Correction DM 3 - Suites et séries de fonctions

Exercice 1 - CCINP PC 2021 (Extrait de l'exercice 2)

$$\lim_{x \to +\infty} f(x) = 0 \quad \text{et} \quad \forall x \in]0, +\infty[, \ f(x+1) + f(x) = \frac{1}{x^2}. \tag{1}$$

Partie I - Existence et unicité de la solution du problème (1). Existence de la solution

- 1. **Méthode 1 :** Pour $x \in \mathbb{R}_+^*$ fixé, la série de terme général $\varphi_k(x)$ est une série alternée. En effet :
 - $\frac{(-1)^k}{(x+k)^2}$ est de signe alterné;
 - $\left(\frac{1}{(x+k)^2}\right)_k$ est décroissante (car la fonction $t \mapsto \frac{1}{t^2}$ l'est);
 - et $\frac{1}{(x+k)^2} \xrightarrow[k \to +\infty]{} 0$.

Donc d'après le théorème spécial des séries alternées, $\sum_{k=0}^{+\infty} \varphi_k(x)$ converge à x fixé.

Et donc $\sum_{k\geqslant 0} \varphi_k$ converge simplement sur $]0,+\infty[$.

Méthode 2 : On a pour tout $x \in \mathbb{R}_+^*$ et pour tout $n \in \mathbb{N}$:

$$|\varphi_k(x)| = \frac{1}{(x+k)^2}.$$

Or : $\frac{1}{(x+k)^2} \sim \frac{1}{k \to +\infty} \frac{1}{k^2}$. Comme tout est positif, par critère d'équivalence, la série $\sum_{k \geqslant 0} \frac{1}{(x+k)^2}$ a la même nature que la série de Riemann $\sum_{k \geqslant 1} \frac{1}{k^2}$ qui est convergente (2 > 1).

Donc la série $\sum_{k\geqslant 0} \varphi_k(x)$ converge absolument donc converge.

Et donc $\sum_{k\geqslant 0} \underline{\varphi_k}$ converge simplement sur $]0,+\infty[$.

2. Soit $x \in]0, +\infty[$. On a:

$$\varphi(x+1) + \varphi(x) = \sum_{k\geqslant 0} \frac{(-1)^k}{(x+1+k)^2} + \sum_{k\geqslant 0} \frac{(-1)^k}{(x+k)^2}$$

$$= \sum_{k\geqslant 0} \left(-\frac{(-1)^{k+1}}{(x+1+k)^2} + \frac{(-1)^k}{(x+k)^2} \right)$$
(la somme existe puisque les séries convergent)
$$= \lim_{k\to +\infty} -\frac{(-1)^{k+1}}{(x+1+k)^2} + \frac{(-1)^0}{(x+0)^2} = \boxed{\frac{1}{x^2}}.$$
(série télescopique convergente)

3. De la même manière que dans la question 1, on constate qu'à x fixé, $\sum_{k\geqslant 0} \varphi_k(x)$ est une série alternée. D'après le théorème spécial des séries alternées, on a $|R_n(x)| \leqslant |\varphi_{n+1}(x)|$ où $R_n(x) = \sum_{k=n+1}^{+\infty} \varphi_k(x)$ est le reste de la série alternée. Donc :

$$\forall x \in]0, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leq \frac{1}{(x+n+1)^2}.$$

4. On a déjà montré que pour tout $x \in]0, +\infty[: \varphi(x+1) + \varphi(x) = \frac{1}{x^2}]$. Il reste donc à montrer que $\lim_{x \to +\infty} \varphi(x) = 0$.

Pour tout $x \in]0, +\infty[$, et pour $n \in \mathbb{N}$ fixé, on a :

$$\left| \varphi(x) - \sum_{k=0}^{n} \varphi_k(x) \right| = \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leqslant \frac{1}{(x+n+1)^2}$$

En particulier, pour n = 0, on a : $|\varphi(x) - \varphi_0(x)| \leq \frac{1}{(x+1)^2}$.

Or $|\varphi(x) - \varphi_0(x)| \ge |\varphi(x)| - |\varphi_0(x)|$. Donc :

$$\underbrace{|\varphi(x)|}_{\geqslant 0} \leqslant \underbrace{|\varphi_0(x)|}_{x \to +\infty} + \underbrace{\frac{1}{(x+1)^2}}_{x \to +\infty}.$$

Et ainsi, par encadrement:

$$\varphi(x) \xrightarrow[x \to +\infty]{} 0.$$

Unicité de la solution

5. Soit f une solution du problème. Procédons par récurrence sur $n \in \mathbb{N}$.

Il y a ici deux « pour tout » : un pour x et un pour n. Soyons donc précis dans notre rédaction. Posons pour tout $n \in \mathbb{N}$ la proposition :

$$(H_n)$$
: $\forall x \in]0, +\infty[, f(x) = (-1)^{n+1}f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2})$.

Ainsi, pour chaque n, on montrera un « pour tout x ».

• Initialisation: pour n=0, on a pour tout $x \in \mathbb{R}_+^*$:

$$(-1)^{n+1}f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2} = -f(x+1) + \frac{1}{x^2}.$$

Or comme f est solution du problème, on a $f(x+1) + f(x) = \frac{1}{x^2}$ (pour tout x). Et ainsi :

$$(-1)^{0+1}f(x+0+1) + \sum_{k=0}^{0} \frac{(-1)^k}{(x+k)^2} = f(x).$$

La propriété est bien initialisée.

• **Hérédité :** Soit $n \in \mathbb{N}$. On suppose H_n vraie c'est-à-dire :

$$\forall x \in]0, +\infty[, f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

Montrons que H_{n+1} est vraie.

On sait que f est solution du problème. Donc pour tout $x \in]0, +\infty[$, on a $f(x+1) + f(x) = \frac{1}{x^2}$. En particulier, pour x = x + n + 1, on obtient :

$$f(x + (n+1) + 1) + f(x + n + 1) = \frac{1}{(x+n+1)^2}.$$

Ainsi pour $x \in \mathbb{R}_+^*$:

$$f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$$

$$= (-1)^{n+1} \left(\frac{1}{(x+n+1)^2} - f(x+(n+1)+1) \right) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$$

$$= (-1)^{(n+1)+1} f(x+(n+1)+1) + \frac{(-1)^{n+1}}{(x+n+1)^2} + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}$$

$$= \left((-1)^{(n+1)+1} f(x+(n+1)+1) + \sum_{k=0}^{n+1} \frac{(-1)^k}{(x+k)^2} \right).$$

La propriété est donc héréditaire.

Ainsi, par principe de récurrence, on a :

$$\forall n \in \mathbb{N}, \ \forall x \in]0, +\infty[, \ f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

6. Soit f une solution du problème. On a donc :

$$\forall x \in]0, +\infty[, \ \forall n \in \mathbb{N}, \ f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

Et on a aussi : $\lim_{x\to+\infty} f(x) = 0$. Donc : $\lim_{n\to+\infty} f(x+n+1) = 0$ (x fixé).

Donc à x fixé, on a :

$$f(x) = \underbrace{(-1)^{n+1} f(x+n+1)}_{n \to +\infty} + \underbrace{\sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}}_{n \to +\infty}.$$

Donc en passant à la limite, on obtient :

$$f(x) = \varphi(x).$$

On vient de prouver que sous réserve d'existence, l'unique solution du problème est φ . Et comme on a déjà prouvé l'existence, on en déduit que φ est l'unique solution du problème.

Partie II - Étude de la solution du problème (1).

7. Soit $\epsilon > 0$. On a pour tout $k \in \mathbb{N}$ et pour tout $x \in [\epsilon, +\infty[$:

$$|\varphi_k(x)| = \left| \frac{(-1)^k}{(x+k)^2} \right| = \frac{1}{(x+k)^2} \leqslant \frac{1}{(\epsilon+k)^2}.$$

Donc $\|\varphi_k\|_{\infty} \leqslant \frac{1}{(\epsilon+k)^2}$ par définition de la borne supérieure. Or $\frac{1}{(\epsilon+k)^2} \underset{k \to +\infty}{\sim} \frac{1}{k^2}$. Comme tout est positif, par critère d'équivalence, la série $\sum_{k\geqslant 0} \frac{1}{(\epsilon+k)^2}$ a la même nature que la série de Riemann $\sum_{k\geqslant 1} \frac{1}{k^2}$ qui est convergente.

Par critère de comparaison, la série à termes positifs $\sum \|\varphi_k\|_{\infty}$ converge.

Donc $\sum \varphi_k$ converge normalement sur $[\epsilon, +\infty[$ et donc uniformément.

8. Soit $\epsilon \in \mathbb{R}_+^{\star}$. Comme $\sum \varphi_k$ converge uniformément sur $[\epsilon, +\infty[$ et que pour tout $k \in \mathbb{N}$, φ_k est continue sur $[\epsilon, +\infty[$, $\sum_{k \geq 0} \varphi_k$ est continue sur $[\epsilon, +\infty[$.

Et comme le résultat est valide pour tout $\epsilon > 0$, $\sum_{k \ge 0} \varphi_k$ est continue sur $]0, +\infty[$.

De plus, comme φ est solution du problème, on a pour tout $x \in \mathbb{R}_+^* : \varphi(x+1) + \varphi(x) = \frac{1}{r^2}$.

On a donc pour tout $x \in \mathbb{R}_+^*$:

$$x^{2}\varphi(x) = 1 - x^{2} \times \underbrace{\varphi(x+1)}_{x \to 0^{+}} \varphi(1) \in \mathbb{R}$$

par continuité de φ en 1. Donc $x^2\varphi(x)\xrightarrow[x\to 0^+]{}1$ et ainsi :

$$\varphi(x) \underset{n \to +\infty}{\sim} \frac{1}{x^2}.$$

9. Soit $\epsilon > 0$. On a pour tout $x \in [\epsilon, +\infty[$:

$$|\varphi'_k(x)| = \left| \frac{2(-1)^{k+1}}{(x+k)^3} \right| = \frac{1}{(x+k)^3} \leqslant \frac{1}{(\epsilon+k)^3}.$$

Ainsi, par définition de la borne supérieure $\|\varphi_k'\|_{\infty} \leqslant \frac{1}{(\epsilon+k)^3}$. Allons, un peu plus vite : on sait que $\sum_{k\geqslant 0} \frac{1}{(\epsilon+k)^3}$ converge (en comparant à une série de Riemann). Puis par comparaison de séries à termes positifs, $\sum \|\varphi_k'\|_{\infty}$ converge.

Donc $\sum_{k\geqslant 0} \varphi'_k$ converge normalement sur $[\epsilon, +\infty[$ et donc uniformément sur cet intervalle.

Ainsi on a:

- pour tout $k \in \mathbb{N}$, φ_k est \mathcal{C}^1 sur $[\epsilon, +\infty[$;
- la série $\sum_{k\geqslant 0} \varphi_k$ converge simplement vers φ ;
- la série $\sum_{k \ge 0} \varphi'_k$ converge uniformément.

Donc φ est \mathcal{C}^1 sur $[\epsilon, +\infty[$ et :

$$\forall x \in [\epsilon, +\infty[, \varphi'(x) = \sum_{k=0}^{+\infty} \varphi'_k(x) = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}.$$

Et comme cela est valable pour tout $\epsilon > 0$, on peut généraliser sur \mathbb{R}_{+}^{\star} .

Ainsi φ est $\overline{\mathcal{C}^1}$ sur $]0, +\infty[$ et :

$$\forall x \in]0, +\infty[, \varphi'(x) = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}.$$

10. On peut rapidement vérifier que pour x fixé, $\sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}$ est une série alternée.

Donc $\left|\sum_{k=n+1}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}\right| \leqslant \frac{2}{(x+n+1)^3}$. En particulier, pour n=0, on obtient :

$$\left| \sum_{k=1}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3} \right| \leqslant \frac{2}{(x+1)^3}.$$

Ainsi pour tout $x \in]0, +\infty[$, on a :

$$\varphi'(x) = -\frac{2}{x^3} + \sum_{k=1}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3} \leqslant -\frac{2}{x^3} + \frac{2}{(x+1)^3} < 0.$$

Donc φ est décroissante sur \mathbb{R}_+^* .

11. Pour tout $x \in \mathbb{R}_+^*$, on a $\varphi(x) + \varphi(x+1) = \frac{1}{x^2}$. Or $\varphi(x) \geqslant \varphi(x+1)$. Donc : $\left| 2\varphi(x) \geqslant \frac{1}{x^2} \right|$.

C'est vrai en particulier pour x > 1. Puis de même, on a pour $x \ge 1$:

$$\varphi(x-1) + \varphi(x-1+1) = \frac{1}{(x-1)^2}$$

Or $\varphi(x-1) \geqslant \varphi(x)$. Et donc : $2\varphi(x) \leqslant \frac{1}{(x-1)^2}$.

On en déduit l'encadrement :

$$1 \leqslant 2x^{2}\varphi(x) \leqslant \underbrace{\frac{x^{2}}{(x-1)^{2}}}_{x \to +\infty}.$$

Ainsi $2x^2\varphi(x) \xrightarrow[x \to +\infty]{} 1$ par encadrement et donc :

$$\varphi(x) \underset{x \to +\infty}{\sim} \frac{1}{2x^2}.$$