Chapitre 6 - Intégrales généralisées

1 Fonctions continues par morceaux

1.1 Sur un segment

Définition

Soit I=[a,b]. Soit $f:I\to\mathbb{K}$ une fonction. On dit que f est continue par morceaux sur I s'il existe une subdivision (x_0,\ldots,x_n) de I (avec $a=x_0<\ldots< x_n=b$) telle que pour chaque indice $k\in[0,n-1]$, la restriction de f à l'intervalle ouvert $]x_k,x_{k+1}[$ soit prolongeable en une fonction continue sur l'intervalle fermé $[x_k,x_{k+1}]$.

Remarques:

- Une telle subdivision, si elle existe, est dite adaptée à f.
- La valeur d'une fonction aux bornes de la subdivision n'a pas d'influence sur le fait que la fonction soit continue par morceaux ou non.
- ullet En revanche, la définition implique que f admet une limite à gauche et à droite en tout point.

Exemples:

- Toute fonction continue sur un segment est continue par morceaux sur le segment.
- La fonction partie entière est continue par morceaux sur tout segment [a, b].
- La fonction $\mathbb{1}_{\mathbb{O}}$ n'est pas continue par morceaux sur [0,1].
- La fonction $f: t \mapsto \left\{ \begin{array}{ll} \tan(t) & \text{si } t \in]-\pi/2, \pi/2[\\ 0 & \text{si } t \in \{-\pi/2, \pi/2\} \end{array} \right.$ n'est pas continue par morceaux.

Propriétés :

- La somme et le produit de fonctions continues par morceaux sont continus par morceaux.
- La restriction d'une fonction continue par morceaux à un segment est à son tour continue par morceaux.
- Une fonction complexe est continue par morceaux sur un segment si et seulement si ses parties réelles et imaginaires le sont.
- La valeur absolue (ou le module) d'une fonction continue par morceaux sur un segment est encore continue par morceaux.

- Attention! L'inverse d'une fonction continue par morceaux n'est pas nécessairement continue par morceaux y compris si elle ne s'annule pas.
- Attention! La composée de deux fonctions continues par morceaux n'est pas nécessairement continue par morceaux. Exemple : $f(t) = t \sin(1/t)$ (prolongée en 0) et g(t) = 1 si t > 0 et 0 sinon. $g \circ f$ en 0^+ ?

1.2 Sur un intervalle quelconque

Définition

Une fonction est dite continue par morceaux sur un intervalle I si elle est continue par morceaux sur tout segment de I.

Exemples:

- Tout fonction continue sur un intervalle est continue par morceaux sur cet intervalle.
- La fonction partie entière est continue par morceaux sur \mathbb{R} .
- $f: t \mapsto \frac{1}{t}$ même en posant f(0) = 0 n'est pas continue par morceaux sur \mathbb{R} .

Remarques:

- En pratique, on autorise l'absence de limite aux bords de l'intervalle.
- \bullet La définition fonctionne également lorsque I est un segment!
- Les propriétés du cas sur segment se transposent naturellement.

1.3 Intégrales sur un segment

Définition

Soit I=[a,b] un segment de $\mathbb R$ et soit $f:I\to\mathbb K$ une fonction continue par morceaux. On définit :

$$\int_{a}^{b} f = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} \tilde{f}_{k}$$

où (x_0, \ldots, x_n) est une subdivision de I adpatée à f avec $x_0 = a$ et $x_n = b$ et où f_k désigne l'unique prolongement continue à $[x_k, x_{k+1}]$ de la restriction de f à $]x_k, x_{k+1}[$.

Remarque:

- La valeur ainsi définie ne dépend pas de la subdivision choisie.
- Cette définition généralise celle des intégrales de fonctions continues sur un segment.
- Changer la valeur d'une fonction en un nombre fini de points ne modifie pas la valeur de son intégrale.

Propriétés:

- Linéarité
- Relation de Chasles
- Positivité (large) et croissance (large) pour les fonctions à valeurs réelles
- Inégalité triangulaire
- Sommes de Riemann

Remarque:

- Attention, le stricte positivité est fausse
- $t \mapsto \int_a^t f$ n'est pas nécessairement une primitive de f.

2 Intégrales généralisées sur un intervalle semi-ouvert

2.1 Généralités

Définition

Soient $a\in\mathbb{R},\,b\in\overline{\mathbb{R}}$ et f une fonction continue sur [a,b[. Sous réserve d'existence, on note :

$$\int_{a}^{b} f = \lim_{x \to b} \int_{a}^{x} f.$$

Si cette limite existe et est finie, on dit que l'intégrale impropre $\int_a^b f$ converge en sa borne b. Dans le cas contraire, on dit que $\int_a^b f$ diverge.

Remarque : On peut définir de même les intégrales sur]a,b].

Exemples:

- $\int_0^{+\infty} e^{-t} dt$;
- $\int_0^1 \frac{1}{\sqrt{t}} dt$.

Remarque:

- $\bullet\,$ Il ne suffit pas que $f\to 0$ pour que l'intégrale converge !
- Contrairement par exemple aux séries, ce n'est pas une condition nécessaire non plus.

Proposition

Soit $a \in \mathbb{R}$ et $b \in \overline{\mathbb{R}}$ et f une fonction continue par morceaux sur [a, b].

- La convergence de $\int_a^b f$ ne dépend que du comportement de f au voisinage de b. Dit autrement pour tout $c \in [a, b[, \int_a^b f]$ converge si et seulement si $\int_c^b f$.
- Pour tout $c \in [a, b[$, on a $\int_a^b f = \int_a^c f + \int_c^b f$.

2.2 Exemples de référence

Proposition

- $\int_0^1 \ln \text{ converge en } 0$
- $\int_0^{+\infty} e^{-at} dt$ converge en $+\infty$ si et seulement si a > 0.
- $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge en $+\infty$ si et seulement si $\alpha > 1$
- $\int_0^1 \frac{1}{t^{\alpha}} dt$ converge en 0 si et seulement si $\alpha < 1$

Contre-exemple : $\int_0^{\pi/2} \tan$ est divergente en $\pi/2$.

Exercice: Discuter la nature de $\int_0^1 t^{\alpha} \ln(t) dt$ en fonction de α .

2.3 Critères

Lemme

Soient $a \in \mathbb{R}$ et $b \in \overline{R}$ et f une fonction continue par morceaux sur [a,b]. Si

- a < b;
- f est à valeurs positives sur [a, b[

alors l'intégrale $\int_a^b f$ converge en b si et seulement si la fonction $x\mapsto \int_a^x f$ est majorée sur [a,b[.

Démonstration : À faire en cours.

Remarque : on peut adapter au cas des fonctions négatives ou bien au cas a > b.

Théorème: Convergence par majoration

Soient $a \in \mathbb{R}$, $b \in \overline{R}$ et f et q deux fonctions continues par morceaux sur [a, b]. Si:

- *a* < *b*
- $0 \leqslant f \leqslant q \text{ sur } [a, b[$

alors la convergence en b de $\int_a^b g$ implique celle de $\int_a^b f$.

Démonstration : À faire en cours.

Intégrales généralisées sur un intervalle quelconque

Généralités

Définition

Soit I =]a, b[un intervalle ouvert non-vide de \mathbb{R} avec $(a, b) \in \overline{\mathbb{R}}^2$ et soit f une fonction continue par morceaux sur I. Soit enfin $c \in I$. Sous réserve d'existence des deux termes, on note :

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proposition

La valeur définie ci-dessus ne dépend pas du choix de c.

Démonstration: À faire rapidement.

Remarque: Ce découpage est nécessaire car il permet de demander que l'intégrale Exemples: converge indépendamment en a et en b.

Illustrons le problème avec $\int_{\mathbb{R}} t dt$. $\int_{-x}^{x} t dt = 0 \xrightarrow[x \to +\infty]{} 0$. Mais $\int_{-\infty}^{0} et \int_{0}^{+\infty} divergent$. Cela pose problème car suivant comme on prend la limite, le résultat de l'intégrale sera différent.

Par exemple: $\int_{-x+1}^{x+1} t dt = \left[\frac{t^2}{2} \right]_{-x+1}^{x+1} = \frac{(x+1)^2}{2} - \frac{(-x+1)^2}{2} = 2x \xrightarrow[x \to +\infty]{+} \infty.$

Exemples:

• $\int_{-\infty}^{+\infty} e^{-|t|} dt$ converge

- $\int_0^{+\infty} \frac{dt}{t^2}$ converge en $+\infty$ mais pas en 0
- $\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{1+t^2}$ converge.

Propriétés:

- Linéarité
- Relation de Chasles
- Positivité (large)
- Croissance (large)
- $\int_a^b f$ converge si et seulement si $\int_a^b \text{Re}(f)$ et $\int_a^b \text{Im}(f)$ convergent.
- Compatibilité avec la conjugaison complexe.

Remarque: Une intégrale peut être convergente mais somme de deux intégrales divergentes.

Techniques de calculs

Théorème: Intégration par parties

Soient a et b deux éléments de \overline{R} et soient f et q de classe \mathcal{C}^1 par morceaux entre $a ext{ et } b.$

Si le produit fq admet une limite finie en a et en b alors :

- Les intégrales $\int_a^b fg'$ et $\int_a^b f'g$ ont même nature;
- sous réserve d'existence, $\int_a^b fg' = [fg]_a^b \int_a^b f'g$.

Remarques:

- $[fg]_a^b$ désigne la différence des limites
- définition de C^1 par morceaux
- Pas nécessaire de vérifier les hypothèses de régularité pour les applications pratiques.
- Si fq n'admet pas de limite, on peut essayer de se ramener au cas sur un segment.

- Montrer que $\int_{-\infty}^{+\infty} \frac{3t^2+t^4}{(1+t^2)^3} dt$ converge et vaut $\frac{3\pi}{4}$.
- Montrer que $\int_1^{+\infty} \frac{\ln t}{(t+1)^2} dt$ converge et vaut $-\ln(2)$.

Théorème : Changement de variable

Soient a, b, α, β dans \overline{R} , f continue par morceaux sur]a, b[et $\varphi :]\alpha, \beta[\rightarrow]a, b[$ une bijection strictement monotone de classe \mathcal{C}^1 . Alors :

- Les intégrales $\int_a^b f(t) dt$ et $\int_\alpha^\beta f(\varphi(u)) \varphi'(u) du$ sont de même nature;
- Si φ est strictement croissante et que les couples (α,β) et (a,b) sont dans le même ordre alors :

$$\int_{a}^{b} f(t)dt = \int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u)du$$

• Si φ est strictement décroissante et que les couples (α, β) et (a, b) sont dans le même ordre alors :

$$\int_{a}^{b} f(t)dt = -\int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u)du$$

Remarques:

- Comme pour l'IPP, on n'impose pas de rappeler les hypothèses de régularité
- la bijectivité permet d'avoir $f \circ \varphi$ continue par morceaux et d'étudier les limites
- On peut toujours changer les orientations avec $\int_a^b = -\int_b^a$.

Exemples:

- Montrer que $\int_{-\infty}^{+\infty} \frac{e^t}{e^{2t}+1} dt$ converge et vaut $\frac{\pi}{2}$.
- À l'aide du changement $u=\frac{1}{t}$, montrer que $\int_1^{+\infty} \frac{\mathrm{e}^{-\frac{1}{t}}}{t^2} \mathrm{d}t$ converge et vaut $1-\mathrm{e}^{-1}$.
- À l'aide du changement $x = \cos(t)$, montrer que $\int_{-1}^{+1} \frac{x^2}{1-x^2} dx$ converge et vaut $\frac{\pi}{2}$.

Exercice : Soit $a \in]0, +\infty]$ et soit f une fonction continue]-a, a[, supposée paire ou impaire.

- 1. Montrer que $\int_{-a}^{a} f$ converge si et seulement si $\int_{0}^{a} f$ converge.
- 2. En cas de convergence, montrer que :
 - (a) si f est paire, alors $\int_{-a}^{a} f = 2 \int_{0}^{a} f$;
 - (b) si f est impaire, alors $\int_{-a}^{a} f = 0$.
- 3. Que faut-il penser de $\int_{-1}^{1} \frac{t}{1-t^2} dt$?

4 Convergence absolue

4.1 Généralités

Définition

Soit f une fonction continue par morceaux sur un intervalle I. On dit que $\int_I f$ converge absolument si $\int_I |f|$ converge.

On dit aussi que f est intégrale sur I.

Si I est de la forme [a, b], avec $b \in \overline{R}$, on dit également que f est intégrable en b.

Exemples:

- Si f est positive, $\int_I f$ est convergente si et seulement si elle est absolument convergente.
- \$\int_0^{+\infty} \frac{\sin t}{t} \, \text{d}t\$ est convergente mais pas absolument.
 La divergence absolue est assez difficile à montrer. En revanche, montrer la convergence (non-absolue) est un classique. Faisons-le par IPP.

Proposition

Soit $a \in \mathbb{R}$. Dire qu'une fonction continue par morceaux f est intégrable en a équivaut à dire que la fonction $t \mapsto f(a+t)$ est intégrable en 0.

Exemple: $t \mapsto \frac{1}{|t-a|^{\alpha}}$.

Théorème

Soit f une fonction continue par morceaux sur un intervalle I. Si $\int_I f$ est absolument convergente, alors :

- elle est convergente et
- $\left| \int_{I} f \right| \leqslant \int_{I} |f|$.

Démonstration : À faire rapidement

Définition

Soit I un intervalle de \mathbb{R} .

L'ensemble des fonctions continues par morceaux intégrables de I dans $\mathbb K$ est noté $\mathrm{L}^1(I,\mathbb K).$

Théorème

Soit I un intervalle de \mathbb{R} . L'ensemble $L^1(I,\mathbb{K})$ est un sous-espace vectoriel de \mathbb{K}^I .

Proposition

Soit I un intervalle de $\mathbb{R},$ et soit f une fonction intégrable sur I. Si :

- \bullet I n'est pas réduit à un point
- \bullet f est continue sur I
- f est positive sur I
- $\int_I f = 0$

alors f est identiquement nulle sur I.

Remarque : l'hypothèse de continuité est indispensable.

Démonstration: À faire en cours.

4.2 Critères de comparaison

Théorème

Soient $a \in \mathbb{R}$ et $b \in \overline{\mathbb{R}}$ et f et g deux fonctions continues par morceaux sur [a, b[.

- Si f(t) = O(g(t)) alors l'intégrabilité de g en b implique l'intégrabilité de f en b.
- Si $f(t) \underset{t \to b}{\sim} g(t)$ alors l'intégrabilité de g en b est équivalente à l'intégrabilité de f en b.

Exemples:

- $\int_0^1 x^n \ln(x) dx$ converge pour tout n
- $\int_0^{+\infty} t e^{-2t} dt$ converge
- À quelle condition sur α , $t \mapsto \frac{1}{(t+\ln(t))^{\alpha}}$ est-elle intégrable sur $[1,+\infty[\,?\,]$
- $\int_0^{+\infty} \frac{\sin t}{t\sqrt{t}} dt$ converge.

Remarques:

• le cas en petit o se déduit de O.

• Attention, il faut la convergence absolue.

Exemple: $\int_1^{+\infty} \frac{e^{it}}{\sqrt{t}} dt$ converge mais $\int_1^{+\infty} \frac{1}{t} dt$ diverge.

• Méthode : calcul direct, équivalence, comparaison à $\frac{1}{t^2}$, puis $\frac{1}{t^{\alpha}}$, puis il faut de l'imagination!

5 Théorème de convergence dominée

Théorème

Soit (f_n) une suite de fonctions continues par morceaux sur un même intervalle I et soit f une fonction continue par morceaux sur I. Si:

- (f_n) converge simplement vers f;
- $\bullet\,$ il existe une fonction φ intégrable sur I telle que :

$$\forall n \in \mathbb{N}, \ \forall t \in I, \ |f_n(t)| \leqslant \varphi(t)$$

(hypothèse de domination indépendamment de n)

alors:

- f et les f_n sont intégrables sur I et
- $\int_I f_n \xrightarrow[n \to +\infty]{} \int_I f$.

Démonstration : Complètement hors-programme!

Exemple: $\int_0^{\frac{\pi}{2}} \sin^n t dt \xrightarrow[n \to +\infty]{} 0.$

Théorème: Cas des séries

Soit $\sum f_n$ une série de fonctions sur un intervalle I et soit S une fonction continue par morceaux sur I.

Si:

- les fonctions f_n sont intégrables sur I;
- $\sum f_n$ converge simplement vers S;
- $\sum \int_I |f_n|$ converge

alors:

- $\bullet \ S$ est intégrable sur I
- On peut intégrer terme à terme :

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n.$$

Démonstration : Hors-programme

Exemples:

- $\int_0^{+\infty} \frac{t}{e^t 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}$
- Soit $a \in \mathbb{C}^{\mathbb{N}}$ une suite sommable de nombres complexes. On note $f(t) = \sum_{n=1}^{+\infty} a_n \sin(nt)$. Montrer que pour tout $m \in \mathbb{N}^*$:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(mt) dt = a_m.$$

- $\int_0^{+\infty} \frac{\mathrm{d}t}{1+\mathrm{e}^t} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$.
- On pose $f_0 = \sin \cdot \mathbb{1}[0, 2\pi]$ et pour tout $n \ge 1$, $f_n : t \mapsto f_0(t n\pi)$. Que dire de $\sum_{n=0}^{+\infty} \int_{t=0}^{+\infty} f_n(t) dt$ et $\int_{t=0}^{+\infty} \sum_{n=0}^{+\infty} f_n(t) dt$?