Interrogation de cours

1 S1, Fonctions réelles d'une variable réelle

- 1. Soient I un intervalle, $f: I \to \mathbb{R}$ une fonction, et a un réel élément de I ou extrémité de I. Donner une définition quantifiée de la convergence de f vers 0 en a.
- 2. Soient f et g deux fonctions dérivables et soient λ et μ deux réels. Sous réserve d'existence, donner une expression des cinq fonctions $(\lambda f + \mu g)'$, $(f \cdot g)'$, (f/g)', $(f^{\lambda})'$ et $(g \circ f)'$.
- 3. Soient I un sous-ensemble de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. Énoncer les hypothèses et les conclusions du théorème de la bijection pour f sur I. Quelle est la régularité de f^{-1} ?
- 4. Soient I et J deux sous-ensembles de \mathbb{R} et $f:I\to J$ une fonction bijective. Sous quelles conditions peut-on affirmer que f^{-1} est \mathcal{C}^k ?
- 5. Soient a et b deux réels et $f:[a,b]\to\mathbb{R}$ une fonction. Énoncer avec ses hypothèses une inégalité des accroissements finis pour f sur [a,b].
- 6. Soit f une fonction réelle. Définir le caractère \mathscr{C}^1 de f.
- 7. Soient I un intervalle et $f: I \to \mathbb{R}$ une fonction non supposée dérivable. Définir la convexité de f.
- 8. Soient I un intervalle et $f: I \to \mathbb{R}$ une fonction que l'on suppose de classe \mathscr{C}^2 . Caractériser la convexité de f.
- 9. Soient I un intervalle et $f: I \to \mathbb{R}$ une fonction non supposée dérivable. Définir la croissance de f.

2 S1, Calcul différentiel et intégral

- 1. Énoncer la relation de Chasles pour l'intégrale des fonctions continues sur un segment.
- 2. Énoncer la linéarité de l'intégrale des fonctions continues sur un segment.
- 3. Énoncer l'inégalité triangulaire pour l'intégrale des fonctions continues sur un segment.
- 4. Énoncer la positivité et la croissance de l'intégrale des fonctions continues sur un segment.
- 5. Enoncer la formule d'intégration par parties pour l'intégrale des fonctions continues sur un segment.
- 6. Qu'est-ce qu'une somme de Riemann? Sous quelles hypothèses peut-on affirmer qu'elle converge vers une intégrale?
- 7. Soit $f: t \mapsto t^{\alpha}$, où α est un scalaire différent de -1. Donner une expression d'une primitive F de f.
- 8. Soit $f: t \mapsto \frac{1}{t}$. Donner une expression d'une primitive F de f.
- 9. Soit $f: t \mapsto e^{\alpha t}$, où α est un scalaire non nul. Donner une expression d'une primitive F de f.
- 10. Soit $f: t \mapsto \ln(t)$. Donner une expression d'une primitive F de f.

3 S1, Applications, point de vue ensembliste

- 1. Soient $f: E \to F$ et $g: F \to G$ deux applications, et soit $x \in E$. Définir $(g \circ f)(x)$.
- 2. Soit $f: E \to F$ une application. Définir l'injectivité de f.
- 3. Soit $f: E \to F$ une application. Définir la surjectivité de f.
- 4. Soit $f: E \to F$ une application. Définir la bijectivité de f en une expression quantifiée sans passer par l'injectivité et la surjectivité.

4 S1, Informatique

- 1. Écrire en Python une fonction prenant en argument une liste de nombres et renvoyant cette même liste triée dans l'ordre croissant, sans faire appel aux fonctions natives dédiées.
- 2. Quel est le coût asymptotique d'un tri à bulles sur une liste de longueur n?
- 3. Quel est le coût asymptotique d'un tri par sélection sur une liste de longueur n?
- 4. Quel est le coût asymptotique d'un tri fusion sur une liste de longueur n?
- 5. Écrire en Python une fonction prenant en argument une liste de nombres et renvoyant la plus grande valeur de cette liste, sans faire appel aux fonctions natives dédiées.

5 S2, Espaces vectoriels

- 1. Former la combinaison linéaire de x_1 , x_2 et x_3 , affectés des coefficients λ_1 , λ_2 et λ_3 .
- 2. Donner un exemple d'espace vectoriel non nul, avec sa dimension et un exemple de vecteur non nul.
- 3. Soit E un espace vectoriel. Définir ce qu'est un sous-espace vectoriel de E.
- 4. Soient x_1, \ldots, x_n et y des éléments d'un espace vectoriel. Définir la phrase « $y \in \text{Vect}(x_1, \ldots, x_n)$ ».
- 5. Soient x_1, \ldots, x_n des éléments d'un espace vectoriel E. Définir la phrase « (x_1, \ldots, x_n) est génératrice de E ».
- 6. Soient x_1, \ldots, x_n des éléments d'un espace vectoriel. Définir la phrase « (x_1, \ldots, x_n) est une famille libre ».
- 7. Si x est un élément d'un espace vectoriel E, comment montrer le plus simplement possible que la famille réduite au seul vecteur x est libre?
- 8. Si x et y sont deux éléments d'un espace vectoriel E, comment montrer le plus simplement possible que la famille (x, y) est libre?
- 9. Si x, y et z sont trois éléments d'un espace vectoriel E, comment montrer que la famille (x, y, z) est libre?
- 10. Si l'on connait la dimension d'un espace vectoriel E, comment prouve-t-on le plus fréquemment qu'une famille donnée en est une base?
- 11. Soient x_1, \ldots, x_n des éléments d'un espace vectoriel E. Définir la phrase « (x_1, \ldots, x_n) est une base de E ».
- 12. Définir la dimension d'un espace vectoriel.
- 13. Définir le rang d'une famille de vecteurs.
- 14. Définir le rang d'une matrice.

6 S2, Applications linéaires

- 1. Définir ce qu'est une application linéaire entre deux espaces E et F.
- 2. Donner, en le détaillant, un exemple non nul d'application linéaire entre deux espaces vectoriels.
- 3. Soient E et F deux espaces vectoriels, soit $u: E \to F$ une application linéaire, soit x un élément de E, et soit y un élément de F. Donner les définitions de $x \in K$ et $x \in K$ et x
- 4. Soient E et F deux espaces vectoriels, et soit $u: E \to F$ une application linéaire. Montrer que si u est injective, alors $\operatorname{Ker} u = \{0\}$.
- 5. Soient E et F deux espaces vectoriels, et soit $u: E \to F$ une application linéaire. Montrer que si Ker $u = \{0\}$, alors u est injective.
- 6. Soient E et F deux espaces vectoriels. Définir ce qu'est un endomorphisme de E, un automorphisme de E, un isomorphisme entre E et F.
- 7. Soient E un espace vectoriel et f une application au départ de E. Comment vérifie-t-on que f est un endomorphisme de E?
- 8. Soient E et F deux espaces vectoriels, soit (e_1, \ldots, e_p) une base finie de E, et soit $u: E \to F$ une application linéaire. Décrire Im u.
- 9. Soient E et F deux espaces vectoriels et soit $u: E \to F$ une application linéaire. Définir le rang de u.
- 10. Soient E et F deux espaces vectoriels et soit $u:E\to F$ une application linéaire. Énoncer le théorème du rang pour u dans ce contexte.

7 S2, Matrices et déterminants

- 1. Soient A et B deux matrices carrées de taille n. Définir $(AB)_{i,j}$.
- 2. Soit A une matrice carrée de taille n. Définir $(A^{\mathsf{T}})_{i,j}$.
- 3. Donner une expression de det $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$.

8 S2, Espaces préhilbertiens réels

- 1. Soit E un \mathbb{R} -espace vectoriel. Donner les cinq conditions définissant la phrase « φ est un produit scalaire sur E ».
- 2. Soit $E = \mathbb{R}^n$ muni de son produit scalaire usuel $\langle \cdot, \cdot \rangle$. Si $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$, rappeler la définition de $\langle x, y \rangle$.
- 3. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel. Rappeler l'inégalité de Cauchy-Schwarz.
- 4. Soit E un espace euclidien. Nommer un procédé permettant de convertir une base quelconque de E en une base orthonormée.

9 S2, Analyse asymptotique

- 1. Soit a un point de $\overline{\mathbb{R}}$, et soient f et g deux fonctions définies au voisinage de a. Que signifie o(1)? Et « f(t) = o(g(t)) ».
- 2. Soit a un point de $\overline{\mathbb{R}}$, et soient f et g deux fonctions définies au voisinage de a. Définir la phrase « $f(t) \underset{t \to a}{\sim} g(t)$ » en termes de f(t) g(t).
- 3. Soit a un point de $\overline{\mathbb{R}}$, et soient f et g deux fonctions définies au voisinage de a. Définir la phrase « $f(t) \underset{t \to a}{\sim} g(t)$ » en termes de f(t)/g(t).
- 4. Soient α et β deux réels strictement positifs. Énoncer les 3×2 relations de négligeabilité usuelles entre $1/t^{\alpha}$, t^{β} , $\ln t$, e^t quand $t \to +\infty$.
- 5. Soient α et β deux réels strictement positifs. Énoncer les 3×2 relations de négligeabilité usuelles entre $1/t^{\alpha}$, t^{β} , $\ln t$, e^t quand $t \to 0$.
- 6. Soit a un nombre réel et soit f une fonction d'une variable réelle définie au voisinage de a. Énoncer avec son hypothèse la formule de Taylor-Young à l'ordre 2 pour f en a.
- 7. Donner le développement limité à l'ordre 2 lorsque $h \to 0$ de e^h , $\ln(1+h)$ et $(1+h)^{\alpha}$

10 S2, Séries

- 1. Soit u une suite réelle. Définir la somme partielle de rang n de la série $\sum u_k$.
- 2. Soit u une suite réelle. Définir la convergence et la somme éventuelle de la série $\sum_{n\geq 0} u_n$.
- 3. Soit u une suite réelle. Définir la convergence absolue de la série $\sum_{n\geqslant 0}u_n$.
- 4. Soit q un nombre réel. Caractériser la convergence et exprimer la somme éventuelle des séries $\sum_{n\geqslant 0} q^n$, $\sum_{n\geqslant 1} n \, q^{n-1}$ et $\sum_{n\geqslant 0} n \, (n-1) \, q^{n-2}$.
- 5. Soit x un nombre réel. Caractériser la convergence et exprimer la somme éventuelle de la série $\sum_{n\geq 0} \frac{x^n}{n!}$.
- 6. Soient (u_n) et (v_n) telle ques $u_n \sim v_n$. Énoncer les hypothèses et la conclusion du théorème de comparaison des séries $\sum u_n$ et $\sum v_n$.

11 S2, Informatique

1. Dessiner un graphe orienté à trois sommets et cinq arêtes, puis écrire une matrice d'adjacence associée.

12 Séries numériques

- 1. Soit E un ensemble. Donner une définition de la phrase « E est dénombrable » .
- 2. Soit I un ensemble dénombrable, et soit $(x_i)_{i\in I}$ une famille indexée par I d'éléments de $[0, +\infty]$. Définir $\sum_{i\in I} x_i$.
- 3. Soit I un ensemble dénombrable, et soit $(x_i)_{i \in I}$ une famille indexée par I d'éléments de $[0, +\infty]$. Définir la phrase « $(x_i)_{i \in I}$ est sommable ».
- 4. Donner la formule du produit de Cauchy pour le produit de séries à termes positifs.
- 5. Donner les étapes principales d'une comparaison série-intégrale.
- 6. Énoncer la formule de Stirling.
- 7. Énoncer la règle de d'Alembert.
- 8. Énoncer le théorème spécial des séries alternées, avec bornage et signe du reste de rang n.

13 Compléments sur les espaces vectoriels

- 1. Soient F_1, \ldots, F_n des sous-espaces vectoriels d'un même espace vectoriel E. Définir $\sum_{i=1}^n F_i$.
- 2. Soient F_1, \ldots, F_n des sous-espaces vectoriels d'un même espace vectoriel E. Quand dit-on que $\sum_{i=1}^n F_i$ est une somme directe?
- 3. Soient F_1, \ldots, F_n des sous-espaces vectoriels d'un même espace vectoriel E. Donner une inégalité sur dim $\sum_{i=1}^n F_i$. À quelle condition a-t-on égalité?
- 4. Soient E un espace vectoriel, u un endomorphisme de E, et F un sous-espace vectoriel de E. Quand dit-on que F est stable par u?
- 5. Montrer que si u et v sont deux endomorphismes d'un même espace vectoriel E tels que $u \circ v = v \circ u$, alors $\operatorname{Ker} u$ est stable par v.
- 6. Soit $A \in M_n(\mathbb{K})$. Définir tr A.
- 7. Énoncer la propriété de la trace vis-à-vis du produit.
- 8. Que signifie « la trace est un invariant de similitude »? Prouver que c'en est un.
- 9. Soit $u \in \mathcal{L}(E)$, où E est un espace vectoriel de dimension finie. Définir tr u.
- 10. Donner une expression des polynômes interpolateurs élémentaires de Lagrange L_1, \ldots, L_{n+1} en n+1 scalaires deux à deux distincts a_1, \ldots, a_{n+1} .
- 11. Donner une expression du déterminant de Vandermonde associé à n+1 scalaires a_1, \ldots, a_{n+1} .

14 Normes

- 1. Soit E un \mathbb{K} -espace vectoriel. Donner les quatre conditions définissant la phrase « N est une norme sur E ».
- 2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Définir la distance sur E associée à $\|\cdot\|$.
- 3. Soit $E = \mathbb{K}^n$ et soit $x = (x_1, \dots, x_n) \in E$. Définir $||x||_1$.
- 4. Soit $E = \mathbb{K}^n$ et soit $x = (x_1, \dots, x_n) \in E$. Définir $||x||_2$.
- 5. Soit $E = \mathbb{K}^n$ et soit $x = (x_1, \dots, x_n) \in E$. Définir $||x||_{\infty}$.
- 6. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel et soit $x \in E$. Définir $||x||_2$.
- 7. Soit $f: D \to \mathbb{K}$ une fonction bornée. Définir $||f||_{\infty,D}$.
- 8. Soient $E = \mathscr{C}^0([0,1],\mathbb{R})$ et $f_n : t \mapsto t^n \in E$. Donner la valeur de $||f_n||_{\infty,[0,1]}$ et $||f_n||_2$, où $||\cdot||_2$ est associée au produit scalaire intégral usuel.
- 9. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, soit $(x_n)_{n\in\mathbb{N}}$ une suite de vecteurs de E, et soit $\ell \in E$. Définir la convergence de (x_n) vers ℓ au sens de $\|\cdot\|$.
- 10. Soient N_1 et N_2 deux normes sur un espace vectoriel E. Définir la phrase « N_1 et N_2 sont équivalentes ».
- 11. Quels caractères des suites dans un espace vectoriel normé sont préservés lorsqu'on remplace une norme par une autre norme équivalente?

15 Suites et séries de fonctions

- 1. Si (f_n) est une suite de fonctions de I dans \mathbb{K} et si f est une fonction de I dans \mathbb{K} , définir : « (f_n) converge simplement vers f ».
- 2. Si (f_n) est une suite de fonctions de I dans \mathbb{K} et si f est une fonction de I dans \mathbb{K} , définir : « (f_n) converge uniformément vers f ».
- 3. Si (f_n) est une suite de fonctions de I dans \mathbb{K} et si f est une fonction de I dans \mathbb{K} , définir : $(\sum_{n\geqslant 0} f_n)$ converge simplement vers f.
- 4. Si (f_n) est une suite de fonctions de I dans \mathbb{K} et si f est une fonction de I dans \mathbb{K} , définir : $(\sum_{n\geqslant 0} f_n)$ converge uniformément vers f.
- 5. Si (f_n) est une suite de fonctions de I dans \mathbb{K} et si f est une fonction de I dans \mathbb{K} , définir : $(\sum_{n\geqslant 0} f_n)$ converge normalement vers f.
- 6. Quels sont les modes de convergence possibles pour une suites de fonctions? Quelles sont les implications entre ces différents modes?
- 7. Quels sont les modes de convergence possibles pour une séries de fonctions? Quelles sont les implications entre ces différents modes?
- 8. Énoncer le théoèrme de la continuité pour la limite d'une suite de fonctions.
- 9. Énoncer le théoèrme de la continuité pour la limite d'une séries de fonctions.
- 10. Énoncer le théorème de la double limite pour une série.
- 11. Énoncer le théorème d'interversion limite-intégrale pour une suite de fonctions définies sur un segment [a, b].
- 12. Énoncer le théorème d'intégration terme à terme pour une série de fonctions définies sur un intervalle I.
- 13. Énoncer le théorème de dérivabilité continue de la limite d'une suite de fonctions définies sur un intervalle I.

16 Réduction

- 1. Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$. Définir la phrase « A est semblable à B ».
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Définir la phrase « A est diagonalisable ».
- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$, et soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$. Définir la phrase « X est un vecteur propre de A ».
- 4. Soit $A \in \mathcal{M}_n(\mathbb{K})$, et soit λ un scalaire. Définir la phrase « λ est une valeur propre de A ».
- 5. Soit $A \in \mathcal{M}_n(\mathbb{K})$, et soit λ un scalaire. Définir le sous-espace propre de A associé à λ .
- 6. Soit u un endomorphisme d'un espace vectoriel E, et soit x un élément de E. Définir la phrase « x est un vecteur propre de u ».
- 7. Soit u un endomorphisme d'un espace vectoriel E, et soit $\lambda \in \mathbb{K}$. Définir la phrase « λ est une valeur propre de u ».
- 8. Soit u un endomorphisme d'un espace vectoriel E, et soit $\lambda \in \mathbb{K}$. Définir le sous-espace propre de u associé à λ
- 9. Soit u un endomorphisme d'un espace vectoriel E. Définir la phrase « u est diagonalisable ».
- 10. Soit A une matrice carrée. Définir χ_A .
- 11. Quelle relation lie les valeurs propres d'une matrice (ou d'un endomorphisme) et son polynôme caractéristique?
- 12. Définir la multiplicité d'une valeur propre d'une matrice (ou d'un endomorphisme).
- 13. Donner une condition nécessaire et suffisante de diagonalisabilité d'une matrice (ou d'un endomorphisme).
- 14. Soit u un endomorphisme d'un espace vectoriel E. Définir la phrase « u est trigonalisable ».
- 15. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Définir la phrase « A est trigonalisable ».
- 16. Donner une condition nécessaire et suffisante de trigonalisabilité d'une matrice (ou d'un endomorphisme).

17 Intégrales généralisées

- 1. Tracer l'allure du graphe d'une fonction continue par morceaux, mais non continue, sur un intervalle.
- 2. Définir $\int_a^b f(t) dt$ pour f continue par morceaux sur l'intervalle semi-ouvert [a, b[.
- 3. Soit α un réel. Caractériser en fonction de la valeur de α la convergence de l'intégrale $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$.
- 4. Soit β un réel. Caractériser en fonction de la valeur de β la convergence de l'intégrale $\int_0^1 t^{\beta} dt$.
- 5. Énoncer avec son hypothèse-clé le théorème de convergence par majoration pour les intégrales généralisées.
- 6. Énoncer la formule d'intégration par parties pour l'intégrale des fonctions continues par morceaux sur un intervalle ouvert a, b.
- 7. Énoncer la positivité et la croissance de l'intégrale des fonctions continues par morceaux sur un intervalle I.
- 8. Que signifie la phrase « f est intégrable sur I »?
- 9. Soit I un intervalle de \mathbb{R} . Définir $L^1(I, \mathbb{K})$.

18 Endomorphismes des espaces euclidiens

- 1. Soit u un endomorphisme d'un espace euclidien E. Donner une définition de la phrase « u est une isométrie ».
- 2. Soit u un endomorphisme d'un espace euclidien E. Caractériser le fait que $u \in O(E)$ en termes de produits scalaires.
- 3. Soit u un endomorphisme d'un espace euclidien E. Caractériser le fait que $u \in O(E)$ en termes de l'image par u des bases orthonormées.
- 4. Soit u un endomorphisme d'un espace euclidien E. Caractériser le fait que $u \in O(E)$ en termes de sa matrice dans une base orthonormée.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Donner une définition de la phrase « $A \in O_n(\mathbb{R})$ ».
- 6. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Caractériser le fait que $A \in \mathcal{O}_n(\mathbb{R})$ en termes de la famille de ses colonnes.
- 7. Définir $SO_n(\mathbb{R})$.
- 8. Quand dit-on que deux bases d'un même espace vectoriel ont la même orientation?
- 9. Qu'est-ce qu'une rotation vectorielle d'un plan euclidien?
- 10. Donner la classification des isométries vectorielles d'un plan euclidien.
- 11. Soit u un endomorphisme d'un espace euclidien E. Donner une définition de la phrase « u est autoadjoint ».
- 12. Soit u un endomorphisme d'un espace euclidien E. Caractériser le fait que $u \in \mathcal{S}(E)$ en termes de sa matrice dans une base orthonormée.
- 13. Donner un énoncé du théorème spectral.
- 14. Soit u un endomorphisme autoadjoint d'un espace euclidien E. Définir la phrase « u est positif ».
- 15. Soit u un endomorphisme autoadjoint d'un espace euclidien E. Définir la phrase « u est défini positif ».
- 16. Soit A une matrice symétrique réelle de taille n. Définir la phrase « A est positive ».
- 17. Soit A une matrice symétrique réelle de taille n. Définir la phrase « A est définie positive ».

19 Séries entières

- 1. Soit $\sum a_n z^n$ une série entière. Définir son rayon de convergence.
- 2. Donner le rayon de convergence et la somme de la série entière $\sum z^n$.
- 3. Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Décrire la nature de la série numérique $\sum a_n z^n$ en fonction de la position de z dans le plan complexe.
- 4. Soient $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayon de convergence respectif R_a et R_b . Que dire si $a_n = O(b_n)$? Et si $a_n \sim b_n$?
- 5. Énoncer la règle de d'Alembert pour le calcul du rayon de convergence d'une série entière $\sum a_n z^n$.
- 6. Sur quel domaine la somme d'une série entière est-elle toujours de classe \mathscr{C}^{∞} ?

- 7. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0 et de somme S. Exprimer a_n en termes des valeurs en 0 des dérivées successives de S.
- 8. Donner le développement en série entière d'exp en en précisant le rayon de convergence.
- 9. Donner le développement en série entière de $x \mapsto \ln(1+x)$ en en précisant le rayon de convergence.
- 10. Soit $\alpha \in \mathbb{C}$. Donner le développement en série entière de $x \mapsto (1+x)^{\alpha}$ en en précisant le rayon de convergence.
- 11. Donner le développement en série entière d'arctan en en précisant le rayon de convergence.

20 Polynômes annulateurs

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Quel lien y a-t-il entre les valeurs propres de A et les polynômes annulateurs de A?
- 2. Énoncer le théorème de Cayley-Hamilton.
- 3. Donner un polynôme annulateur non trivial pour un projecteur, pour une symétrie.
- 4. On suppose que $A \in \mathcal{M}_n(\mathbb{K})$ admet pour polynôme annulateur $P = X^3 X + 2$. Montrer que A est inversible et exprimer A^{-1} comme un polynôme en A.
- 5. Énoncer une condition nécessaire et suffisante de diagonalisabilité d'une matrice carrée en termes de polynômes annulateurs.

21 Espaces probabilisés

- 1. Soit Ω un ensemble et soit $\mathscr{A} \subset \mathscr{P}(\Omega)$ un ensemble de parties de Ω . Définir la phrase « \mathscr{A} est une tribu ».
- 2. Soit (Ω, \mathscr{A}) un espace probabilisable et soit \mathbb{P} une fonction définie sur \mathscr{A} . Définir la phrase « \mathbb{P} est σ -additive ».
- 3. Soit (Ω, \mathscr{A}) un espace probabilisable et soit \mathbb{P} une fonction définie sur \mathscr{A} . Définir la phrase « \mathbb{P} est une mesure de probabilité ».
- 4. Énoncer la continuité croissante d'une mesure de probabilité \mathbb{P} sur un espace probabilisable (Ω, \mathscr{A}) .
- 5. Énoncer la continuité décroissante d'une mesure de probabilité \mathbb{P} sur un espace probabilisable (Ω, \mathscr{A}) .
- 6. Définir ce qu'est un système quasi-complet d'évènements dans un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.
- 7. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et soit $A \in \mathcal{A}$ un évènement. Énoncer une formule des probabilités totales pour $\mathbb{P}(A)$.
- 8. Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé et soit $A \in \mathscr{A}$ un évènement non négligeable. Définir la mesure de probabilité conditionnelle \mathbb{P}_A .
- 9. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et soient A et B deux évènements de \mathcal{A} . Énoncer une formule des probabilités composées pour $\mathbb{P}(A \cap B)$.
- 10. Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé et soient A et B deux évènements de \mathscr{A} . Définir l'indépendance de A et B.
- 11. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et soit $(A_i)_{i \in [\![1,n]\!]}$ une famille finie d'évènements de \mathcal{A} . Définir l'indépendance mutuelle des A_i .

22 Intégrales à paramètres

- Énoncer le théorème de convergence dominée à paramètre continu pour une intégrale à paramètre de la forme $\int_I f(x,t) dt$.
- Énoncer le théorème de continuité pour une intégrale à paramètre de la forme $\int_I f(x,t) dt$.
- Énoncer le théorème sur la classe \mathscr{C}^1 pour une intégrale à paramètre de la forme $\int_I f(x,t) \, \mathrm{d}t$.
- Énoncer le théorème sur la classe \mathscr{C}^k $(k\geqslant 2)$ pour une intégrale à paramètre de la forme $\int_I f(x,t)\,\mathrm{d}t.$