
Chapitre

Espaces préhilbertiens réels

C’est un chapitre de révision de PCSI.
Tous les espaces vectoriels de ce chapitre sont des R-espace vectoriels.

Dans ce qui suit, E désigne alors un tel R-espace vectoriel.

I Espaces préhilbertiens

I.1 Produit scalaire

• On appelle produit scalaire sur E toute forme bilinéaire, symétrique, définie-positive c’est-

à-dire toute application
ϕ : E × E → R

(x, y) 7→ ( x | y ) qui vérifie

(i) bilinéaire :

∀(x, y, z) ∈ E3, ∀(λ, µ) ∈ K
2, ϕ(λx+ µy, z) = λϕ(x, z) + µϕ(y, z) (linéarité à gauche)

∀(x, y, z) ∈ E3, ∀(λ, µ) ∈ K
2, ϕ(x, λy + µz) = λϕ(x, y) + µϕ(x, z) (linéarité à droite).

(ii) symétrique : ∀(x, y) ∈ E2, ϕ(x, y) = ϕ(y, x)

(iii) définie : ∀x ∈ E, ϕ(x, x) = 0 ⇒ x = 0E

(iv) positive : ∀x ∈ E, ϕ(x, x) > 0.

Lorsque E est muni d’un produit scalaire, on dit que E est un espace préhilbertien réel.

• Notation. ϕ est souvent noté ( · | · ) ou 〈 · , · 〉 ou 〈 · | · 〉.

• Espace euclidien. Un espace vectoriel de dimension finie muni d’un produit scalaire est appelé
espace vectoriel euclidien.

Définition (Produit scalaire)

Exemples Produits scalaires usuels à connaître

1) Dans
−→P ou

−→E :

∀(−→u ,−→v ) ∈ (
−→P )2, −→u · −→v = ‖−→u ‖‖−→v ‖ cos(−→u ,−→v ).

2) Dans R
n :

∀(x, y) ∈ (Rn)2, (x | y ) =
n∑

i=1

xiyi où x = (x1, . . . , xn), y = (y1, . . . , yn).

3) Dans C([a, b],R) (où a < b) :

∀(f, g) ∈ (C([a, b],R))2, ( f | g ) =
∫ b

a

f(t)g(t) dt.

4) Dans Mn,p(R) :

∀(A,B) ∈ (Mn,p(R))
2, (A |B ) = Tr(A⊤B) =

∑

16i6n

16j6p

aijbij



Exercice.

1) Montrer que l’application (P,Q) 7→
∫ 1

−1

P (t)Q(t) dt est un produit scalaire sur R[X ].

2) Montrer que l’application (P,Q) 7→
∫ +∞

0

P (t)Q(t)e−t2 dt est un produit scalaire sur R[X ].

• La bilinéarité implique que ( x | 0E ) = ( 0E |x ) = 0 pour tout x ∈ E.
Donc l’implication réciproque de la propriété “définie” est vraie : x = 0E ⇒ (x |x ) = 0.

• Bien noter que : “symétrie” + “linéarité à gauche” ⇒ “ bilinéarité” .

P En pratiqueP pour montrer la bilinéarité, on prouve d’abord la symétrie, puis la
linéarité à gauche. La bilinéarité en découle.

Remarques

I.2 Norme

• La norme euclidienne sur E associée au produit scalaire ( · | · ) est l’application

‖ · ‖ : E → R+

x 7→ ‖x‖ =
√
(x |x ) .

• La distance euclidienne sur E associée au produit scalaire ( · | · ) est l’application

d : E × E → R+

(x, y) 7→ ‖x− y‖ .

Définition (Norme)

Exemples Norme euclidienne associée au produit scalaire usuel

1) Dans R
n :

∀x ∈ R
n, ‖x‖ =

√√√√
n∑

i=1

x2
i où x = (x1, . . . , xn).

2) Dans C([a, b],R) :

∀f ∈ C([a, b],R), ‖f‖ =

√∫ b

a

f2(t) dt.

3) Dans Mn,p(R) :

∀A ∈ Mn,p(R), ‖A‖ =
√
Tr(A⊤A).



Soit E un espace préhilbertien muni du ps ( · | · ).

1) Homogénéité :
∀x ∈ E, ∀λ ∈ R, ‖λx‖ = |λ|‖x‖.

2) Séparation :
∀x ∈ E, ‖x‖ = 0 ⇒ x = 0E .

3) Identité remarquable (très utile) :

∀(x, y) ∈ E2, ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 (x | y ) .

4) Inégalité de Cauchy-Schwarz :

∀(x, y) ∈ E2, | (x | y ) | 6 ‖x‖‖y‖

avec égalité si et seulement si x et y sont colinéaires.

5) Inégalité triangulaire :
∀(x, y) ∈ E2, ‖x+ y‖ 6 ‖x‖+ ‖y‖

avec égalité si et seulement si x et y sont colinéaires de même sens.

6) Identité du parallélogramme :

∀(x, y) ∈ E2, ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

7) Identités de polarisation :

∀(x, y) ∈ E2, (x | y ) = 1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
=

1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Théorème (Inégalités et égalités fondamentales)

R ExplicationL Interprétation géométrique.

Inégalité triangulaire Identité du parallélogramme



• Les propriétés 1), 2) et 5) montrent que x 7→ ‖x‖ est bien une norme sur E, appelée norme euclidienne.

• Les identités de polarisation 7) permettent de retrouver l’expression du produit scalaire à partir de
la norme.

• L’inégalité de Cauchy-Schwarz avec le produit scalaire usuel sur Rn se réécrit, pour tout (x1, . . . , xn),
(y1, . . . , yn) de R

n,

• L’inégalité de Cauchy-Schwarz avec le produit scalaire usuel sur C([a, b],R) se réécrit, pour tout f , g
de C([a, b],R),

Remarques

Exercice. Montrer que pour tout (x1, . . . , xn) ∈ R
n,

(
n∑

k=1

xk

)2

6 n

n∑

k=1

x2
k.

II Orthogonalité

II.1 Définitions

Soit (E, ( · | · )) un espace préhilbertien réel et ‖ · ‖ est la norme euclidienne associée.

• Soit (x, y) ∈ E2. On dit que x et y sont orthogonaux, que l’on note x⊥y, si (x | y ) = 0.

• Soit x ∈ E. x est dit unitaire ou normé si ‖x‖ = 1.

• La famille de vecteurs de E, (xi)i∈I , est une famille orthogonale si les vecteurs sont deux à deux
orthogonaux, c’est-à-dire :

∀(i, j) ∈ I2, i 6= j ⇒ (xi |xj ) = 0.

• La famille de vecteurs de E, (xi)i∈I , est une famille orthonormale si la famille est orthogonale et
constituée de vecteurs unitaires, c’est-à-dire :

∀(i, j) ∈ I2, (xi |xj ) = δij .

• Si E est de dimension finie et B = (e1, . . . , en) est une base de E.
B est une base orthogonale/orthonormale si B est une famille orthogonale/orthonormale

Définition (Orthogonalité et vecteurs)

Exemples

1) Dans R
2 muni du produit scalaire usuel. Pour θ ∈ R, uθ = (cos θ, sin θ) et vθ = (− sin θ, cos θ) sont orthogonaux.

2) Dans R
3 muni du produit scalaire usuel :



• (1, 3, 2) et (1,−1, 1) sont orthogonaux

• la base canonique ((1, 0, 0), (0, 1, 0), (0, 0, 1)) est une base orthonormale

3) Dans R
n muni du produit scalaire usuel, la base canonique est une base orthonormale.

4) Sur R2[X ] muni du produit scalaire (P |Q ) =

∫ 1

−1

P (t)Q(t) dt. Alors X⊥X2, car :

(1, X,X2) est-elle une base orthonormale pour ce produit scalaire ?

5) Dans Mn(R) muni du produit scalaire usuel, la base canonique est une base orthonormale.

Attention Deux vecteurs peuvent être orthogonaux pour un produit scalaire sans l’être pour un autre
produit scalaire.

Soit (E, ( · | · )) un espace préhilbertien réel.

1) Soient x et y deux vecteurs E alors : x⊥y ⇔ ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

2) Soit (x1, . . . , xn) une famille orthogonale alors :

∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥

2

=
n∑

i=1

‖xi‖2.

Théorème (de Pythagore)

Soit (E, ( · | · )) un espace préhilbertien réel. Une famille orthogonale de vecteurs non nuls est libre.
Conséquence : une famille orthonormale est libre.

Théorème (Liberté d’une famille orthogonale)



Soit E un espace préhilbertien réel. Soit (e1, . . . , en) une famille libre de E.
Il existe une famille orthonormale (u1, . . . , un) de E telle que

∀k ∈ J1, nK, Vect(e1, . . . , ek) = Vect(u1, . . . , uk).

Elle se calcule par récurrence:





u1 =
e1
‖e1‖

uk+1 =

ek+1 −
k∑

i=1

(ui | ek+1 )ui

∥∥∥∥∥ek+1 −
k∑

i=1

(ui | ek+1 )ui

∥∥∥∥∥

.

Théorème (Procédé d’orthonormalisation de Gram-Schmidt)

Pour construire une bon de F sev de E de dimension finie.

• On détermine une base de F .

• On l’orthonormalise avec le procédé d’orthonormalisation de Gram-Schmidt. Les trois premiers
vecteurs sont :

u1 = u2 = u3 =

P Méthode pratiqueP (Déterminer une base orthonormale)

Tout espace euclidien différent de {0E} possède une base orthonormale.

Corollaire (Existence d’une base orthonormale)

Exercice.

1) Dans R
3 muni du produit scalaire usuel, déterminer une base orthonormée du plan

F = {(x, y, z) ∈ R
3 /2x− y + z = 0}.

2) Dans R2[X ] muni du produit scalaire (P |Q ) =

∫ 1

−1

P (t)Q(t) dt, déterminer une base orthonormale de R2[X ].

Toute famille orthonormée d’un espace euclidien E peut être complétée en une base orthonormée de E.

Théorème (Théorème de la base orthonormée incomplète)



Soit E un espace euclidien. Soit B = (e1, . . . , en) une base orthonormale de E.

1) Coordonnés dans une bon. Soit x ∈ E, alors : x =
n∑

k=1

(x | ek ) ek.

Les coordonnées de x dans la base (e1, . . . , en) sont dinc ((x | e1 ) , . . . , (x | en )).

2) Expression du produit scalaire dans une bon.

Soit (x, y) ∈ E2 avec x =

n∑

k=1

xkek, y =

n∑

k=1

ykek. Alors:

( x | y ) =
n∑

k=1

xkyk ‖x‖ =

√√√√
n∑

k=1

x2
k.

3) Matriciellement, si X = MatB(x) et Y = MatB(y) alors ( x | y ) = X⊤Y et ‖x‖ =
√
X⊤X .

Théorème (Coordonnées, produit scalaire dans une base orthonormale)

Attention Ces formules sont fausses quand la base n’est pas orthonormale.
Exercice.

1) Dans R2[X ] muni du produit scalaire (P |Q ) =

∫ 1

−1

P (t)Q(t) dt. Déterminer les coordonnées de X2 − 2X + 3

dans la base orthonormée trouvée plus haut.



II.2 Sous-espaces vectoriels et orthogonalité

Soient E un espace préhilbertien et F , G deux sous-espaces vectoriels de E.

• Soit u ∈ E. On dit que u est orthogonal à F , noté u⊥F si tout vecteur de F est orthogonal à u
i.e.

∀v ∈ F, (u | v ) = 0.

• On dit que F et G sont orthogonaux, noté F⊥G, si tout vecteur de F est orthogonal à tout
vecteur de G i.e.

∀u ∈ F, ∀v ∈ G, (u | v ) = 0.

Définition (Sous-espace vectoriel et orthogonalité)

Exemples

1) {0E}⊥F , pour tout F sous-espace vectoriel de E.

2) Dans R
2 muni du produit scalaire usuel :

• R× {0}⊥{0} × R

• donner un sous-espace vectoriel orthogonal à F d’équation 2x− 5y = 0.

Soit E un espace préhilbertien.
Soient F et G deux sous-espaces vectoriels de E de familles génératrices respectives (e1, . . . , ep) et
(e′1, . . . , e

′
q) et soit u un vecteur de E.

• u⊥F ⇐⇒ ∀i ∈ J1, pK, (u | ei ) = 0.

• F⊥G ⇐⇒ ∀i ∈ J1, pK, ∀j ∈ J1, qK,
(
ei | e′j

)
= 0.

NB: les familles génératrices (e1, . . . , ep) et (e′1, . . . , e
′
q) ne sont pas forcément des bases.

Théorème (CNS d’orthogonalité à l’aide d’une famille génératrice)

Exercice Dans R
3, muni du produit scalaire usuel, soient F = {(x, y, z) ∈ x − 2y + z = 0} et G = Vect((−1, 2,−1)).

Montrer que F⊥G.

Soit E un espace préhilbertien muni du produit scalaire ( · | · ).

1) Deux sous-espaces vectoriels de E orthogonaux sont en somme directe.

2) Soient F1, . . . , Fp des sous-espaces vectoriels de E deux à deux orthogonaux.

Alors la somme F1+ · · ·+Fp est directe. Cette somme est notée
⊥

⊕ Fi et est appelée somme directe
orthogonale des Fi où i ∈ J1, pK.

Théorème (Orthogonalité et somme directe)



II.3 Orthogonal d’une partie de E

Soit E un espace préhilbertien muni du produit scalaire ( · | · ). Soit A une partie non vide de E.
L’ensemble, noté A⊥, appelé orthogonal de A est l’ensemble des vecteurs de E orthogonaux à tous les
vecteurs de A i.e.

A⊥ = {u ∈ E / ∀v ∈ A, ( v |u ) = 0}.

Définition (Orthogonal d’une partie de E)

Si F et G sont des sev de E : F⊥G ⇔ F ⊂ G⊥ ⇔ G ⊂ F⊥.

Remarques

1) Soit A une partie non vide de E. A⊥ est un sous-espace vectoriel de E.

2) Soit u un vecteur non nul de E. {u}⊥, noté aussi u⊥ est un hyperplan de E.

Théorème (L’orthogonal est un sev)

Soit E un espace préhilbertien muni du produit scalaire ( · | · ). Soit F un sous-espace vectoriel de E.

1) F⊥ et F sont en somme directe.

2) Si F est de dimension finie : F⊥ est un supplémentaire de F dans E orthogonal à F , qui vérifie
donc

F⊥F⊥ F ⊕ F⊥ = E noté aussi F
⊥

⊕ F⊥ = E.

Si E est de dimension finie alors

dimF⊥ = dimE − dimF
(
F⊥
)⊥

= F.

Théorème (Propriétés fondamentales de l’orthogonal d’un s.e.v.)

Exemples

1) Dans R
2 muni du produit scalaire usuel, on considère F = {(x, y) ∈ R

2 / y = 2x}. Déterminer F⊥ et (3, 4)⊥.

2) A connaître : soit E un espace vectoriel préhilbertien.

{0E}⊥ = E⊥ =

3) Dans R2[X ] muni du produit scalaire (P |Q) =

∫ 1

0

P̃ (t)Q̃(t) dt on pose F = Vect(X). Déterminer F⊥.

4) Dans R
4 muni du produit scalaire usuel. On pose u = (1,−1, 2, 0), v = (0, 1, 2, 0) et F = Vect(u, v). Déterminer

une base de F⊥.

On cherche à déterminer F⊥.
Si l’on connaît une famille génératrice (ε1, . . . , εp) de F , alors

x ∈ F⊥ ⇔ ∀k ∈ J1, pK, (x|εk) = 0.

Ce qui ramène à la résolution d’un système de p équations.

P Méthode pratiqueP (Déterminer l’orthogonal d’un sev de dimension finie)



• Caractérisation des hyperplans. Si H est une partie d’un espace euclidien alors H est un hyper-
plan si et seulement s’il existe un vecteur non nul tel que H = u⊥.
u est appelé vecteur normal du plan.

• Lecture d’un vecteur normal sur une équation. Si dans une bon H admet pour équation
a1x1 + · · · anxn = 0 alors u de coordonnées (a1, . . . , an) dans cette bon est un vecteur normal à A.

Remarques (Cas des hyperplans)

II.4 Projecteurs orthogonaux

Soient E un espace préhilbertien muni du produit scalaire ( · | · ) et F un sous-espace vectoriel de E, de
dimension finie.
Dans ce cas F et F⊥ sont supplémentaires dans E, et on appelle projection orthogonale (ou projecteur
orthogonal) sur F , la projection sur F parallèlement à F⊥ :

pF : E = F ⊕ F⊥ → E
u = uF + uF⊥ 7→ pF (u) = uF

.

Définition (Projecteurs othogonaux)

NB : l’application
sF : E = F ⊕ F⊥ → E

u = uF + uF⊥ 7→ pF (u) = uF − uF⊥

est la symétrie orthogonale associée.

Rappel de quelques propriétés d’algèbre linéaire :

Soit E un espace vectoriel euclidien. Soit p un projecteur de E.
p est un projecteur orthogonal si et seulement si Im p⊥Ker p.

Théorème (Caractérisation d’un projecteur orthogonal)

Exercice. Soit A =
1

3




2 −1 −1
−1 2 −1
−1 −1 2


 et p l’endomorphisme canoniquement associé à A. Montrer que p est un

projecteur orthogonal.

Soient E un espace préhilbertien muni du produit scalaire ( · | · ), F un sous-espace vectoriel de E de

dimension finie et (e1, . . . , en) une b.o.n. de F . Soit pF la projection orthogonale sur F .

• Expression de la projection dans une bon :

pour tout u ∈ E, pF (u) =

n∑

k=1

(u | ek ) ek ‖pF (u)‖2 =

n∑

k=1

( u | ek )2.

• Inégalité de Bessel : pour tout u ∈ E, ‖pF (u)‖ 6 ‖u‖.

Théorème (Expression de la projection dans une b.o.n. )



Dans le procédé de Gram-Schmidt, remarquez que le vecteur obtenu à l’étape p+1 avant normalisation est
ep+1 moins le projeté orthogonal de ep+1 sur Vect(u1, . . . , up) :

ep+1 −
p∑

i=1

(ep+1|ui)ui

︸ ︷︷ ︸
pVect(u1,...,up)(ep+1)

.

Remarques (Lien avec le procédé de Gram-Schmidt)

On veut déterminer l’expression du projeté orthogonal d’un vecteur u de E sur F de dimension finie.

• Méthode 1 : on détermine une bon (e1, . . . , en) de F (forcément orthonormale), et on utilise

l’expression du projeté orthogonal du théorème ci-dessus : pF (u) =

n∑

k=1

(u | ek ) ek.

• Méthode 2 : on détermine une base (e1, . . . , en) de F (pas forcément orthonormale), et on
caractérise pF (u) par l’orthogonalité de u− pF (u) aux vecteurs de la base de F (posée au début) :

u− F (u)⊥F ⇔





u− pF (u)⊥e1

. . .

u− pF (u)⊥e1

c’est-à-dire





(u− pF (u) | e1 ) = 0

. . .

(u− pF (u) | en ) = 0

.

Ce qui mène souvent à un système de n équations dont les n inconnues sont les coordonnées de pF (u)
dans la base (e1, . . . , en).

P Méthode pratiqueP (Déterminer l’expression du projeté orthogonal)

Exercice.

1) Dans R3 muni du produit scalaire usuel, déterminer la projection orthogonale de u = (1, 2, 3) sur F = {(x, y, z) ∈
R

3 / x+ y + z = 0}.
Déterminer la matrice de la projection orthogonale sur F .

2) A retenir. Soit E un espace préhilbertien et u un vecteur non nul.

-a- Déterminer l’expression de la projection orthogonale sur la droite Vect(a).

-b- Déterminer l’expression de la projection orthogonale sur l’hyperplan (Vect(a))⊥.

3) Dans R[X ], muni du produit scalaire (P |Q ) =

∫ 1

−1

P (t)Q(t) dt. Déterminer le projeté orthogonal de X3 sur

R2[X ].



Soient E un espace préhilbertien muni du produit scalaire ( · | · ), F un sous-espace vectoriel de E de

dimension finie et u ∈ E.

• On appelle distance de u à F , notée d(u, F ) le réel :

d(u, F ) = min
v∈F

‖u− v‖.

• Si pF désigne la projection orthogonale sur F , alors pF (u) est l’unique vecteur v0 ∈ F tel que

‖u0 − v‖ = min
v∈F

‖u− v‖.

• Conséquences :

d(u, F ) = ‖u− pF (u)‖ d2(u, F ) = ‖u‖2 − ‖pF (u)‖2.

Théorème-Définition (Théorème de minimisation / Distance d’un vecteur à un sev de dim finie)

Exercice. Retour à l’exercice précédent.

1) Dans R
3, u = (1, 2, 3) et F = {(x, y, z) ∈ R

3 / x+ y + z = 0}. Calculer la distance de u à F .

2) Dans R[X ], muni du produit scalaire (P |Q ) =

∫ 1

−1

P (t)Q(t) dt. Calculer la distance de X3 à R2[X ].

3) Un grand classique. Déterminer les valeurs de (a, b, c) telles que

∫ 1

−1

(t3 − at2 − bt− c)2 dt est minimale.

III Savoir-faire

1) Savoir prouver qu’une application est un produit scalaire.

2) Savoir mettre en oeuvre l’inégalité de Cauchy-Schwarz pour prouver une inégalité.

3) Savoir prouver que deux sev sont orthogonaux.

4) Savoir mettre en oeuvre le procédé d’orthonormalisation de Gram-Schmidt (en dimension 2,3 pas plus sans quoi
les calculs peuvent devenir inextricables).

5) Savoir déterminer le projeté orthogonal d’un vecteur par les deux méthodes, en choisissant la meilleure adaptée
au contexte.

6) Résoudre un problème de minimisation.


