus dénombrable et les bi sont deux à deux distincts, on définit :

PX(B) = P (X ∈ B) =
∑

i∈I

P (X = bi) =
∑

b∈B

P (X = b).

• Si X et Y sont deux variables aléatoires suivant la même loi, c’est-à-dire X(Ω) = Y (Ω) et PX = PY , on note
X ∼ Y .

Soit (pi)i∈I une suite de réels et X une variable aléatoire d’univers-image X(Ω) = {xi / i ∈ I} telle que :

∀i ∈ I, P (X = xi) = pi.

Pour montrer que (pi)i∈I définit bien une loi de probabilité on vérifie :

• ∀i ∈ I, pi > 0 •
∑

i∈I

pi = 1.

P Méthode pratiqueP (Reconnaître une loi de probabilité)

Exercice. Pour une variable aléatoire réelle X telle que X(Ω) = Z\{−1, 0}, on pose :

∀n ∈ Z\{−1, 0}, P(X = n) =
1

2n(n+ 1)

Vérifier que ceci définit bien une loi de probabilité pour X .



I.2 Lois usuelles

I.2.a Loi uniforme

On dit que la variable aléatoire X suit une loi uniforme sur l’ensemble E = Ja, bK (de cardinal n = b−a+1)
si

X(Ω) = Ja, bK ∀k ∈ Ja, bK, P (X = k) =
1

n
.

On note X ∼ U(Ja, bK).

Définition (Loi uniforme)

Exemple. On lance un dé normal à 6 faces. La variable aléatoire qui indique le numéro sorti suit la loi uniforme
sur J1, 6K.

I.2.b Loi de Bernoulli

Soit p ∈]0, 1[. On dit que la variable aléatoire X suit la loi de Bernoulli de paramètre p si

X(Ω) = {0, 1} P (X = 1) = p et P (X = 0) = 1− p.

On note X ∼ B(p).

Définition (Loi de Bernoulli)

Exemple. On lance une pièce truquée qui fait pile avec probabilité p et face avec probabilité 1 − p. La variable
aléatoire valant 1 si on obtient pile et 0 si on obtient face suit une loi de Bernoulli de paramètre p.

R ExplicationL La loi de Bernoulli modélise un événement aléatoire qui ne peut avoir que deux issues possibles
: succès avec probabilité p et échec avec probabilité 1− p.

I.2.c Loi binomiale

Soit p ∈]0, 1[ et n ∈ N
∗. On dit que la variable aléatoire X suit la loi binomiale de paramètres n et p si

X(Ω) = J0, nK ∀k ∈ J0, nK, P (X = k) =

(

n

k

)

pk(1− p)n−k.

On note X ∼ B(n, p).

Définition (Loi binomiale)

Exemple. On lance n fois une pièce truquée qui fait pile avec probabilité p et face avec probabilité 1− p. On note
X la variable aléatoire qui compte le nombre de piles obtenus. Alors X ∼ B(n, p).

R ExplicationL La loi binomiale de paramètre n, p modélise une expérience aléatoire comptant le nombre de
succès (de probabilité pile) dans la répétition indépendante de n expériences de type succès-échec.
On rappelle qu’une variable aléatoire suivant une loi binomiale est la somme de variable aléatoires indépendantes
suivant une loi de Bernoulli de même paramètre p.

Exercice. Soit T une variable aléatoire suivant une loi binomiale B(6, p) et la fonction polynomiale
Q = X2 + TX + T + 1. Déterminer la probabilité que le polynôme Q admette au moins une racine réelle.



I.2.d Loi géométrique

Soit p ∈]0, 1[. On dit que la variable aléatoire X suit la loi géométrique de paramètre p si

X(Ω) = N
∗ ∀k ∈ N

∗, P (X = k) = pk−1(1 − p).

On note X ∼ G(p).

Définition (Loi géométrique)

Exemple. On lance une pièce truquée qui fait pile avec probabilité p et face avec probabilité 1− p. On note X la
variable aléatoire qui indique le nombre de lancers nécessaires avant d’obtenir un pile. Alors X ∼ G(p).

R ExplicationL La loi géométrique est aussi appelée la loi du premier succès dans une succession
d’expériences de Bernoulli identiques et indépendantes.

I.2.e Loi de Poisson

Soit λ > 0 un réel. On dit que la variable aléatoire X suit la loi de Poisson de paramètre λ si

X(Ω) = N ∀k ∈ N, P (X = k) = e−λ
λk

k!
.

On note X ∼ P(λ).

Définition (Loi de Poisson)

Si, pour tout n,Xn ∼ B (n, pn) et si lim
n→+∞

npn = λ, alors, pour tout k ∈ N, on a :

lim
n→+∞

P (Xn = k) = e−λ
λk

k!

Donc, dans la pratique, lorsque Xn ∼ B (n, pn), le calcul de P (Xn = k) devient difficile lorsque n est
grand. On cherche alors une approximation en supposant que Xn suit une loi de Poisson plutôt qu’une loi
binomiale. De façon théorique, il faut vérifier que npn a une limite finie λ. En pratique, on se contentera
des conditions : n est grand (n > 50) et pn petit (pn 6 0, 1) et npn 6 15 ( npn sera alors une approximation
de λ ). Du coup, on utilisera la loi de Poisson dans le cas des petites probabilités ou d’événements rares
(c’est-à-dire des événements avec une probabilité faible dans un intervalle de temps donné), par exemple :
le nombre de fautes d’impression dans les pages d’un livre, le nombre de personnes atteintes d’une maladie,
le nombre d’accidents sur une portion de route.
La loi de Poisson est pour cette raison aussi appelée loi des événements rares.

Remarques (Approximation d’une loi binomiale par une loi de Poisson)

II Espérance d’une variable aléatoire

Dans cette partie (Ω,A, P ) est un espace probabilisé.



II.1 Définitions et formules de calculs

Soit X une variable aléatoire discrète à valeurs dans [0,+∞]. L’espérance de X est le nombre noté E(X)
de [0,+∞] défini par

E(X) =
∑

x∈X(Ω)

xP (X = x).

On di que la variable aléatoire est d’espérance finie si E(X) < +∞.

Définition (Espérance d’une variable aléatoire à valeurs positives)

On a déjà vu des exemples où une variable aléatoire peut prendre la valeur +∞ (temps d’attente d’un
succès). Par convention xP (X = x) = 0 lorsque x = +∞ et P (X = +∞) = 0.
Si P (X = +∞) > 0 alors +∞P (X = +∞) = +∞ et l’espérance est alors elle aussi égale à +∞.

Remarques (Cas où X prend la valeur +∞)

• Cas X(Ω) fini et contient des valeurs finie. Posons X(Ω) = {x1, . . . , xn}, dans ce cas

E(X) =
n
∑

i=1

xiP (X = xi).

• Cas X(Ω) = {xn / n ∈ N}. Dans ce cas

E(X) =

+∞
∑

n=0

xnP (X = xn).

(On rappelle que l’ordre de sommation n’importe pas pour une famille positive).

Remarques (Cas particuliers)

1) Si la variable aléatoire X suit une loi constante de valeur a alors E(X) = a.

2) Si la variable aléatoire X suit une loi uniforme X ∼ U(Ja, bK) alors E(X) =
a+ b

2
.

3) Si la variable aléatoire X suit une loi de Bernoulli X ∼ B(p) alors E(X) = p.

4) Si la variable aléatoire X suit une loi binomiale X ∼ B(n, p) alors E(X) = np.

5) Si la variable aléatoire X suit une loi géométrique X ∼ G(p) alors E(X) =
1

p
.

6) Si la variable aléatoire X suit une loi de Poisson X ∼ P(λ) alors E(X) = λ.

Théorème (Espérance des lois usuelles)

Exercice. Soit X une variable aléatoire qui suit une loi binomiale de paramètre n ∈ N∗, p ∈]0, 1[.

On pose Y =
1

X + 1
. Calculer E(Y ).



Soit X une variable aléatoire à valeurs dans N ∪ {+∞}. On a alors :

E(X) =

+∞
∑

n=1

P (X > n).

Théorème (Formule de l’antirépartition)

On retient ce résultat pratique.

Soit X une variable aléatoire à valeurs dans N.
Parfois il est plus simple de calculer P (X 6 k) ou P (X > k) on utilise alors :

∀n ∈ N
∗, P (X = n) = P (X 6 n)− P (X 6 n− 1) découlant de (X 6 n) = (X 6 n− 1) ⊔ (X = n)

∀n ∈ N∗, P (X = n) = P (X > n)− P (X > n+ 1) découlant de (X > n) = (X > n+ 1) ⊔ (X = n)

P Méthode pratiqueP (P (X = n) à l’aide de P (X 6 n) et P (X > n))

Exemple Retrouver l’espérance d’une variable aléatoire suivant une loi géométrique grâce à la formule de l’antirépartition.
Exercice. Dans une urne, il y a une boule rouge et une boule verte. On tire une boule. Si elle est rouge, on arrête et
si elle est verte on la remet avec une rouge supplémentaire et on recommence.
On note X le nombre de tirages effectués. On convient que X = +∞ lorsqu’on n’obtient jamais de boule rouge.

1) Calculer P (X = +∞).

2) X est-elle d’espérance finie et si oui que vaut son espérance?

Soit X une variable aléatoire discrète à valeurs dans C. On dit que la variable aléatoire X est d’espérance

finie si la famille (xP (X = x))x∈X(Ω) est sommable c’est à dire
∑

x∈X(Ω)

|x|P (X = x) < +∞.

Si c’est le cas, l’espérance de X est le complexe

E(X) =
∑

x∈X(Ω)

xP (X = x).

Définition (Espérance d’une variable aléatoire à valeurs complexes)

• Cas X(Ω) = {xn / n ∈ N}.

X est d’espérance finie si et seulement si la série
∑

xnP (X = xn) converge absolument. Dans ce cas

E(X) =

+∞
∑

n=0

xnP (X = xn).

• Cas X(Ω) = N.

X est d’espérance finie si et seulement si la série
∑

nP (X = n) converge (absolument). Dans ce cas

E(X) =

+∞
∑

n=0

nP (X = n).

Remarques (Cas particuliers)



Exercice. Retour sur l’exemple de la variable aléatoire X telle que X(Ω) = Z\{−1, 0}, et

∀n ∈ Z\{−1, 0},P(X = n) =
1

2n(n+ 1)
.

X est-elle d’espérance finie?

On dit qu’une variable aléatoire X est centrée si E(X) = 0.

Définition (Variable aléatoire centrée)

II.2 Propriétés de l’espérance

Soient X une variable aléatoire et f : X(Ω) → C une fonction.
La variable aléatoire f(X) est d’espérance finie si et seulement si la famille (f(x)P (X = x))x∈X(Ω) est
sommable. Dans ce cas

E(f(X)) =
∑

x∈X(Ω)

f(x)P (X = x).

Théorème (Théorème de transfert)

R ExplicationL Ce théorème permet d’indexer la somme définissant l’espérance de Y = f(X) par l’ensemble
des valeurs prises par la variable aléatoire X et non la variable aléatoire Y comme la définition l’exige. D’où le nom de
théorème de transfert.

• Cas X(Ω) = {x1, . . . , xn}.
f(X) est d’espérance finie (c’est une somme finie) et

E(f(X)) =

n
∑

k=1

f(xk)P (X = xk).

• Cas X(Ω) = {xn / n ∈ N}.

f(X) est d’espérance finie si et seulement si la série
∑

f(xn)P (X = xn) converge absolument. Dans
ce cas

E(f(X)) =
+∞
∑

n=0

f(xn)P (X = xn).

Remarques (Cas particuliers)

1) Soient X et Y deux variables aléatoires d’espérance finie.
Pour tous complexes a et b, alors la variable aléatoire aX + bY est encore d’espérance finie, donnée
par

E(aX + bY ) = aE(X) + bE(Y ).

2) Conséquence : soient X1, . . . , Xn des variables aléatoires d’espérance finie. Alors X1 + · · · +Xn est
encore d’espérance finie, avec

E

(

n
∑

i=1

Xi

)

=

n
∑

i=1

E(Xi).

Théorème (Linéarité de l’espérance)



Exercice. Soit X une variable aléatoire d’espérance finie. Montrer que X − E(X) est centrée.

Exercice Soit p ∈ [0, 1]. Une puce se déplace aléatoirement sur une droite d’origine O. A chaque instant, elle fait un
bond d’une unité vers la droite ou d’une unité vers la gauche avec les probabilités respectives p et 1−p = q. A l’instant
initial la puce est à l’origine. Pour n ∈ N∗, on pose Xn l’abscisse de la puce à l’instant n. Déterminant l’espérance de Xn.

NB: l’exemple précédent montre qu’il n’est pas toujours nécessaire de déterminer la loi d’une variable aléatoire pour
en obtenir l’espérance.

Soient X et Y deux variables aléatoires telles que |X | 6 Y . Si Y est d’espérance finie alors X l’est aussi.

Proposition

Soient X et Y deux variables aléatoires d’espérance finie.

• Positivité Si X ne prend que des valeurs positives alors E(X) > 0.

• Croissance Si X 6 Y alors E(X) 6 E(Y ).

Théorème (Positivité, croissance)

Exercice Un résultat utile. Soient X une variable aléatoire et a, b réels tels que X(Ω) ⊂ [a, b]. Montrer que
a 6 E(X) 6 b.

Si X est à valeurs positives et d’espérance nulle alors l’événement (X = 0) est presque sûr.

Proposition

III Variance

Dans cette partie (Ω,A, P ) est un espace probabilisé.

III.1 Définitions et propriétés

L’espérance d’une variable aléatoire représente sa moyenne. La variable |X − E(X)| mesure l’écart à la moyenne; on
peut s’intéresser à l’espérance de cette variable aléatoire pour mesurer la dispersion de X autour de la moyenne. La
présence de la valeur absolue rend les choses peu exploitables, on préfère s’intéresser à l’espérance de son carré soit
E
(

(X − E(X))2
)

Soit X une variable aléatoire. Si la variable aléatoire (X − E(X))2 est d’espérance finie, on définit la
variance de X par

V (X) = E
(

(X − E(X))2
)

.

Conséquence : la variance est positive.

Définition (Variance)

Dans la pratique, pour vérifier que X est de variance finie, on peut se contenter de vérifier que X2 est d’espérance
finie et on dispose alors d’une formule pratique.



Soit X une variable aléatoire. Si X2 est d’espérance finie alors X et (X − E(X))2 le sont aussi avec

V (X) = E(X2)− E(X)2.

Théorème (Formule de Konig-Huyghens)

Parfois pour calculer E(X2) il est plus pratique de de calculer E(X(X + 1)) ou E(X(X − 1)) on utilise
alors

E(X2) = E(X(X + 1))− E(X) E(X2) = E(X(X − 1)) + E(X).

P Méthode pratiqueP (Calcul pratique de E(X2))

Exercice. Soient n ∈ N∗ et X une variable aléatoire à valeurs dans J0, nK telle que :

∀k ∈ J0, nK, P (X = k) =
a

k + 1

(

n

k

)

.

1) Calculer a pour que X soit effectivement une variable aléatoire.

2) Déterminer E(X) et V (X) dans ce cas. Indication : calculer E(X + 1), E(X(X + 1).

Soit X une variable aléatoire de variance finie. On définit son écart-type par

σ(X) =
√

V (X).

Définition (Ecart-type)

On dit qu’une variable aléatoire X est réduite si V (X) = 1.

Définition (Variable aléatoire réduite)

Soit X une variable aléatoire admettant une variance finie.
Alors, pour tous réels a, b, la variable aléatoire aX + b est de variance finie, avec

V (aX + b) = a2V (X) σ(aX + b) = |a|σ(X).

Théorème (Propriétés de la variance)

Exercice. Soit X une variable aléatoire de variance finie non nulle. Montrer que
X − E(X)

σ(X)
est centrée-réduite.

C’est la variable aléatoire centrée-réduite associée à X .



III.2 Variance de lois usuelles

1) Si la variable aléatoire X suit une loi constante de valeur a alors V (X) = 0.
Réciproquement, si une variable aléatoire X vérifie V (X) = 0 alors il existe un réel a
tel que P (X = a) = 1.

2) Si la variable aléatoire X suit une loi uniforme X ∼ U(Ja, bK) alors V (X) =
n2 − 1

12
où n = b − a+ 1

est le nombre de valeurs prises.

3) Si la variable aléatoire X suit une loi de Bernoulli X ∼ B(p) alors V (X) = p(1− p).

4) Si la variable aléatoire X suit une loi binomiale X ∼ B(n, p) alors V (X) = np(1− p).

5) Si la variable aléatoire X suit une loi géométrique X ∼ G(p) alors V (X) =
1− p

p2
.

6) Si la variable aléatoire X suit une loi de Poisson X ∼ P(λ) alors V (X) = λ.

Théorème (Variance des lois usuelles)

IV Fonctions génératrices

IV.1 Définitions

Dans cette partie (Ω,A, P ) est un espace probabilisé et X désigne une variable aléatoire à valeurs dans N, X(Ω) ⊂ N.

On a utilisé à plusieurs reprises une série entière
∑

P (X = n)tn pour calculer des espérances ou des variances. On

peut généraliser cette technique.

• La série entière
∑

P (X = n)tn à un rayon de convergence supérieur ou égal à 1, elle converge donc

pour tout réel t ∈ [−1, 1].

• La somme de cette série est appelée fonction génératrice de X , notée GX :

∀t ∈ [−1, 1], GX(t) =

+∞
∑

n=0

P (X = n)tn = E
(

tX
)

.

Théorème-Définition (Fonction génératrice)

Si X(Ω) est fini alors GX est une fonction polynomiale.

Remarques (Cas d’un univers-image fini)

Exercice.

1) Soit X une variable aléatoire suivant une loi uniforme sur J1, nK. Déterminer la fonction génératrice de X .

2) Soit X une variable aléatoire à valeurs dans N∗ telle que : ∀n ∈ N∗, P (X = n) =
1

n(n+ 1)
. Déterminer la

fonction génératrice de X .

1) GX(1) = 1.

2) On pose un : t 7→ P (X = n)tn. La série
∑

un converge normalement sur [−1, 1].

3) GX est continue sur [−1, 1].

Théorème (Propriétés de GX)



Pour obtenir la fonction génératrice connaissant la loi (P (X = n))n∈N il faut calculer une somme de série
entière.

P Méthode pratiqueP (Obtenir la fonction génératrice à l’aide de la loi)

Deux variables aléatoires à valeurs dans N ont la même fonction génératrice si et seulement si elles ont la
même loi.

Théorème (La loi est caractérisée par la fonction génératrice)

Pour obtenir la loi d’une variable aléatoire soit les valeurs (P (X = n))n∈N à l’aide de la fonction génératrice
G, il faut développer G en série entière et identifier les coefficients.

P Méthode pratiqueP (Obtenir la loi à l’aide de la fonction génératrice)

Exercice. Soit X une variable aléatoire à valeurs dans N telle que : ∀t ∈ [−1, 1], GX(t) =
1

2− t
. Déterminer la loi

de X .

R ExplicationL On en déduit que pour trouver la loi d’une variable aléatoire, il suffit de déterminer sa
fonction génératrice.

IV.2 Fonction génératrice des lois usuelles

1) Si la variable aléatoire X suit une loi constante de valeur a alors E(X) = a.

2) Si la variable aléatoire X suit une loi de Bernoulli X ∼ B(p) alors

∀t ∈ R, GX(t) = 1− p+ pt.

3) Si la variable aléatoire X suit une loi binomiale X ∼ B(n, p) alors

∀t ∈ R, GX(t) = (1− p+ pt)n.

4) Si la variable aléatoire X suit une loi géométrique X ∼ G(p) alors

∀t ∈

]

−
1

1− p
,

1

1− p

[

, GX(t) =
pt

1− (1 − p)t
.

5) Si la variable aléatoire X suit une loi de Poisson X ∼ P(λ) alors

∀t ∈ R, GX(t) = eλ(t−1) .

Théorème (Fonction génératrice des lois usuelles)

P En pratiqueP Le programme de PC écrit explicitement : "les étudiants doivent savoir calculer rapidement
la fonction génératrice d’une variable aléatoire de Bernoulli, binomiale, géométrique, de Poisson".



IV.3 Espérance et variance

Soit X une variable aléatoire à valeurs dans N. X est d’espérance finie si et seulement si sa fonction
génératrice est dérivable en 1. Dans ce cas :

E(X) = G′

X
(1).

Théorème (Espérance)

Soit X une variable aléatoire à valeurs dans N. X2 est d’espérance finie si et seulement si sa fonction
génératrice est deux fois dérivable en 1. Dans ce cas :

E(X(X − 1)) = G′′

X
(1) V (X) = G′′

X
(1) +G′

X
(1)− (G′

X
(1))2.

Théorème (Variance)

P En pratiqueP Plutôt que d’apprendre par coeur cette formule de V (X), savoir la retrouver en partant de :

V (X) = E(X2)− (E(X))2 = E(X(X − 1)) + E(X)− (E(X)2).

Si X(Ω) est fini, GX étant polynomiale est dérivable une et deux fois en 1 donc ces formules sont vérifiées
sans hypothèses supplémentaires

E(X) = G′

X
(1) V (X) = G′′

X
(1) +G′

X
(1)− (G′

X
(1))2.

Remarques (Cas X(Ω) fini)



V Résumé

Nom Paramètres Notation X(Ω) P (X = k) E(X) V (X) GX(t) t ∈

Bernoulli p ∈]0, 1[ B(p)

Binomiale p ∈]0, 1[,
n ∈ N

B(n, p)

Uniforme
sur Ja, bK

(a, b) ∈ Z2 U(Ja, bK) Pas à connaître Pas à con-
naître

Uniforme
sur J1, nK

n ∈ N∗ U(J1, nK) Pas à connaître Pas à con-
naître

Poisson λ > 0 P(λ)

Géomé
trique

p ∈]0, 1[ G(p)


