CHAPITRE

TOPOLOGIE ET CONTINUITE DANS
LES ESPACES VECTORIELS NORMES

Rappels

Si (E,| - ||) désigne un K-espace vectoriel normé, on rappelle || - || : E — R™ est une application vérifiant :
1) Ve e E, |z]|=0&2=0g (séparation)
2y Ve e E, YAeK, |Az|]=]|A|z| (homogénéité)
3) V(z,y) € E?, |z +y| <|lz||+ |y (inégalité triangulaire).
Normes usuelles & connaitre. Quelles sont les normes usuelles connues sur les espaces vectoriels suivants?

e Sur K".

o Sur M, (K).

e Sur C([a,b],R).

e Sur un espace préhilbertien (E, (+]-)).

On rappelle les définitions :

e la boule ouverte de centre a et de rayon r,
B(a,r)={z € E/d(a,z) <r}={z € E/|z—a|]| <r}

e la boule fermée de centre a et de rayon r,

B(a,r)={z € E/d(a,z) <r}={z € E/|z—a|]| <r}
e la sphére de centre a et de rayon r, S(a,7) ={zx € E /d(a,z) =r} ={x € E/ ||lx — a|| =r}.
Résultats utiles qu’il est bon de revoir.
e Normes équivalentes, équivalence des normes en dimension finie.

e Définition de la convergence d’une suite & valeurs dans un evn. Equivalence avec la convergences des coordonnées
dans un evn de dimension finie. Application aux suites convergentes de matrices et la convergence des suites des
coefficients.



I Topologie d’un espace vectoriel normé

Sauf mention contraire, E désigne un espace vectoriel muni d’une norme || - ||.

I.1 Parties ouvertes

,—[Déﬁnition (Point intérieur & une partie - Intérieur d’une partie)}

Soit A une partie de E.

e Soit z € A. On dit que z est intérieur a A s'il existe r > 0 tel que B(z,r) C A soit :

Ir >0/ B(x,r) C A.

e L’intérieur de A est ’ensemble des points intérieurs & A. On le note A.

Exemples

1) A retenir Les éléments intérieurs & A sont éléments de A. Autrement dit A C A.

2) On considére E = R muni de la norme | - | (valeur absolue). Quel est Uintérieur de [0, 1[?

f—[Théoréme-Déﬁnition (Ouvert)}

Soit U une partie de E.
Les propriétés suivantes sont équivalentes

(i) VeeU, FIr>0/ B(z,r)CU
(i) U = U (c’est-a-dire tous les points de U sont intérieurs a U).

Lorsque ces propriétés sont vérifiées, on dit que U est une partie ouverte ou un ouvert de E.
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Exemples
1) On considére E = R? muni de la norme euclidienne. On pose
Ur ={(z,y) /= >0} Uy = {(z,y) /= > 0}.
Uy est un ouvert de R?, mais pas Us.

2) E et ) sont ouverts.

Proposition (Boule ouverte)}

Toute boule ouverte est un ouvert de E.

NB : Une boule fermée n’est pas ouverte.
Exemple Les intervalles ouverts ]a, b[ de R sont des ouverts.

Théoréme (Stabilité par intersection/ réunion)}

1) Toute union quelconque d’ouverts est un ouvert.

2) Toute intersection finie d’ouverts est un ouvert.

& Attention & Une intersection quelconque d’ouverts n’est pas forcément un ouvert. Contre-exemple :



1.2 Parties fermées

,—[Déﬁnition (Point adhérent a une partie - Adhérence d’une partie)} N

Soit A une partie de E.

e Soit € E. On dit que z est adhérent a A si pour tout r > 0, B(z,r) N A est non vide soit :

Vr >0, B(z,r)NA#0.

e I’adhérence de A est Pensemble des points adhérents & A. On le note A.

Exemples
1) A retenir. Tout élément de A est adhérent 4 A. Autrement dit A C A.

2) On considére £ = R muni de la norme | - | (valeur absolue). Quel est adhérence de [0, 1[?

NB : on définit aussi la frontiére d’une partie A de E par Fr(4) = 4\ A.
Par exemple la frontiére d’une boule (ouverte ou fermée) est la sphére.

f—[Théoréme (Caractérisation séquentielle d’un point adhérent)} N

Soient A une partie de F et z € E.
x est adhérent & A si et seulement si il existe une suite (2, )neny d’éléments de A qui converge vers .
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,—[Déﬁnition (Fermé)} N

Soit F' une partie de E. F est dite fermée si elle est égale & son adhérence.
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,—[Théoréme (Caractérisation séquentielle des fermés)} N

Soit F' une partie de E.
F est un fermé si et seulement si pour toute suite convergente (z,)nen d’éléments de F, limz,, € F.
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Exemples On considére £ = R? muni de la norme euclidienne. On pose
Us={(z,y)/2>0}  Us={(z,y) /32" +2y >0}

U, est un fermé de R? et Us est un ouvert de R2.

Théoréme

Une partie F' de E est fermée (resp. ouverte) si et seulement si son complémentaire est ouvert (resp.
fermée).

Exemple E et () sont fermés.

Proposition (Boule fermée)}

Toute boule fermée, toute sphére est un fermé de F.




Exemple Les segments [a,b] de R sont des fermés de R. En particulier les singletons {a} sont des fermés de R.

Théoréme (Stabilité par intersection/ réunion)}

1) Toute union finie de fermés est un fermé.

2) Toute intersection quelconque de fermés est un fermé.

& Attention & Une union quelconque de fermés n’est pas forcément un fermé. Contre-exemple :

Exemple La frontiére d’une partie A de E est un fermé de E.

1.3 Parties denses

,—[Déﬁnition (Partie dense)} <

Soit A une partie de E. .
On dit que A est dense dans F si A = F, autrement dit, si tout élément de F est adhérent a A.
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f—[Théoréme (Caractérisation séquentielle de la densité)} N

Soit A une partie de E.
A dense dans F si et seulement si tout élément de E est limite d’une suite d’éléments de E.

Exemples

1) Q est dense dans R.
2) GL,(K) est dense dans M,,(K).

I.4 Invariance des notions topologiques

,—[Théoréme (Invariance par équivalence de normes)} <

Soient N7 et Ny deux normes équivalentes sur un espace vectoriel E et soit A une partie de E.
Alors A est une partie ouverte (resp. fermée) (resp. dense) pour N; si et seulement si elle est ouverte (resp.
fermée) (resp. dense) pour Ns.
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,—[Corollaire (En dimension ﬁnie)} N

Les caractéres ouvert, fermé, dense ne dépendent pas de la norme choisie.
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Démo :

I'= Explication &1 Cela légitime des assertions du type : "]a, b[ est un ouvert de R", "U est ouvert de R?", "{a}
est un fermé de R", "GL, (K) est dense dans M,,(K)" sans préciser la norme utilisée sur l’espace vectoriel.

II Limites et continuité

Soient (E, |- |g) et (F,| - ||r) deux espaces vectoriels normés.



II.1 Limites et continuité en un point

,—[Déﬁnition (Limite et continuité en un point)} <

Soient A une partie non vide de E, f: A — F une application et a un point de E adhérent a A.
Soit [ un élément de F.
On dit que f admet pour limite [ en a si :

Ve>0, 30>0/VzeA, |z—alg<d=|flz)—Ir<ec.
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f—[Théoréme (Unicité de la limite)J N

Avec les méme notations que précédemment. La limite de f en a, si elle existe, est unique.
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f—[Théoréme (Caractérisation séquentielle de la limite)} N

Avec les mémes notations que précédemment.
f admet pour limite [ en a si et seulement si pour toute suite (2, )nen d’éléments de A qui converge vers
a, la suite (f(xy,))nen converge vers [.
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Exemple Soit f définie par f(z,y) = % si (z,y) # (0,0). Montrer que f n’admet pas de limite en (0, 0).
€ Y
f—[Théoréme (Limite et applications coordonnées)} N
On suppose que F' est de dimension finie; soit B = (e, ..., ep) une base de F.
Soient A une partie non vide de E, f: A — F et a un point de E adhérent a A.
On note (f1,..., fp) les applications coordonnées de f c’est-a-dire
P
Ve e E, f(x)=>_ fi®)e:
i=1
Soit [ € F, de coordonnées (I1,...,1,) dans la base B.
Alors f admet pour limite [ en a si et seulement si pour tout i € [1, p], f; admet pour limite ; en a et dans
ce cas
P
lim f = Le;.
¢ i=1
(. J
,—[Théoréme (Limite d’une combinaison linéaire)} N

Soient A une partie non vide de E, f : A — F et g : A — F deux applications admettant pour limites
respectives [ et I’ en un point a adhérent a A.
Alors pour tout A € K,

lién()\f +g)=N+1.
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f—[Théoréme (Limite d’un produit)} <

Soient A une partie non vide de E, f: A — F et u : A — K deux applications admettant pour limites
respectives [ et « en un point a adhérent a A.
Alors

liin(ug) = al.




/—[Théoréme (Limite d’une composition)} N

Soient (G, || - ||¢) un espace vectoriel normé et
e A une partie non vide de E, B une partie non vide de F
e f: A— B, g: B— G deux applications

e o un point adhérent & A, b un point adhérent & B

o .
On suppose que
limf =5 lilr)ng:l.
Alors
lim(go f) = 1.
f—[Théoréme-Déﬁnition (Continuité en un point A)} N

Soient A une partie non vide de E, f : A — F une application et a un élement de A.
Si f admet une limite [ en A alors b= f(a) et f est dite continue en a, on a alors

li;nf = f(a).
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Exemples
1) Les applications coordonnées (z,y) — x et (z,y) — y sont continues en tout (xo,yo) € R2.

2) Plus généralement, soit F un espace vectoriel de dimension finie muni d’une base B. L’application i-éme coor-
donnée z — x; (la i-éme coordonnée de = dans la base B) est continue en tout a € E.

Théoréme (Caractérisation de la continuité par les applications coordonnées)}

Si F' est de dimension finie. L’application f : A — F est continue en a € A si ses applications coordonnées
dans une base quelconque le sont.

Tty

, W) est continue en tout (g, o) de R2.
€ Y

Exemples L’application (z,y) — (cos(z%y),e®+2¥

Théoréme (Caractérisation séquentielle de la continuité)}

L’application f : A — F est continue en a € A si et seulement si pour toute suite (2, )nen d’éléments de A
qui converge vers a, la suite (f(2,))nen converge vers f(a).

II.2 Continuité sur une partie

Définition (Continuité sur une partie)}

Une application définie sur une partie A est continue sur A si elle est continue en tout point de A.

Exemples

1) Les applications coordonnées (x,y) — z et (x,y) — y sont continues sur R2.



2) Plus généralement, soit F un espace vectoriel de dimension finie muni d’une base B. L’application i-éme coor-
donnée x + x; (la i-éme coordonnée de x dans la base B) est continue sur R2.

f—[Théoréme (Opération, composition)} <

1) Sif: A— F et g: A— F sont deux applications continues sur une partie A de E alors pour tout
A € K, Af + g est continue sur A.

2) Sif: A— Fetu:A— K sont deux applications continues sur une partie A de E alors uf est
continue sur A.

1
Si de plus u ne s’annule pas alors — f est continue sur A.
U

3) Si f:A— Betg: B — G sont deux applications respectivement continues sur une partie A de F et
une partie B de F alors g o f est continue sur A.
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,—[Méthode (Le cas des fonctions de deux variables)} N

e Pour calculer une limite on peut faire usage de majoration, ou passer en coordonnées polaires z =
rcosf, y =rsinf.

e Pour montrer la non existence de limite on étudie la limite sur des chemiuns : f(z,0), f(0,v), f(z,z),

f(z, Ax)....

Exemples
1) Soit f lapplication définie par f(z,y) = 2? 5 si (w,y) # (0,0) et f(0,0) = 0. Etude de la continuité de f.
x Yy
2
2) Soit f Papplication définie par f(z,y) = % si (z,y) # (0,0) et f(0,0) = 0. Etude de la continuité de f.
x Yy
X cos(ny)z™
3) Soit f l'application définie par f(z,y) = Z T Etude de la continuité de f sur R2.
n
n=0
/—[Théoréme (Ouvert, fermé - Continuité)} N

Soit f : E — F une application continue sur E.
e Si A est un ouvert de F alors f~1(A) est un ouvert de E.

e Si A est un fermé de F alors f~1(A) est un fermé de E.
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~— Corollaire ~

Soit f : E — R une application continue sur E.

o {r€FE/f(x) >20}et {xreFE/f(xr) =0} sont des fermés de E.

o {x € FE/ f(x) >0} est un ouvert de E.

| J

Exemples

1) L’ensemble {(z,y) € R? /x > 0} est un ouvert de R2.



2) On considére le domaine T de R? délimité par les cotés du triangle de sommet (0,0), (1,0), (0,2) (frontiére
comprise). Montrer que T est un fermé de R2.

,—[Déﬁnition (Application lipschitzienne)} N

Soit A une partiede E et f: A — F.
On dit que f est lipschitzienne sur A, s’il existe £ € R’ tel que :

V(z,y) € 42, |If(2) = fW)lIF <klz - ylle.
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,—[Théoréme (Lipschitzienne = continue)} <

Toute application lipschtizienne est continue.
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Exemple L’application x — ||z|| g est continue sur E.

f—[Théoréme-Déﬁnition (Continuité des applications polynomiales)} N

e Soit A une partie de E. Une application f : A — K est dite polynomiale s’il existe une base B de E
telle que Pexpression de f(x)soit un polynome en les coordonnées de z exprimées dans la base B.

e Toute fonction polynomiale est continue.
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Exemple - A connaitre - Le déterminant, la trace sont des applications continues de M, (K) dans K.
Application : I'ensemble GL, (K) des matrices inversibles est un ouvert de M, (K).

I1.3 En dimension finie

Théoréme (Continuité des applications linéaires)}

On suppose que E est de dimension finie.
Soit f € L(E, F) alors f est lipschitzienne, donc continue sur E.

Exemple a connaitre - Applications utiles aux matrices
1) La trace et la transposition sont des applications continues sur M,, (K).

2) Soit A € M,(K). L’application M € M,(K) — AM est continue.
Application utile en probabilité : si la suite des itérées (A™),en converge vers L alors AL = L = LA et
I?2=1L.

3) Soit (An)nen une suite de matrices de M,(K) qui converge vers une matrice A. Alors pour toute matrice
P e GL,(K),
P~'A,P — P'AP.

& Attention & Le résultat est faux si E' n’est pas supposé de dimension finie.
1

Contre-exemple : on considére E = C([0, 1], R) muni de la norme || f||; = |f]. On pose l'application linéaire ® : f —

f(0) et la suite de fonctions (f,,) ou f, est affine sur [0,1/n] puis sur [l/no, 1] avec fn(0) =1, fn(1/n) = fo(1) = 0.



f—[Théoréme (Continuité des applications multilinéaires)} N

Soient Fj,..., E, des espaces vectoriels normés de dimension finie.

Soit f: F1 X .-+ x E, — F une application multilinéaire, c’est-a-dire une application linéaire par rapport
a chacune de ces n variables.

Alors f continue sur F.

Exemples incontournables a connaitre
1) Le déterminant est une application continue de M, (K) dans K.
2) Un produit scalaire sur un espace euclidien est une application continue de F x F dans R.

3) Le produit matriciel (4, B) € (M, (K))? — AB € M,,(K) est une application continue.
Application utile : si (A,)nen et (B )nen sont deux suites de matrices qui convergent respectivement vers L
et M alors (A, B, )nen converge vers LM.

Exemple Montrer que O, (R) est un fermé, borné de M, (R).

f—[Théoréme (Théoréme des bornes atteintes)} N

On suppose que E est de dimension finie. Soit A une partie non vide, fermée et bornée de E.
Si f: A — K est une application continue alors f est bornée et atteint ses bornes.
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,—| Remarques <

Ce théoréme généralise celui connu pour une fonction de la variable réelle. "Toute fonction continue sur un
segment (qui est bien fermé et borné) est bornée et atteint ses bornes" (énoncé aussi connu sous la forme
"image d’un segment par une application continue est un segment").
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Application a I’étude d’extrema Soit f(z,y) = 22 + y? sur le triangle T' de Pexemple vu plus haut. Montrer que
f admet un maximum et un minimum sur 7', les déterminer.



