
Chapitre

Topologie et continuité dans
les espaces vectoriels normés

Rappels

Si (E, ‖ · ‖) désigne un K-espace vectoriel normé, on rappelle ‖ · ‖ : E → R+ est une application vérifiant :

1) ∀x ∈ E, ‖x‖ = 0 ⇔ x = 0E (séparation)

2) ∀x ∈ E, ∀λ ∈ K, ‖λx‖ = |λ|‖x‖ (homogénéité)

3) ∀(x, y) ∈ E2, ‖x+ y‖ 6 ‖x‖+ ‖y‖ (inégalité triangulaire).

Normes usuelles à connaître. Quelles sont les normes usuelles connues sur les espaces vectoriels suivants?

• Sur Kn.

• Sur Mn(K).

• Sur C([a, b],R).

• Sur un espace préhilbertien (E, (·|·)).

On rappelle les définitions :

• la boule ouverte de centre a et de rayon r,
B(a, r) = {x ∈ E / d(a, x) < r} = {x ∈ E / ‖x− a‖ < r}

• la boule fermée de centre a et de rayon r,
B(a, r) = {x ∈ E / d(a, x) 6 r} = {x ∈ E / ‖x− a‖ 6 r}

• la sphère de centre a et de rayon r, S(a, r) = {x ∈ E / d(a, x) = r} = {x ∈ E / ‖x− a‖ = r}.
Résultats utiles qu’il est bon de revoir.

• Normes équivalentes, équivalence des normes en dimension finie.

• Définition de la convergence d’une suite à valeurs dans un evn. Equivalence avec la convergences des coordonnées
dans un evn de dimension finie. Application aux suites convergentes de matrices et la convergence des suites des
coefficients.



I Topologie d’un espace vectoriel normé

Sauf mention contraire, E désigne un espace vectoriel muni d’une norme ‖ · ‖.

I.1 Parties ouvertes

Soit A une partie de E.

• Soit x ∈ A. On dit que x est intérieur à A s’il existe r > 0 tel que B(x, r) ⊂ A soit :

∃r > 0 / B(x, r) ⊂ A.

• L’intérieur de A est l’ensemble des points intérieurs à A. On le note Å.

Définition (Point intérieur à une partie - Intérieur d’une partie)

Exemples

1) A retenir Les éléments intérieurs à A sont éléments de A. Autrement dit Å ⊂ A.

2) On considère E = R muni de la norme | · | (valeur absolue). Quel est l’intérieur de [0, 1[?

Soit U une partie de E.
Les propriétés suivantes sont équivalentes

(i) ∀x ∈ U, ∃r > 0 / B(x, r) ⊂ U

(ii) U = Ů (c’est-à-dire tous les points de U sont intérieurs à U).

Lorsque ces propriétés sont vérifiées, on dit que U est une partie ouverte ou un ouvert de E.

Théorème-Définition (Ouvert)

Exemples

1) On considère E = R2 muni de la norme euclidienne. On pose

U1 = {(x, y) / x > 0} U2 = {(x, y) / x > 0}.
U1 est un ouvert de R2, mais pas U2.

2) E et ∅ sont ouverts.

Toute boule ouverte est un ouvert de E.

Proposition (Boule ouverte)

NB : Une boule fermée n’est pas ouverte.
Exemple Les intervalles ouverts ]a, b[ de R sont des ouverts.

1) Toute union quelconque d’ouverts est un ouvert.

2) Toute intersection finie d’ouverts est un ouvert.

Théorème (Stabilité par intersection/réunion)

Attention Une intersection quelconque d’ouverts n’est pas forcément un ouvert. Contre-exemple :



I.2 Parties fermées

Soit A une partie de E.

• Soit x ∈ E. On dit que x est adhérent à A si pour tout r > 0, B(x, r) ∩ A est non vide soit :

∀r > 0, B(x, r) ∩ A 6= ∅.

• L’adhérence de A est l’ensemble des points adhérents à A. On le note A.

Définition (Point adhérent à une partie - Adhérence d’une partie)

Exemples

1) A retenir. Tout élément de A est adhérent à A. Autrement dit A ⊂ A.

2) On considère E = R muni de la norme | · | (valeur absolue). Quel est l’adhérence de [0, 1[?

NB : on définit aussi la frontière d’une partie A de E par Fr(A) = A \ Å.
Par exemple la frontière d’une boule (ouverte ou fermée) est la sphère.

Soient A une partie de E et x ∈ E.
x est adhérent à A si et seulement si il existe une suite (xn)n∈N d’éléments de A qui converge vers x.

Théorème (Caractérisation séquentielle d’un point adhérent)

Soit F une partie de E. F est dite fermée si elle est égale à son adhérence.

Définition (Fermé)

Soit F une partie de E.
F est un fermé si et seulement si pour toute suite convergente (xn)n∈N d’éléments de F , limxn ∈ F .

Théorème (Caractérisation séquentielle des fermés)

Exemples On considère E = R2 muni de la norme euclidienne. On pose

U2 = {(x, y) / x > 0} U3 = {(x, y) / 3x2 + 2y > 0}

U2 est un fermé de R2 et U3 est un ouvert de R2.

Une partie F de E est fermée (resp. ouverte) si et seulement si son complémentaire est ouvert (resp.
fermée).

Théorème

Exemple E et ∅ sont fermés.

Toute boule fermée, toute sphère est un fermé de E.

Proposition (Boule fermée)



Exemple Les segments [a, b] de R sont des fermés de R. En particulier les singletons {a} sont des fermés de R.

1) Toute union finie de fermés est un fermé.

2) Toute intersection quelconque de fermés est un fermé.

Théorème (Stabilité par intersection/réunion)

Attention Une union quelconque de fermés n’est pas forcément un fermé. Contre-exemple :

Exemple La frontière d’une partie A de E est un fermé de E.

I.3 Parties denses

Soit A une partie de E.
On dit que A est dense dans E si A = E, autrement dit, si tout élément de E est adhérent à A.

Définition (Partie dense)

Soit A une partie de E.
A dense dans E si et seulement si tout élément de E est limite d’une suite d’éléments de E.

Théorème (Caractérisation séquentielle de la densité)

Exemples

1) Q est dense dans R.

2) GLn(K) est dense dans Mn(K).

I.4 Invariance des notions topologiques

Soient N1 et N2 deux normes équivalentes sur un espace vectoriel E et soit A une partie de E.
Alors A est une partie ouverte (resp. fermée) (resp. dense) pour N1 si et seulement si elle est ouverte (resp.
fermée) (resp. dense) pour N2.

Théorème (Invariance par équivalence de normes)

Les caractères ouvert, fermé, dense ne dépendent pas de la norme choisie.

Corollaire (En dimension finie)

Démo :

R ExplicationL Cela légitime des assertions du type : "]a, b[ est un ouvert de R", "U est ouvert de R2", "{a}
est un fermé de R", "GLn(K) est dense dans Mn(K)" sans préciser la norme utilisée sur l’espace vectoriel.

II Limites et continuité

Soient (E, ‖ · ‖E) et (F, ‖ · ‖F ) deux espaces vectoriels normés.



II.1 Limites et continuité en un point

Soient A une partie non vide de E, f : A → F une application et a un point de E adhérent à A.
Soit l un élément de F .
On dit que f admet pour limite l en a si :

∀ε > 0, ∃δ > 0 / ∀x ∈ A, ‖x− a‖E 6 δ ⇒ ‖f(x)− l‖F 6 ε.

Définition (Limite et continuité en un point)

Avec les même notations que précédemment. La limite de f en a, si elle existe, est unique.

Théorème (Unicité de la limite)

Avec les mêmes notations que précédemment.
f admet pour limite l en a si et seulement si pour toute suite (xn)n∈N d’éléments de A qui converge vers
a, la suite (f(xn))n∈N converge vers l.

Théorème (Caractérisation séquentielle de la limite)

Exemple Soit f définie par f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0). Montrer que f n’admet pas de limite en (0, 0).

On suppose que F est de dimension finie; soit B = (e1, . . . , ep) une base de F .
Soient A une partie non vide de E, f : A → F et a un point de E adhérent à A.
On note (f1, . . . , fp) les applications coordonnées de f c’est-à-dire

∀x ∈ E, f(x) =

p∑
i=1

fi(x)ei.

Soit l ∈ F , de coordonnées (l1, . . . , lp) dans la base B.
Alors f admet pour limite l en a si et seulement si pour tout i ∈ J1, pK, fi admet pour limite li en a et dans
ce cas

lim
a

f =

p∑
i=1

liei.

Théorème (Limite et applications coordonnées)

Soient A une partie non vide de E, f : A → F et g : A → F deux applications admettant pour limites
respectives l et l′ en un point a adhérent à A.
Alors pour tout λ ∈ K,

lim
a
(λf + g) = λl + l′.

Théorème (Limite d’une combinaison linéaire)

Soient A une partie non vide de E, f : A → F et u : A → K deux applications admettant pour limites
respectives l et α en un point a adhérent à A.
Alors

lim
a
(ug) = αl.

Théorème (Limite d’un produit)



Soient (G, ‖ · ‖G) un espace vectoriel normé et

• A une partie non vide de E, B une partie non vide de F

• f : A → B, g : B → G deux applications

• a un point adhérent à A, b un point adhérent à B

• l ∈ G.

On suppose que
lim
a

f = b lim
b

g = l.

Alors
lim
a
(g ◦ f) = l.

Théorème (Limite d’une composition)

Soient A une partie non vide de E, f : A → F une application et a un élement de A.
Si f admet une limite l en A alors b = f(a) et f est dite continue en a, on a alors

lim
a

f = f(a).

Théorème-Définition (Continuité en un point A)

Exemples

1) Les applications coordonnées (x, y) 7→ x et (x, y) 7→ y sont continues en tout (x0, y0) ∈ R2.

2) Plus généralement, soit E un espace vectoriel de dimension finie muni d’une base B. L’application i-ème coor-
donnée x 7→ xi (la i-ème coordonnée de x dans la base B) est continue en tout a ∈ E.

Si F est de dimension finie. L’application f : A → F est continue en a ∈ A si ses applications coordonnées
dans une base quelconque le sont.

Théorème (Caractérisation de la continuité par les applications coordonnées)

Exemples L’application (x, y) 7→ (cos(x2y), ex+2y,
x+ y

x2 + y2 + 1
) est continue en tout (x0, y0) de R2.

L’application f : A → F est continue en a ∈ A si et seulement si pour toute suite (xn)n∈N d’éléments de A
qui converge vers a, la suite (f(xn))n∈N converge vers f(a).

Théorème (Caractérisation séquentielle de la continuité)

II.2 Continuité sur une partie

Une application définie sur une partie A est continue sur A si elle est continue en tout point de A.

Définition (Continuité sur une partie)

Exemples

1) Les applications coordonnées (x, y) 7→ x et (x, y) 7→ y sont continues sur R2.



2) Plus généralement, soit E un espace vectoriel de dimension finie muni d’une base B. L’application i-ème coor-
donnée x 7→ xi (la i-ème coordonnée de x dans la base B) est continue sur R2.

1) Si f : A → F et g : A → F sont deux applications continues sur une partie A de E alors pour tout
λ ∈ K, λf + g est continue sur A.

2) Si f : A → F et u : A → K sont deux applications continues sur une partie A de E alors uf est
continue sur A.

Si de plus u ne s’annule pas alors
1

u
f est continue sur A.

3) Si f : A → B et g : B → G sont deux applications respectivement continues sur une partie A de E et
une partie B de F alors g ◦ f est continue sur A.

Théorème (Opération, composition)

• Pour calculer une limite on peut faire usage de majoration, ou passer en coordonnées polaires x =
r cos θ, y = r sin θ.

• Pour montrer la non existence de limite on étudie la limite sur des chemins :f(x, 0), f(0, y), f(x, x),
f(x, λx)....

Méthode (Le cas des fonctions de deux variables)

Exemples

1) Soit f l’application définie par f(x, y) =
xy

x2 + y2
si (x, y) 6= (0, 0) et f(0, 0) = 0. Etude de la continuité de f .

2) Soit f l’application définie par f(x, y) =
x2y

x2 + y2
si (x, y) 6= (0, 0) et f(0, 0) = 0. Etude de la continuité de f .

3) Soit f l’application définie par f(x, y) =

+∞∑
n=0

cos(ny)xn

√
n

. Etude de la continuité de f sur R2.

Soit f : E → F une application continue sur E.

• Si A est un ouvert de F alors f−1(A) est un ouvert de E.

• Si A est un fermé de F alors f−1(A) est un fermé de E.

Théorème (Ouvert, fermé - Continuité)

Soit f : E → R une application continue sur E.

• {x ∈ E / f(x) > 0} et {x ∈ E / f(x) = 0} sont des fermés de E.

• {x ∈ E / f(x) > 0} est un ouvert de E.

Corollaire

Exemples

1) L’ensemble {(x, y) ∈ R2 / x > 0} est un ouvert de R2.



2) On considère le domaine T de R2 délimité par les côtés du triangle de sommet (0, 0), (1, 0), (0, 2) (frontière
comprise). Montrer que T est un fermé de R2.

Soit A une partie de E et f : A → F .
On dit que f est lipschitzienne sur A, s’il existe k ∈ R∗

+ tel que :

∀(x, y) ∈ A2, ‖f(x)− f(y)‖F 6 k‖x− y‖E .

Définition (Application lipschitzienne)

Toute application lipschtizienne est continue.

Théorème (Lipschitzienne ⇒ continue)

Exemple L’application x 7→ ‖x‖E est continue sur E.

• Soit A une partie de E. Une application f : A → K est dite polynomiale s’il existe une base B de E
telle que l’expression de f(x)soit un polynôme en les coordonnées de x exprimées dans la base B.

• Toute fonction polynomiale est continue.

Théorème-Définition (Continuité des applications polynomiales)

Exemple - À connaître - Le déterminant, la trace sont des applications continues de Mn(K) dans K.
Application : l’ensemble GLn(K) des matrices inversibles est un ouvert de Mn(K).

II.3 En dimension finie

On suppose que E est de dimension finie.
Soit f ∈ L(E,F ) alors f est lipschitzienne, donc continue sur E.

Théorème (Continuité des applications linéaires)

Exemple à connaître - Applications utiles aux matrices

1) La trace et la transposition sont des applications continues sur Mn(K).

2) Soit A ∈ Mp(K). L’application M ∈ Mp(K) 7→ AM est continue.
Application utile en probabilité : si la suite des itérées (An)n∈N converge vers L alors AL = L = LA et
L2 = L.

3) Soit (An)n∈N une suite de matrices de Mp(K) qui converge vers une matrice A. Alors pour toute matrice
P ∈ GLn(K),

P−1AnP → P−1AP.

Attention Le résultat est faux si E n’est pas supposé de dimension finie.

Contre-exemple : on considère E = C([0, 1],R) muni de la norme ‖f‖1 =
∫ 1

0

|f |. On pose l’application linéaire Φ : f 7→
f(0) et la suite de fonctions (fn) où fn est affine sur [0, 1/n] puis sur [1/n, 1] avec fn(0) = 1, fn(1/n) = fn(1) = 0.



Soient E1, . . . , En des espaces vectoriels normés de dimension finie.
Soit f : E1 × · · · × En → F une application multilinéaire, c’est-à-dire une application linéaire par rapport
à chacune de ces n variables.
Alors f continue sur E.

Théorème (Continuité des applications multilinéaires)

Exemples incontournables à connaître

1) Le déterminant est une application continue de Mn(K) dans K.

2) Un produit scalaire sur un espace euclidien est une application continue de E × E dans R.

3) Le produit matriciel (A,B) ∈ (Mn(K))2 7→ AB ∈ Mn(K) est une application continue.
Application utile : si (An)n∈N et (Bn)n∈N sont deux suites de matrices qui convergent respectivement vers L
et M alors (AnBn)n∈N converge vers LM .

Exemple Montrer que On(R) est un fermé, borné de Mn(R).

On suppose que E est de dimension finie. Soit A une partie non vide, fermée et bornée de E.
Si f : A → K est une application continue alors f est bornée et atteint ses bornes.

Théorème (Théorème des bornes atteintes)

Ce théorème généralise celui connu pour une fonction de la variable réelle. "Toute fonction continue sur un
segment (qui est bien fermé et borné) est bornée et atteint ses bornes" (énoncé aussi connu sous la forme
"l’image d’un segment par une application continue est un segment").

Remarques

Application à l’étude d’extrema Soit f(x, y) = x2 + y2 sur le triangle T de l’exemple vu plus haut. Montrer que
f admet un maximum et un minimum sur T , les déterminer.


