CHAPITRE 3 - NORMES

1 Normes sur un espace vectoriel

1.1 Généralités

Définition: Norme

Soit E un $\mathbb{K}\text{-espace}$ vectoriel. Une norme sur E est une fonction $N:E\to\mathbb{R}^+$ telle que :

- 1. N est positivement homogène : $\forall \lambda \in \mathbb{K}, \forall x \in E, N(\lambda x) = |\lambda|N(x)$;
- 2. N vérifie l'inégalité triangulaire : $\forall (x,y) \in E^2, \, N(x+y) \leqslant N(x) + N(y)$;
- 3. N vérifie l'axiome de séparation : $\forall x \in E, \ N(x) = 0 \Rightarrow x = 0_E.$

Remarques:

- On note en général les normes $\|\cdot\|$.
- Un espace vectoriel muni d'une norme est dit normé.

Définition: Distance associée

Soit $(E,\|\cdot\|)$ un $\mathbb K$ -espace vectoriel normé. On appelle distance associée à $\|\cdot\|$ sur E l'application :

$$\left\{ \begin{array}{ccc} E \times E & \to & \mathbb{R}^+ \\ (x,y) & \mapsto & \|x-y\| \end{array} \right.$$

Propriétés:

- Inégalité triangulaire : $d(x, z) \leq d(x, y) + d(y, z)$
- Propriété de séparation : $d(x, y) = 0 \Rightarrow x = y$.

1.2 Exemples de références

Définition : Normes sur \mathbb{K}^n

On pose:

$$||x||_1 = \sum_{k=1}^n |x_k|$$

$$||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{\frac{1}{2}}$$

$$||x||_{\infty} = \sup\{|x_k|, k \in [1, n]\}$$

Ce sont des normes sur \mathbb{K}^n .

Démonstration : $Cas \| \cdot \|_1$ et $\| \cdot \|_{\infty}$ à faire en cours.

Remarques:

- On peut généraliser avec $\|\cdot\|_p$ pour $p \ge 1$.
- $\|\cdot\|_{\infty}$ est bien en un sens (à préciser) la limite de $\|\cdot\|_p$ lorsque $p\to +\infty$.
- La généralisation ne fonctionne pas pour $p \in]0,1[$ (inégalité triangulaire non vérifiée).

Définition : Normes euclidienne sur un espace préhilbertienne

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien réel. L'application $\| \cdot \|$ définie par :

$$||x|| = \sqrt{\langle x, x \rangle}$$

est une norme sur E.

Démonstration : À faire en cours. La seule difficulté est l'inégalité triangulaire qui découle de l'inégalité de Cauchy-Schwarz. \Box

Exemples:

- Exemple sur $M_{n,p}(\mathbb{K})$;
- Exemple sur $C^0([0,1])$;
- généralisation avec un poids $w \in \mathcal{C}^0([0,1])$.

Définition : Norme sur un espace fonction bornée

Pour D un ensemble, on pose pour toute fonction $f:D\to\mathbb{K}$ bornée :

$$||f||_{\infty} = \sup\{|f(t)|, \ t \in D\}.$$

Cela définit une norme sur l'ensemble des fonctions bornées de D dans \mathbb{K} .

Exemple : Norme sur $C^0([0,1])$ (théorème des bornes atteintes)

Remarque : On note l'ensemble des fonctions bornées de D dans \mathbb{K} $L^{\infty}(D,\mathbb{K})$.

1.3 Parties d'espaces vectoriels normés

Définition : Boules et sphères

Soit E un espace vectoriel muni d'une norme $\|\cdot\|$. On appelle boule ouverte de centre a et de rayon r l'ensemble :

$$\mathring{B}(a,r) = \{ x \in E : ||x - a|| < r \}.$$

De même, on définit la boule fermée $\overline{B}(a,r)$ et la sphère S(a,r) :

$$\overline{B}(a,r) = \{x \in E : ||x-a|| \le r\}$$

 $S(a,r) = \{x \in E : ||x-a|| = r\}$

Exemple : boules et sphères sur \mathbb{R} muni de $|\cdot|$.

Remarque: $S(a,r) = \overline{B}(a,r) \setminus \mathring{B}(a,r)$.

Définition: Parties convexes d'un espace vectoriel

Soit E un espace vectoriel. Soit D un partie de E.

On dit que D est convexe lorsque pour tout $(x,y) \in D^2$ le segment [xy] est inclus dans D. Cela revient à dire :

$$\forall x, y \in D, \ \forall t \in [0, 1], \ (1 - t)x + ty \in D.$$

Exemples:

- Exemples simples dans \mathbb{R}^2 .
- Les boules (ouvertes ou fermées) sont convexes. Preuve à faire.

Définition : Partie bornée

Soit E un espace vectoriel muni d'une norme $\|\cdot\|$. Soit D une partie de E. On dit que D est bornée s'il existe a et r tel que $D \subset \overline{B}(a,r)$.

Remarques:

- la réunion de parties bornées est bornées.
- D est borné s'il existe M > 0 tel que :

$$\forall x \in D, \|x\| \leqslant M.$$

• on peut définir la notion de suites bornées et de fonctions bornées si leurs images sont bornées.

Concrètement $(u_n) \in E^{\mathbb{N}}$ est bornée si et seulement s'il existe M > 0 tel que $\forall n \in \mathbb{N}, ||u_n|| \leq M$.

De même, $f:I\to E$ est bornée si et seulement s'il existe M>0 tel que $\forall x\in I,\ \|f(x)\|\leqslant M.$

Attention! toutes ces définitions dépendent de la norme choisie.

2 Convergence de suites dans un espace normé

2.1 Généralités

Définition : Convergence d'une suite

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit $(x_n) \in E^{\mathbb{N}}$ et soit $\ell \in E$. On dit que (x_n) converge vers ℓ si :

$$||x_n - \ell|| \xrightarrow[n \to +\infty]{} 0.$$

Dans ce cas, on note $x_n \xrightarrow[n \to +\infty]{} \ell$.

Remarques:

- (x_n) est dite convergente s'il existe $\ell \in E$ tel que $x_n \xrightarrow[n \to +\infty]{} \ell$.
- (x_n) est dite divergente si elle n'est pas convergente.
- A priori, la nature d'une suite dépend de la norme choisie (et il y a effectivement des cas pathologiques que nous verrons).
- A fortiori, l'éventuelle limite peut dépendre de la norme choisie.

$\mathbf{Exemples}:$

• $E = \mathbb{K}^d$ muni de $\|\cdot\|_{+\infty}$. La convergence correspond à la convergence composante par composante.

• Le résultat précédent se généralise à d'autres espaces de dimension finie.

• Attention! Pas le cas en dimension infinie. Par exemple sur $C^0([0,1])$, étudier $f_n: t \mapsto t^n$.

• Sur \mathbb{K}^n , on peut montrer le même résultat pour $\|\cdot\|_1$ et $\|\cdot\|_2$ (exercice).

• Exemple de nature dépendant de la norme : $f_n: t \mapsto \left\{ \begin{array}{ll} 1-nt & \text{si } t < \frac{1}{n} \\ 0 & \text{si } t \geqslant \frac{1}{n} \end{array} \right.$

2.2 Propriétés

Proposition: Unicité de la limite

Soient (x_n) , ℓ et ℓ' tels que :

$$x_n \xrightarrow[n \to +\infty]{} \ell$$
 et $x_n \xrightarrow[n \to +\infty]{} \ell'$.

Alors $\ell = \ell'$.

Démonstration: À faire en cours.

Remarques:

- A priori encore, la limite dépend de la norme.
- On note l'éventuelle limite $\lim_{n\to+\infty} x_n$.
- Attention! lorsqu'on écrit $\lim_{n\to+\infty} x_n$, on sous-entend qu'une telle limite existe.

Proposition

Une suite convergente est bornée

Démonstration: À faire en cours.

Remarques:

- Encore une fois, tout dépend de la norme. On parle ici de convergence et de caractère borné *pour la même norme*.
- La réciproque est fausse.

Proposition

Le passage à la limite est compatible avec les combinaisons linéaires.

Démonstration: À faire en cours.

Proposition

Toute suite extraite d'une suite convergente est convergente.

De plus, la limite de la suite extraite est la limite de la suite de départ.

Démonstration: À faire en cours.

3 Comparaison des normes

Définition

Soient N_1 et N_2 deux normes sur un même espace E.

On dit que N_1 et N_2 sont équivalentes s'il existe deux constantes α et β telles que $N_1 \leqslant \alpha N_2$ et $N_2 \leqslant \beta N_1$.

Exemples : $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ sur \mathbb{K}^n sont équivalentes.

Remarque: Si $N_1 \leq \alpha N_2$, on dit que N_2 est plus fine que N_1 .

Proposition

Sur un espace de dimension finie, toutes les normes sont équivalentes.

Proposition

Soient N_1 et N_2 deux normes équivalentes. (x_n) est bornée pour N_1 si et seulement si elle est bornée pour N_2 .

Démonstration: À faire en cours.

Proposition

Soient N_1 et N_2 deux normes équivalentes. (x_n) est convergente pour N_1 si et seulement si elle est convergente pour N_2 .

De plus, dans ce cas, les limites sont les mêmes.

Démonstration: À faire en cours.

Remarques:

- Si une suite n'a pas la même nature pour deux normes, alors nécessairement les deux normes ne sont pas équivalentes. Par exemple $\|\cdot\|_{\infty}$ et $\|\cdot\|_2$ ne sont pas équivalentes sur $\mathcal{C}^0([0,1])$.
- En fait, la réciproque est également vraie : si deux normes ne sont pas équivalentes, alors il existe une suite qui est convergente pour l'une mais pas pour l'autre.
 - À faire en cours. démonstration en trouvant (x_n) telle que $N_1(x_n) > n^2 N_2(x_n)$.