
Chapitre
Endomorphismes remarquabes

des espaces euclidiens

Dans tout ce chapitre E est un espace vectoriel euclidien soit un R-espace vectoriel de dimension finie muni du
produit scalaire ( · | · ) et la norme euclidienne associée est notée ‖ · ‖.

I Isométries vectorielles

I.1 Définition et caractérisations

Un endomorphisme f de l’espace euclidien E est une isométrie vectorielle s’il conserve la norme i.e. :

∀x ∈ E, ‖f(x)‖ = ‖x‖.

L’ensemble des isométries vectorielles de E est noté O(E).

Définition (Isométrie vectorielle)

Exemples

1) IdE et, − IdE sont des symétries vectorielles.

2) Une symétrie orthogonale est une isométrie vectorielle.
Cas particulier des réflexions : symétries vectorielles par rapport à un hyperplan.

3) Une projection orthogonale n’est (en général) pas une isométrie.

Un endomorphisme f de E est une isométrie vectorielle si, et seulement si, il conserve le produit scalaire
i.e. :

∀(x, y) ∈ E, ( f(x) | f(y) ) = (x | y ) .

Théorème (Caractérisation par la conservation du produit scalaire)

Exercice Soit a un vecteur de norme 1 d’un espace euclidien E. On pose s : x 7→ x− 2(x|a)a.
Montrer que s est une isométrie vectorielle. Reconnaissez-vous cette isométrie?



Soit f un endomorphisme de E. Les propriétés suivantes sont équivalentes :

(i) f est une isométrie vectorielle de E

(ii) pour toute base orthonormée B = (e1, . . . , en), f(B) = (f(e1), . . . , f(en)) est une base orthonormée

(iii) il existe une base orthonormée B = (e1, . . . , en) telle que f(B) = (f(e1), . . . , f(en)) est une base
orthonormée.

Théorème (Caractérisation par l’image d’une base orthonormée)

I.2 Propriétés des isométries

• Soient f, g deux isométries vectorielles de E. Alors :

1) f est un automorphisme de E et f−1 est une isométrie vectorielle

2) f ◦ g est une isométrie vectorielle de E.

• Autrement dit, O(E) est un sous-ensemble du groupe linéaire GL(E), stable par composition et par
passage à la réciproque. On l’appelle groupe orthogonal de E. Les éléments de O(E) sont parfois
appelés automorphismes orthogonaux.

Théorème-Définition (Groupe-Orthogonal)

Soit f ∈ O(E). Si λ est une valeur propre réelle de f alors λ ∈ {−1, 1}.
Attention : f peut aussi admettre des valeurs propres complexes non réelles.

Proposition (Valeurs propres réelles d’une isométrie)

Soit f ∈ O(E) et F un sous-espace vectoriel de E stable par f .
Alors :

• F⊥ est stable par f

• De plus, les endomorphismes induits par f sur F et F⊥ sont encore des isométries.

Théorème (Stabilité de l’orthogonal d’un sous-espace stable)

II Matrices orthogonales

II.1 Définitions et premières caractérisations

Une matrice de Mn(R) est orthogonale lorsque l’endomorphisme de R
n qui lui est canoniquement associé

est une isométrie vectorielle de R
n.

L’ensemble des matrices orthogonales de Mn(R) est noté On(R) ou O(n).

Définition (Matrice orthogonale)

Soit M ∈ Mn(R). Les propositions suivantes sont équivalentes :

(i) M est une matrice orthogonale;

(ii) les colonnes de M forment une base orthonormale de Mn1(R);

(iii) MMT = In ou MTM = In;

(iv) les lignes de M forment une base orthonormale de M1n(R).

Théorème (Caractérisation des matrices orthogonales)



Exemple

1) A =







1 0 0

0
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




est une matrice orthogonale.

2) Déterminer a, b, c, d, e, f tels que A =





a b d
a c e
a 0 f



 soit orthogonale.

Soit M ∈ On(R). Alors M est inversible et M−1 = M⊤.

Corollaire (Inversibilité d’une matrice orthogonale)

Exemple L’inverse de A =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

qui est orthogonale est

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

.

II.2 Caractérisations

Soit B une base orthonormée de E et C une autre base de E. Notons P la matrice de passage de B à C.
Alors C est une base orthonormée si et seulement si P est une matrice orthogonale.

Théorème (Caracérisation comme matrice de passage entre bases orthonormée)

Soit f un endomorphisme d’un espace euclidien E et B une base orthonormée de E.
f est une isométrie vectorielle si et seulement si MatB(f) orthogonale.

Théorème (caractérisation matricielle d’une isométrie vectorielle)

Exercice Dans R
3 on pose F = {(x, y, z) ∈ R

3 /2x+ y − z = 0}.
Déterminer la matrice de la réflexion par rapport à F .

II.3 Propriétés des matrices orthogonales

• Soient M,N deux matrices de On(R). Alors :

1) M−1 ∈ On(R) 2) MN ∈ On(R).

• Autrement dit, On(R) est un sous-ensemble du groupe linéaire GLn(R), stable par produit et par
inverse. On l’appelle groupe orthogonal d’ordre n.

Théorème-Définition (Groupe orthogonal d’ordre n)

Soit M ∈ On(R). Alors det(M) = 1 ou det(M) = −1.

Proposition (Déterminant d’une matrice orthogonal)

Attention Une matrice A tel que det(A) = ±1 n’est en général pas une matrice orthogonale. Exemple :

A =

(

1 1
0 1

)

.

Exemple Que vaut le déterminant d’une réflexion orthogonale ?

On note SOn(R) ou SO(n) l’ensemble des matrices orthogonales dont le déterminant vaut 1.

Définition (Groupe spécial orthogonal)



• Soient M,N deux matrices SOn(R). Alors :

1) M−1 ∈ SOn(R) 2) MN ∈ SOn(R).

• Autrement dit, SOn(R) est un sous-ensemble du groupe orthogonal On(R), stable par produit et par
inverse. On l’appelle groupe orthogonal d’ordre n.

Théorème-Définition (Groupe spécial orthogonal d’ordre n)

II.4 Orientation

• Soient E un espace euclidien et B, B′ deux bases orthonormées.
Deux cas :

– ou bien detB(B
′) = 1, alors on dit que B et B′ ont même orientation

– ou bien detB(B
′) = −1 alors on dit que B et B′ sont d’orientation contraire.

• Orienter un espace euclidien c’est choisir l’une de ses bases orthonormales comme base de
référence. Toutes les bases orthonormales de même orientation que celle-ci sont alors dites orthonor-
males directes, les autres orthonormales indirectes.

Théorème-Définition (Orienter un espace euclidien)

III Isométries vectorielles d’un plan euclidien

Dans cette section E désigne un plan euclidien orienté.

• Soit M ∈ O2(R). Alors il existe θ ∈ R (unique à 2π près) tel que M =

(

cos θ − sin θ
sin θ cos θ

)

.

On note R(θ) cette matrice.

• Soit M ∈ O2(R) \ SO2(R). Alors il existe θ ∈ R (unique à 2π près) tel que M =

(

cos θ sin θ
sin θ − cos θ

)

.

Théorème (Matrices de O2(R) et SO2(R))

• ∀(θ, θ′) ∈ R
2, R(θ)R(θ′) = R(θ + θ′).

• Conséquence : SO2(R) est commutatif. C’est-à-dire

∀(M,N) ∈ (SO2(R))
2, MN = NM.

Propriétés (SO2(R) est commutatif)

Soit f ∈ SO(E).

• Il existe θ ∈ R (unique à 2π près) tel que, dans toute base orthonormale directe de E, la matrice de
f est R(θ).

• Pour x ∈ R, ( x | f(x) ) = cos θ‖x‖2. θ est une mesure de l’angle entre x et f(x).

• On dit que f est la rotation d’angle θ.

Théorème-Définition (Caractérisation des éléments de SO(E) : rotations vectorielles planes)

Exemple Soit f l’endomorphisme dont la matrice dans la base canonique est

(

−
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)

. Décrire f .



Soit f ∈ O(E) \ SO(E).
Alors f est une réflexion c’est-à-dire une symétrie orthogonale par rapport à un hyperplan, ici la droite
Ker(f − IdE).

Théorème-Définition (Caractérisation des éléments de O(E) \ SO(E) : réflexions)

Toute isométrie est soit une rotation, soit une réflexion.

Corollaire (Caractérisations des éléments de O(E))

Exercice

1) Que dire de la composée de deux rotations? De la composée de deux réflexions?

2) Montrer que toute rotation est la composée de deux symétries.

IV Endomorphismes autoadjoints

IV.1 Définitions et premières propriétés

Un endomorphisme f de l’espace euclidien E est dit autoadjoint s’il vérifie

∀(x, y) ∈ E2, (f(x)|y) = (x|f(y)).

On note S(E) leur ensemble.

Définition (Endomorphisme autoadjoint)

NB : note du programme officiel : "on mentionne aussi la terminologie endomorphisme symétrique, tout en lui
préférant celle d’endomorphisme autoadjoint".

Exemple L’application identité, IdE , et plus généralement les homothéties de E, λ IdE où λ ∈ R sont des endo-
morphismes autoadjoints.

L’ensemble des endomorphismes autoadjoints, S(E) est un sous-espace vectoriel de L(E).

Proposition

Soit p un projecteur de E.
Alors p est est un projecteur orthogonal si et seulement si il est autoadjoint.

Théorème (Caractérisation des projecteurs orthogonaux)

Exemple Soit f l’endomorphisme dont la matrice dans la base canonique est A =
1

6





5 −2 −1
−2 2 −2
−1 −2 5



. Monter que

f est une projection orthogonale dont on déterminera l’image.



Soient f un endomorphisme de l’espace euclidien de E et B une base orthonormée de E.
On pose A = MatB(f). Alors

f autoadjoint ⇔ A⊤ = A.

Théorème (Caractérisation matricielle des endomorphismes autoadjoints)

Attention L’hypothèse base orthonormée est importante. En général, si B n’est pas orthonormée

• la matrice d’un endomorphisme autoadjoint n’est pas symétrique

• si MatB(f) est symétrique alors f n’est pas nécessairement autoadjoint.

Exemple Soit E = Rn[X ] muni du produit scalaire (P |Q) =

∫ 1

−1

P (t)Q(t)dt et f : P 7→ (X2 − 1)P ′′ + 2XP ′.

f est un endomorphisme autoadjoint. Sa matrice dans la base canonique n’est pas symétrique (car la base canonique
n’est pas orthonormale)

Pour la démonstration du théorème on a besoin de ces deux lemmes, qui peuvent être utiles dans d’autres situations.

Si f est un endomorphisme autoadjoint de l’espace euclidien E et M sa matrice dans une base orthonormée,
alors

∀(x, y) ∈ E2, (f(x)|y) = X⊤MY où X = MatB(x), Y = MatB(y).

Lemme (1 - Expression de (f(x)|y))

L’unique matrice M ∈ Mn(R) vérifiant

∀(X,Y ) ∈ Mn1(R)
2, X⊤MY = 0

est la matrice nulle.

Lemme (2 - Caractérisation d’une matrice nulle)

IV.2 Réduction des endomorphismes autoadjoints

L’objectif de ce paragraphe est de d’obtenir le très important "théorème spectral" stipulant la diagonalisabilité des
endomorphismes autoadjoints, et des matrices symétriques.

Soit f un endomorphisme autoadjoint de l’espace euclidien E.
Les sous-espaces propres de f sont deux à deux orthogonaux.

Proposition (Orthogonalité des sous-espaces propres)

La démonstration du théorème spectral se fait par récurrence. L’hérédité nécessite le résultat suivant.

Soient f un endomorphisme autoadjoint de l’espace euclidien E et F un sous-espace vectoriel de E. Alors

• l’espace F⊥ est stable par f

• les endomorphismes induits par f sur F et F⊥ sont autoadjoints.

Proposition (Stabilité de sev par un endomorphisme autoadjoint)

Pour amorcer la récurrence, on a besoin de choisir un sous-espace propre de f et de s’assurer que f admet au moins
une valeur propre. La proposition suivante est utile.



Soit f un endomorphisme autoadjoint de l’espace euclidien E.
Son polynôme caractéristique est scindé sur R.

Proposition

Soit f un endomorphisme autoadjoint de l’espace euclidien E.
Alors f est diagonalisable dans une base orthonormée, c’est-à-dire qu’il existe une base orthonormée
B de vecteurs propres telle que MatB(f) est diagonale.

Théorème (Théorème spectral : diagonalisation des endomorphismes autoadjoints)

Soit A une matrice symétrique réelle.
Il existe une matrice orthogonale P ∈ On(R) telle que la matrice D = P⊤AP = P−1AP soit diagonale.

Théorème (Théorème spectral : diagonalisation des matrices symétriques réelles)

Exemple

1) Soit A =

(

1 −1
−1 2

)

. A est-elle diagonalisable? Si oui, la diagonaliser.

2) Soit B =





a b b
b a b
b b a



 où (a, b) ∈ R
2. Montrer que A est diagonalisable. La diagonaliser dans le cas a = −2,

b = 1.

Attention Ce résultat ne s’applique qu’aux matrices symétriques réelles. Par exemple, la matrice symétrique
(

1 i
i −1

)

n’est pas diagonalisable.

En effet :

IV.3 Endomorphismes autoadjoints positifs

Soit f un endomorphisme autoadjoint de l’espace euclidien E.

• On dit que f est positif si : ∀x ∈ E, (f(x)|x) > 0.
On note S+(E) leur ensemble.

• On dit que f est défini-positif si : ∀x ∈ E \ {0E}, (f(x)|x) > 0.
On note S++(E) leur ensemble.

Définition (Endomorphismes autoadjoints positifs)

Exercice - A savoir refaire. Soit f un endomorphisme autoadjoint de l’espace euclidien E. On note a sa plus
petite valeur propre.
Montrer que : ∀x ∈ E, (f(x)|x) > a‖x‖2.

P En pratiqueP L’égalité (f(x)|x) =

n
∑

i=1

λix
2
i

ou sa version matricielle X⊤MX =

n
∑

i=1

λix
2
i

rencontrée en

cours de route est très utile dans de nombreux exercices et à savoir redémontrer.



Soit f un endomorphisme autoadjoint de l’espace euclidien E.

• f est positif si et seulement si Sp(f) ⊂ R+.

• f est défini-positif si et seulement si Sp(f) ⊂ R
∗
+.

Théorème (Caractérisation spectrale)

Soit A ∈ Mn(R) une matrice symétrique.

• On dit que A est positive si : ∀X ∈ Mn1(R), X
⊤AX > 0.

On note S+
n
(R) leur ensemble.

• On dit que A est définie-positive si : ∀X ∈ Mn1(R) \ {On1}, X
⊤AX > 0.

On note S++
n (R) leur ensemble.

Définition (Matrices symétriques positives)

Soit A ∈ Mn(R) une matrice matrice symétrique.

• A est positive si et seulement si Sp(A) ⊂ R+.

• A est définie-positive si et seulement si Sp(A) ⊂ R
∗
+.

Théorème (Caractérisation spectrale)

D’où le lien immédiat entre ces deux notions.

Soient f un endomorphisme autoadjoint de l’espace euclidien E, B une base orthonormée de E.
On pose A = MatB(f). Alors

f positif (resp. défini-positif) ⇐⇒ A positive (resp. définie-postive).

Théorème (Equivalence matrices/endomorphisme positifs)

Exercice

1) A quelles conditions sur a, b réels la matrice A =





a b b
b a b
b b a



 est-elle symétrique définie positive?

2) Racine carrée d’un endomorphisme autoadjoint positif. Montrer que tout endomorphisme autoadjoint positif f
peut s’écrire f = g2 où g est aussi un endomorphisme autoadjoint positif.


