CHAPITRE

ENDOMORPHISMES REMARQUABES
DES ESPACES EUCLIDIENS

Dans tout ce chapitre E est un espace vectoriel euclidien soit un R-espace vectoriel de dimension finie muni du
produit scalaire (-|-) et la norme euclidienne associée est notée || - ||.

I Isométries vectorielles

I.1 Deéfinition et caractérisations

f—[Déﬁnition (Isométrie vectorielle)} <

Un endomorphisme f de ’espace euclidien E est une isométrie vectorielle s’il conserve la norme i.e. :
Ve e E, |[f@)] =zl

L’ensemble des isométries vectorielles de E est noté O(E).

Exemples

1) Idg et, —Idg sont des symétries vectorielles.

2) Une symétrie orthogonale est une isométrie vectorielle.
Cas particulier des réflexions : symétries vectorielles par rapport & un hyperplan.

3) Une projection orthogonale n’est (en général) pas une isométrie.

Théoréme (Caractérisation par la conservation du produit scalaire)}

Un endomorphisme f de E est une isométrie vectorielle si, et seulement si, il conserve le produit scalaire
ie. :

V(z,y) € E, (f(@)|fy)) = (z]y).

Exercice Soit a un vecteur de norme 1 d’un espace euclidien E. On pose s :  — = — 2(z|a)a.
Montrer que s est une isométrie vectorielle. Reconnaissez-vous cette isométrie?



,—[Théoréme (Caractérisation par I’image d’une base orthonormée)J <

Soit f un endomorphisme de E. Les propriétés suivantes sont équivalentes :

(i) f est une isométrie vectorielle de E

(ii) pour toute base orthonormée B = (e1,...,en), f(B) = (f(e1),. .., f(en)) est une base orthonormée
(iii) il existe une base orthonormée B = (eq,...,e,) telle que f(B) = (f(e1),..., f(en)) est une base
orthonormeée.

1.2 Propriétés des isométries

f—[Théoréme-Déﬁnition (Groupe-Orthogonal)} <

e Soient f, g deux isométries vectorielles de E. Alors :

1) f est un automorphisme de F et f~! est une isométrie vectorielle
2) f o g est une isométrie vectorielle de E.

e Autrement dit, O(F) est un sous-ensemble du groupe linéaire GL(F), stable par composition et par
passage a la réciproque. On Pappelle groupe orthogonal de E. Les éléments de O(FE) sont parfois

appelés automorphismes orthogonaux.
(. J

f—[Proposition (Valeurs propres réelles d’une isométrie)} N

Soit f € O(E). Si A est une valeur propre réelle de f alors A € {—1,1}.
Attention : f peut aussi admettre des valeurs propres complexes non réelles.

(S J

f—[Théoréme (Stabilité de I’orthogonal d’un sous-espace stable)} N

Soit f € O(E) et F un sous-espace vectoriel de E stable par f.
Alors :

o [ est stable par f

e De plus, les endomorphismes induits par f sur F et F'- sont encore des isométries.

II Matrices orthogonales

I1.1 Deéfinitions et premiéres caractérisations

,—[Déﬁnition (Matrice orthogonale)} <

Une matrice de M,,(R) est orthogonale lorsque 'endomorphisme de R™ qui lui est canoniquement associé
est une isométrie vectorielle de R™.
L’ensemble des matrices orthogonales de M,,(R) est noté O, (R) ou O(n).

(. J

f—[Théoréme (Caractérisation des matrices orthogonales)} N

Soit M € M,,(R). Les propositions suivantes sont équivalentes :

(i) M est une matrice orthogonale;

(ii) les colonnes de M forment une base orthonormale de M1 (R);
i) MMT =1, ou MTM = I,;
)

(iii
(iv) les lignes de M forment une base orthonormale de M1y, (R).




1 0 0

1) A= |0 @ —% est une matrice orthogonale.
0 L 3
2 2

a b d
2) Déterminer a, b, c,d, e, f tels que A= |a ¢ e | soit orthogonale.
a 0 f

Corollaire (Inversibilité d’une matrice orthogonale)}

Soit M € O, (R). Alors M est inversible et M1 = M.

” ~ (cos(f) —sin(0) . [ cos(8) sin(8)
Exemple L’'inverse de A = (sin(b‘) cos(8) qui est orthogonale est | sin(9) cos(d) )

I1.2 Caractérisations

/—[Théoréme (Caracérisation comme matrice de passage entre bases orthonormée)%

Soit B une base orthonormée de E et C une autre base de E. Notons P la matrice de passage de B a C.
Alors C est une base orthonormée si et seulement si P est une matrice orthogonale.

| J

f—[Théoréme (caractérisation matricielle d’une isométrie vectorielle)} N

Soit f un endomorphisme d’un espace euclidien E et B une base orthonormée de F.
f est une isométrie vectorielle si et seulement si Matg(f) orthogonale.

(S J

Exercice Dans R3 on pose F' = {(z,y,2) € R® /2z +y — 2 = 0}.
Déterminer la matrice de la réflexion par rapport a F'.

I1.3 Propriétés des matrices orthogonales

,—[Théoréme-Déﬁnition (Groupe orthogonal d’ordre n)} <

e Soient M, N deux matrices de O,(R). Alors :

1) M~' € 0,(R) 2) MN € O,(R).

e Autrement dit, O,(R) est un sous-ensemble du groupe linéaire GL,,(R), stable par produit et par
inverse. On ’appelle groupe orthogonal d’ordre n.

(S J

,—[Proposition (Déterminant d’une matrice orthogonal)} N

Soit M € O,(R). Alors det(M) =1 ou det(M) = —1.

& Attention & Une matrice A tel que det(A) = +1 n’est en général pas une matrice orthogonale. Exemple :
A 11
—\0 1)’

Exemple Que vaut le déterminant d’une réflexion orthogonale 7

Définition (Groupe spécial orthogonal)}

On note SO, (R) ou SO(n) I'ensemble des matrices orthogonales dont le déterminant vaut 1.




,—[Théoréme-Déﬁnition (Groupe spécial orthogonal d’ordre n)} N

e Soient M, N deux matrices SO, (R). Alors :

1) M~ € SO, (R) 2) MN € SO, (R).

e Autrement dit, SO,,(R) est un sous-ensemble du groupe orthogonal O,,(R), stable par produit et par
inverse. On ’appelle groupe orthogonal d’ordre n.

IT.4 Orientation

f—[Théoréme-Déﬁnition (Orienter un espace euclidien)} N

e Soient F un espace euclidien et B, B’ deux bases orthonormeées.
Deux cas :
— ou bien detg(B’) = 1, alors on dit que B et B’ ont méme orientation
— ou bien detg(B’) = —1 alors on dit que B et B’ sont d’orientation contraire.
e Orienter un espace euclidien c’est choisir I'une de ses bases orthonormales comme base de

référence. Toutes les bases orthonormales de méme orientation que celle-ci sont alors dites orthonor-
males directes, les autres orthonormales indirectes.

III Isométries vectorielles d’un plan euclidien

Dans cette section E désigne un plan euclidien orienté.

f—[Théoréme (Matrices de O2(R) et SOQ(R))J N

. . . . N N __ (cosf —sind
e Soit M € O3(R). Alors il existe § € R (unique a 27 prés) tel que M = (sin0 030 >

On note R(0) cette matrice.

e Soit M € O5(R) \ SO5(R). Alors il existe # € R (unique & 27 prés) tel que M = (COS@ S )

sinf —cosf

(S J

f—[Propriétés (SO2(R) est commutatif )} N

o V(0,0') € R?, R(O)R(Y') = R(O+0").
e Conséquence : SO3(R) est commutatif. C’est-a-dire

Y(M,N) € (SO2(R))?, MN = NM.

(S J

,—[Théoréme-Déﬁnition (Caractérisation des éléments de SO(E) : rotations vectorielles planes)}\

Soit f € SO(E).

o Il existe § € R (unique a 27 prés) tel que, dans toute base orthonormale directe de E, la matrice de

f est R(0).
e Pour z € R, (z| f(x)) = cosf||z||?. 0 est une mesure de I'angle entre z et f(z).

e On dit que f est la rotation d’angle 6.

V2 V2
Exemple Soit f ’endomorphisme dont la matrice dans la base canonique est ( \/52 \%) Décrire f.
2 2



f—[Théoréme-Déﬁnition (Caractérisation des éléments de O(E) \ SO(E) : réﬂexions)%

Soit f € O(E) \ SO(E).
Alors f est une réflexion c’est-a-dire une symétrie orthogonale par rapport & un hyperplan, ici la droite
Ker(f — Idg).

(S J

f—[Corollaire (Caractérisations des éléments de O(E))} N

Toute isométrie est soit une rotation, soit une réflexion.

Exercice

1) Que dire de la composée de deux rotations? De la composée de deux réflexions?

2) Montrer que toute rotation est la composée de deux symétries.

IV  Endomorphismes autoadjoints

IV.1 Deéfinitions et premiéres propriétés

,—(Déﬁnition (Endomorphisme autoadjoint)} N

Un endomorphisme f de I’espace euclidien E est dit autoadjoint s’il vérifie

V(z,y) € %, (f(2)ly) = (z|f(y)).

On note S(E) leur ensemble.

(. J

NB : note du programme officiel : "on mentionne aussi la terminologie endomorphisme symétrique, tout en lui
préférant celle d’endomorphisme autoadjoint".

Exemple L’application identité, Idg, et plus généralement les homothéties de E, AIdg ou A € R sont des endo-
morphismes autoadjoints.

(—| Proposition N

L’ensemble des endomorphismes autoadjoints, S(F) est un sous-espace vectoriel de L(E).

(S J

/—[Théoréme (Caractérisation des projecteurs orthogonaux)} N

Soit p un projecteur de E.
Alors p est est un projecteur orthogonal si et seulement si il est autoadjoint.

5 -2 -1
1
Exemple Soit f ’endomorphisme dont la matrice dans la base canonique est A = 6 —2 2 —2]. Monter que
-1 -2 5

f est une projection orthogonale dont on déterminera 'image.



Théoréme (Caractérisation matricielle des endomorphismes autoadjoints)}

Soient f un endomorphisme de l'espace euclidien de E et B une base orthonormée de E.
On pose A = Matp(f). Alors
f autoadjoint < AT = A.

& Attention & L’hypothése base orthonormeée est importante. En général, si B n’est pas orthonormée
e la matrice d’'un endomorphisme autoadjoint n’est pas symétrique

e si Matp(f) est symétrique alors f n’est pas nécessairement autoadjoint.

1
Exemple Soit F = R,[X] muni du produit scalaire (P|Q) = / PHQ(t)dt et f: P (X2 —1)P"+2XP'.
-1

f est un endomorphisme autoadjoint. Sa matrice dans la base canonique n’est pas symétrique (car la base canonique
n’est pas orthonormale)

Pour la démonstration du théoréme on a besoin de ces deux lemmes, qui peuvent étre utiles dans d’autres situations.

,—[Lemme (1 - Expression de (f(x)|y))} N
Si f est un endomorphisme autoadjoint de 1’espace euclidien F et M sa matrice dans une base orthonormée,
alors

V(z,y) € B, (f(z)ly) = X MY ol X = Matg(z), Y = Matg(y).
,—[Lemme (2 - Caractérisation d’une matrice nulle)} <

L’unique matrice M € M, (R) vérifiant
Y(X,Y) € Mnyi(R)2, XTMY =0

est la matrice nulle.

IV.2 Reéduction des endomorphismes autoadjoints

L’objectif de ce paragraphe est de d’obtenir le trés important "théoréme spectral" stipulant la diagonalisabilité des
endomorphismes autoadjoints, et des matrices symétriques.

Proposition (Orthogonalité des sous-espaces propres)}

Soit f un endomorphisme autoadjoint de 1’espace euclidien E.
Les sous-espaces propres de f sont deux a deux orthogonaux.

La démonstration du théoréme spectral se fait par récurrence. L’hérédité nécessite le résultat suivant.

f—[Proposition (Stabilité de sev par un endomorphisme autoadjoint)} N

Soient f un endomorphisme autoadjoint de 1'espace euclidien E et F' un sous-espace vectoriel de E. Alors
e l'espace F'- est stable par f

e les endomorphismes induits par f sur F et F* sont autoadjoints.
(. J

Pour amorcer la récurrence, on a besoin de choisir un sous-espace propre de f et de s’assurer que f admet au moins
une valeur propre. La proposition suivante est utile.



f—| Proposition N

Soit f un endomorphisme autoadjoint de ’espace euclidien E.
Son polynéme caractéristique est scindé sur R.

(S J

,—[Théoréme (Théoréme spectral : diagonalisation des endomorphismes autoadjoints)%

Soit f un endomorphisme autoadjoint de ’espace euclidien E.
Alors f est diagonalisable dans une base orthonormée, c’est-a-dire qu’il existe une base orthonormée
B de vecteurs propres telle que Matg(f) est diagonale.

| J

,—[Théoréme (Théoréme spectral : diagonalisation des matrices symétriques réelles)]*

Soit A une matrice symétrique réelle.
Il existe une matrice orthogonale P € O, (R) telle que la matrice D = PT AP = P~' AP soit diagonale.

| J

Exemple

2

1) Soit A = (_11 _1). A est-elle diagonalisable? Si oui, la diagonaliser.
b
2) Soit B = b
a

> o R

b
a ot (a,b) € R%2. Montrer que A est diagonalisable. La diagonaliser dans le cas a = —2,
b

b=1

& Attention & Ce résultat ne s’applique qu’aux matrices symétriques réelles. Par exemple, la matrice symétrique
1 i , . .
;o1 )n est pas diagonalisable.

En effet :

IV.3 Endomorphismes autoadjoints positifs

f—[Déﬁnition (Endomorphismes autoadjoints positifs)} N

Soit f un endomorphisme autoadjoint de l’espace euclidien E.

e On dit que f est positif si : Ve € E, (f(z)|z) > 0.
On note ST (E) leur ensemble.

e On dit que f est défini-positif si : Ve € E\{0g}, (f(z)|z) > 0.
On note ST (E) leur ensemble.

Exercice - A savoir refaire. Soit f un endomorphisme autoadjoint de I’espace euclidien E. On note a sa plus
petite valeur propre.
Montrer que : Vz € E, (f(z)|z) > al|z|*.

n n
N\ En pratique D Légalité (f(x)|x) = E \ix? ou sa version matricielle X T MX = E N\ix? rencontrée en
. i=1 . i=1
cours de route est tres utile dans de nombreuxr exercices et a savoir redémontrer.



f—[Théoréme (Caractérisation spectrale)} <

Soit f un endomorphisme autoadjoint de ’espace euclidien E.
e f est positif si et seulement si Sp(f) C R;..

o f est défini-positif si et seulement si Sp(f) C RY.

(S J

f—[Déﬁnition (Matrices symeétriques positives)} <

Soit A € M, (R) une matrice symétrique.

e On dit que A est positive si : VX € M1 (R), XTAX > 0.
On note S;F(R) leur ensemble.
e On dit que A est définie-positive si : VX € Mpi(R)\ {On1}, XTAX > 0.
On note S, (R) leur ensemble.
/—[Théoréme (Caractérisation spectrale)} <

Soit A € M,,(R) une matrice matrice symétrique.
o A est positive si et seulement si Sp(A) C Ry.

o A est définie-positive si et seulement si Sp(A4) C R .

| J

D’ou le lien immédiat entre ces deux notions.

Théoréme (Equivalence matrices/endomorphisme positifs)}

Soient f un endomorphisme autoadjoint de 1’espace euclidien E, B une base orthonormée de FE.
On pose A = Matg(f). Alors

f positif (resp. défini-positif) <= A positive (resp. définie-postive).

Exercice

b
1) A quelles conditions sur a,b réels la matrice A = b | est-elle symétrique définie positive?
a

oo Q
>~ o

2) Racine carrée d’'un endomorphisme autoadjoint positif. Montrer que tout endomorphisme autoadjoint positif f
peut s’écrire f = g2 ot g est aussi un endomorphisme autoadjoint positif.



