CHAPITRE
FESPACES PREHILBERTIENS REELS

C’est un chapitre de révision de PCSI.
Tous les espaces vectoriels de ce chapitre sont des R-espace vectoriels.

Dans ce qui suit, E désigne alors un tel R-espace vectoriel.

I Espaces préhilbertiens

I.1 Produit scalaire

,—[Déﬁnition (Produit scalaire)}

< 3 . p: ExFE — R
a-dire toute application
PP (y) — (z|y)

qui vérifie
(i) bilinéaire :
Y(z,y,2) € B3, YO\, pn) € K2, oAz + py, 2) = dp(z, 2) + po(y, 2) (linéarité a gauche)
V(z,y,2) € %, ¥\, 1) € K?, (@, Ay + pz) = Mp(z, y) + po(e, 2)

(i) symétrique : V(z,y) € E?, ¢(z,y) = ¢(y, z)
(iii) définie: Vax e FE, p(x,2) =0= 2 =0g
(iv) positive: Vze E, ¢(z,z) > 0.

Lorsque E est muni d’un produit scalaire, on dit que F est un espace préhilbertien réel.

e Notation. ¢ est souvent noté (-|-) ou (-, -) ou (-|-).

espace vectoriel euclidien.

e On appelle produit scalaire sur E toute forme bilinéaire, symétrique, définie-positive c’est-

(linéarité a droite).

e Espace euclidien. Un espace vectoriel de dimension finie muni d’un produit scalaire est appelé

Exemples |Pr0duits scalaires usuels a connaitre|

1) Dans Bou?:

v, 7) e (P2, T-7 =27 cos(T, D).
2) Dans R" :

V(z,y) € (R")?, (zly) =) =y o = (T1,...,%Tn), Y= (Y15, Yn)-
i=1

3) Dans C([a,b],R) (oua<b):

b
(f,0) € Cw LR, (flg) = / f(Dg(t)at.

4) Dans M,, ,(R) :
Y(A,B) € (Mup(R):,  (A[B)=Te(ATB) = 3 aiby,

)
1<i<n
1<ji<p



Exercice.

1
1) Montrer que Papplication (P, Q) — / P(t)Q(t) dt est un produit scalaire sur R[X].
-1

+oo
2) Montrer que l'application (P, Q) — P(t)Q(t)e*’52 dt est un produit scalaire sur R[X].

0
,—| Remarques

e La bilinéarité implique que (2 |0g) = (0g |z) = 0 pour tout z € E.
Donc l'implication réciproque de la propriété “définie” est vraie : = 0g = (x|z) = 0.

e Bien noter que : “symétrie” + “linéarité & gauche” = * bilinéarité”.

N\ En pratique N pour montrer la bilinéarité, on prouve d’abord la symétrie, puis la
linéarité & gauche. La bilinéarité en découle.

I.2 Norme

,—[Déﬁnition (Norme)}

e La norme euclidienne sur F associée au produit scalaire (- |-) est I'application
- B = R
z = 2l = v(z]x)
e La distance euclidienne sur E associée au produit scalaire (-|-) est I'application

d: ExE — Ry
(@,y) = |-yl

Exemples ‘Norme euclidienne associée au produit scalaire usuel‘

1) Dans R" :

Vo e R", lz]| = ou x=(21,...,2n).

2) Dans C([a,b],R) :
b
viec(ablR). |If]= / F2(t)dt.

3) Dans M, ,(R) :
VA € M, ,(R), |Al = 1/ Tr(AT A).



f—[Théoréme (Inégalités et égalités fondamentales)}

Soit E un espace préhilbertien muni du ps (- |- ).

1) Homogénéité :
Vo € B, VA eER, IAz|| = |Al||=]|-

2) Séparation :
Vo € E, 2] =0 = 2 = 0g.

3) Identité remarquable (trés utile) :

Yy € B la+yl*=ll=l® +lyll* +2(=]y)}

4) ‘ Inégalité de Cauchy-Schwarz ‘ :

V(w,y) € B2, [(z]y)| <=yl

avec égalité si et seulement si x et y sont colinéaires.

5) Inégalité triangulaire :
V(@,y) € E*,  llz+yll <zl + Iyl

avec égalité si et seulement si x et y sont colinéaires de méme sens.

6) Identité du parallélogramme :
V(z,y) € B%,  lz+yll® + lz = yl* = 20z ]* + lly[*).
7) Identités de polarisation :

V,y) € B2, (zly) =3 (lo+yl” = ll=lI* = llyl*) = 7 (= +yl* = ll= = y]?) -

DN | =
A~ =

I'= Explication =1  Interprétation géométrique.

Inégalité triangulaire Identité du parallélogramme



(—| Remarques N

e Les propriétés 1), 2) et 5) montrent que = — ||z|| est bien une norme sur F, appelée norme euclidienne.

e Les identités de polarisation 7) permettent de retrouver l'expression du produit scalaire a partir de
la norme.

e L’inégalité de Cauchy-Schwarz avec le produit scalaire usuel sur R™ se réécrit, pour tout (z1,...,z,),
(y17 °ooo 7yn> de R’n’

e L’inégalité de Cauchy-Schwarz avec le produit scalaire usuel sur C([a, b], R) se réécrit, pour tout f, g
de C([a,b], R),

(. J

n 2 n
Exercice. Montrer que pour tout (z1,...,2z,) € R™, (Z a:k> <n Z a:ﬁ
k=1

II  Orthogonalité

II.1 Deéfinitions
,—[Déﬁnition (Orthogonalité et vecteurs)} N

Soit (E, (-|-)) un espace préhilbertien réel et || - || est la norme euclidienne associée.
e Soit (x,y) € E2. On dit que x et y sont orthogonaux, que I'on note z Ly, si (z|y) = 0.
e Soit z € E. x est dit unitaire ou normeé si ||z| = 1.

e La famille de vecteurs de E, (z;);cr, est une famille orthogonale si les vecteurs sont deux a deux
orthogonaux, c’est-a-dire :
V(i,j) € I?, i#j= (zi|z;)=0.

e La famille de vecteurs de F, (z;)icr, est une famille orthonormale si la famille est orthogonale et
constituée de vecteurs unitaires, c’est-a-dire :

V(i,§) € I, (=ms|xj) = 6.

e Si E est de dimension finie et B = (eq,...,€e,) est une base de E.
B est une base orthogonale/orthonormale si B est une famille orthogonale/orthonormale

Exemples
1) Dans R? muni du produit scalaire usuel. Pour 6 € R, ug = (cosf,sinf) et vy = (—sin 6, cos ) sont orthogonaux.

2) Dans R? muni du produit scalaire usuel :



e (1,3,2) et (1,—1,1) sont orthogonaux
e la base canonique ((1,0,0), (0,1,0), (0,0, 1)) est une base orthonormale

3) Dans R™ muni du produit scalaire usuel, la base canonique est une base orthonormale.

1
4) Sur Ry[X] muni du produit scalaire (P |Q ) = / Pt)Q(t)dt. Alors X 1 X2 car :
—1
(1, X, X?) est-elle une base orthonormale pour ce produit scalaire ?

5) Dans M,,(R) muni du produit scalaire usuel, la base canonique est une base orthonormale.

& Attention & Deux vecteurs peuvent étre orthogonaux pour un produit scalaire sans l’étre pour un autre
produit scalaire.

f—[Théoréme (de Pythagore)} <

Soit (E, (-|-)) un espace préhilbertien réel.

1) Soient z et y deux vecteurs E alors : zly & |z +yl* = [z + [ly|*
n 2 n
2) Soit (z1,...,%,) une famille orthogonale alors : le = Z Nl )%
i=1 i=1
(S J

Théoréme (Liberté d’une famille orthogonale)}

Soit (B, (-|-)) un espace préhilbertien réel. Une famille orthogonale de vecteurs est libre.
Conséquence : une famille orthonormale est libre.




/—[Théoréme (Procédé d’orthonormalisation de Gram-Schmidt)}

Soit E un espace préhilbertien réel. Soit (ey,...,e,) une famille libre de E.
11 existe une famille orthonormale (u1,...,u,) de E telle que

Vk € [1,n], Vect(e,...,er) = Vect(uy,...,ug).

Elle se calcule par récurrence:

€1
Uy =
lleall
k
ek+1 — Z(Ui | ernt1) us
=1
Uk+1 = &
ek+1 — Z(Ui | ernt1) us

i=1

|

,—[% Méthode pratique N (Déterminer une base orthonormale)}

Pour construire une bon de I sev de E de dimension finie.
e On détermine une base de F'.

e On lorthonormalise avec le procédé d’orthonormalisation de Gram-Schmidt. Les trois premiers
vecteurs sont :

U = Uy = us =

(.

,—[Corollaire (Existence d’une base orthonormale)}

Tout espace euclidien différent de {Og} posséde une base orthonormale.

|

Exercice.

1) Dans R?® muni du produit scalaire usuel, déterminer une base orthonormée du plan
F={(x,y,2) e R® J22 —y + z =0}
1

2) Dans Ry[X] muni du produit scalaire (P |Q ) = / P(t)Q(t) dt, déterminer une base orthonormale de Ry[X].
—1

Théoréme (Théoréme de la base orthonormée incompléte)}

Toute famille orthonormée d’un espace euclidien E peut étre complétée en une base orthonormée de E.




,—[Théoréme (Coordonnées, produit scalaire dans une base orthonormale)} N

Soit E un espace euclidien. Soit B = (ey,...,e,) une base orthonormale de E.
n
1) Coordonnés dans une bon. Soit z € E, alors : i = Z (x|exr)ek.
k=1
Les coordonnées de x dans la base (eq,...,e,) sont dinc ((z|e1),...,(x|ey)).

2) Expression du produit scalaire dans une bon.

n n
Soit (x,y) € E? avec x = Zxkek, Y= Zykek. Alors:
k=1 k=1

n n
($|y)=Z$kyk = = in
k=1 k=1

3) Matriciellement, si X = Matg(z) et Y = Matg(y) alors (z|y) = XY et ||z = VXTX.

& Attention & Ces formules sont fausses quand la base n’est pas orthonormale.
Exercice.

1
1) Dans Ry[X] muni du produit scalaire (P |Q) = / P(t)Q(t) dt. Déterminer les coordonnées de X? — 2X + 3
-1

dans la base orthonormée trouvée plus haut.



I1.2 Sous-espaces vectoriels et orthogonalité

,—(Déﬁnition (Sous-espace vectoriel et orthogonalité)} S

Soient E un espace préhilbertien et F', G deux sous-espaces vectoriels de F.

e Soit u € E. On dit que u est orthogonal & F', noté u_L F' si tout vecteur de F est orthogonal & u
ie.
Yo e F, (u]v)=0.

e On dit que F' et G sont orthogonaux, noté F' 1 G, si tout vecteur de F' est orthogonal a tout
vecteur de G i.e.
VueF, Yve G, (ujv)=0.

Exemples
1) {Og}LF, pour tout F sous-espace vectoriel de E.
2) Dans R? muni du produit scalaire usuel :

e Rx {0}L{0} xR

e donner un sous-espace vectoriel orthogonal & F' d’équation 2x — 5y = 0.

/—[Théoréme (CNS d’orthogonalité a ’aide d’une famille génératrice)} N
Soit E un espace préhilbertien.
Soient F' et G deux sous-espaces vectoriels de E de familles génératrices respectives (e1,...,ep) et
(€1,...,eq) et soit u un vecteur de E.
o ulF < Vie[l,p], (ule;)=0.
o F1G < Vie[l,p], Vie[l,ql, (eilej)=0.
NB: les familles génératrices (e1,...,ep) et (€], ...,e;) ne sont pas forcément des bases.

Exercice Dans R?, muni du produit scalaire usuel, soient F' = {(z,y,2) € x — 2y + 2 = 0} et G = Vect((—1,2,—1)).
Montrer que F1G.

f—[Théoréme (Orthogonalité et somme directe)} <

Soit E' un espace préhilbertien muni du produit scalaire (|- ).

1) Deux sous-espaces vectoriels de F orthogonaux sont en somme directe.

2) Soient Fi, ..., F, des sous-espaces vectoriels de E deux & deux orthogonaux.

1
Alors la somme Fi + - - - 4 F), est directe. Cette somme est notée @ F; et est appelée somme directe
orthogonale des F; ou i € [1, p].




I1.3 Orthogonal d’une partie de F

,—[Déﬁnition (Orthogonal d’une partie de E)} N

Soit E un espace préhilbertien muni du produit scalaire (|- ). Soit A une partie non vide de E.
L’ensemble, noté AL, appelé orthogonal de A est I’ensemble des vecteurs de E orthogonaux a tous les
vecteurs de A i.e.

At ={ucE/WweA, (v|u)=0}

,—| Remarques <
Si F et G sont des sev de F : F1G& FcCcGte GcFL
/—[Théoréme (L’orthogonal est un sev)} <

1) Soit A une partie non vide de E. AL est un sous-espace vectoriel de E.

2) Soit u un vecteur non nul de E. {u}*, noté aussi u" est un hyperplan de E.

| J

f—[Théoréme (Propriétés fondamentales de ’orthogonal d’un s.e.v.)} N

Soit E un espace préhilbertien muni du produit scalaire (-|-). Soit F' un sous-espace vectoriel de E.

1) F* et F sont en somme directe.

2) | Si F' est de dimension finie | : F* est un supplémentaire de F dans E orthogonal a F, qui vérifie
donc

1
F1F+ FOFL=FE notéaussi F® FL=E.

| Si F est de dimension finie | alors

dim F+ = dim E — dim F (FH)' =F.

Exemples
1) Dans R? muni du produit scalaire usuel, on considére F = {(z,y) € R? /y = 2z}. Déterminer F'* et (3,4)L.
2) A connaitre : soit E un espace vectoriel préhilbertien.

{0g}t = Et+ =
1 ~ ~
3) Dans Ro[X] muni du produit scalaire (P|Q) = / P(t)Q(t) dt on pose F = Vect(X). Déterminer F+.
0

4) Dans R* muni du produit scalaire usuel. On pose u = (1,—1,2,0), v = (0,1,2,0) et F = Vect(u,v). Déterminer
une base de F*.

f—[% Méthode pratique N (Déterminer ’orthogonal d’un sev de dimension ﬁnie)%

On cherche & déterminer F.
Si l’on connait une famille génératrice (¢1,...,&,) de F, alors

reFtavke[l,p], (zlex)=0.

Ce qui raméne & la résolution d’un systéme de p équations.




,—(Remarques (Cas des hyperplans)} N

e Caractérisation des hyperplans. Si H est une partie d’un espace euclidien alors H est un hyper-
plan si et seulement sl existe un vecteur non nul tel que H = u'.

u est appelé vecteur normal du plan.

e Lecture d’un vecteur normal sur une équation. Si dans une bon H admet pour équation
a1x1 + - - anxy, = 0 alors u de coordonnées (aq,...,a,) dans cette bon est un vecteur normal a A.

1I.4 Projecteurs orthogonaux

,—(Déﬁnition (Projecteurs othogonaux)} N

Soient F un espace préhilbertien muni du produit scalaire (-|-) et F un sous-espace vectoriel de E, de
dimension finie.

Dans ce cas F et F* sont supplémentaires dans F, et on appelle projection orthogonale (ou projecteur
orthogonal) sur F, la projection sur F parallélement a F* :

pr: E=F¢oFL — E
u=up+upr +— ppu)=up

sp: E=Fa@Ft = E

est la symétrie orthogonale associée.
u=upt+upr = ppu)=up—ups

NB : ’application

Rappel de quelques propriétés d’algébre linéaire :

Théoréme (Caractérisation d’un projecteur orthogonal)}

Soit E un espace vectoriel euclidien. Soit p un projecteur de E.
p est un projecteur orthogonal si et seulement si Im p_| Ker p.

2 -1 -1
Exercice. Soit A== -1 2 —1] et pl’endomorphisme canoniquement associé a A. Montrer que p est un
-1 -1 2
projecteur orthogonal.

r—[Théoréme (Expression de la projection dans une )} ~

Soient E un espace préhilbertien muni du produit scalaire (-|-), F' un sous-espace vectoriel de E de
dimension finie et (eq,...,e,) une de F'. Soit pr la projection orthogonale sur F.

e Expression de la projection dans une bon :

n n

pour tout u € E, pr(u) = (uler)ex ||pF(u)||2:Z(u|ek)2.
k=1 k=1

e Inégalité de Bessel : pour tout u € E, ||pp(u)| < ||u.




f—[Remarques (Lien avec le procédé de Gram—Schmidt)} N

Dans le procédé de Gram-Schmidt, remarquez que le vecteur obtenu a I’étape p+ 1 avant normalisation est

ep+1 moins le projeté orthogonal de e,y sur Vect(uq, ..., up) :
P

€p+1 — Z(ep-&-l‘ui)uz
i=1

DVect(uy,...,up) (€p+1)

(. J

,—[% Méthode pratique N (Déterminer ’expression du projeté orthogonal)} ~

On veut déterminer I'expression du projeté orthogonal d’un vecteur u de E sur F' de dimension finie.

e Méthode 1 : on détermine une bon (eq,...,e,) de F (forcément orthonormale), et on utilise
n
I’expression du projeté orthogonal du théoréme ci-dessus : Z ule)
k=1
e Méthode 2 : on détermine une base (e1,...,e,) de F' (pas forcément orthonormale), et on

caractérise pp(u) par Uorthogonalité de u — pp(u) aux vecteurs de la base de F' (posée au début) :

u—pr(u)les (u—pr(u)|er)=0
u—Fu)lF & (... c’est-a-dire
u—pr(u)Lle; (u—pr(u)|e,) =0
Ce qui méne souvent & un systéme de n équations dont les n inconnues sont les coordonnées de pp(u)
dans la base (e1,...,ep).
Exercice.

1) Dans R? muni du produit scalaire usuel, déterminer la projection orthogonale de u = (1,2,3) sur F = {(z,y, 2) €
R?/z+y+2z=0}
Déterminer la matrice de la projection orthogonale sur F'.
2) A retenir. Soit F un espace préhilbertien et u un vecteur non nul.
-a- Déterminer 1’expression de la projection orthogonale sur la droite Vect(a).
-b- Déterminer I’expression de la projection orthogonale sur I'hyperplan (Vect(a))= .

3) Dans R[X], muni du produit scalaire (P|Q) / P(t)Q(t) dt. Déterminer le projeté orthogonal de X3 sur
Ry [X].



/—[Théoréme-Déﬁnition (Théoréme de minimisation / Distance d’un vecteur a un sev de dim ﬁnie)]

Soient E un espace préhilbertien muni du produit scalaire (-|-), F un sous-espace vectoriel de E de

| dimension finie | et u € E.

e On appelle distance de u & F, notée d(u, F') le réel :

d(u, F') = mi — .
(u, F) = min u — o]

e Si pp désigne la projection orthogonale sur F, alors pp(u) est unique vecteur vg € F tel que

luo = vl = min [lu —o]|.

e Conséquences :

d(u, F) = [lu = pr(u)]| d*(u, F) = [Jull* — [lpr(u)]*.

Exercice. Retour a l’exercice précédent.

1) Dans R, u=(1,2,3) et F = {(z,y,2) € R3 /x +y + z = 0}. Calculer la distance de u & F.
1
2) Dans R[X], muni du produit scalaire (P |Q ) = / P(t)Q(t) dt. Calculer la distance de X3 a Ry[X].

~1
1

3) Un grand classique. Déterminer les valeurs de (a, b, ) telles que / (t* — at* — bt — ¢)? dt est minimale.
~1

IIT Savoir-faire

Savoir prouver qu’'une application est un produit scalaire.
Savoir mettre en oeuvre I'inégalité de Cauchy-Schwarz pour prouver une inégalité.
Savoir prouver que deux sev sont orthogonaux.

Savoir mettre en oeuvre le procédé d’orthonormalisation de Gram-Schmidt (en dimension 2,3 pas plus sans quoi
les calculs peuvent devenir inextricables).

5) Savoir déterminer le projeté orthogonal d’un vecteur par les deux méthodes, en choisissant la meilleure adaptée
au contexte.

6) Résoudre un probléme de minimisation.



