Chapitre 8 - Séries entières

1 Rayon de convergence

1.1 Généralités

Définition: Série entière

Soit $(a_n)_{n\in\mathbb{N}}$ une suite fixée de nombres complexes. On appelle **série entière de la variable réelle ou complexe** z **associée à cette suite** la série de foncions $\sum f_n$ où les f_n sont les fonctions de \mathbb{R} ou de \mathbb{C} définies par : $f_n(z) = a_n z^n$. (a_n) est appelée la suite des coefficients de cette série entière. La série entière elle-même est notée $\sum a_n z^n$.

Remarque : les notations sont malheureusement ambiguës. Suivant le contexte, $\sum a_n z^n$ peut désigner la série entière (et donc une série de fonctions) ou bien la série numérique avec z fixé. **Exemple :** $\sum \frac{z^n}{n!}$.

Lemme : Lemme d'Abel

Soit $z_0 \in \mathbb{C}$. Si $(a_n z_0^n)$ est bornée alors pour tout z tel que $|z| < |z_0|$, la série numérique $\sum a_n z^n$ est absolument convergente.

Démonstration: À faire en classe.

Définition : Rayon de convergence

On appelle rayon de convergence R de la série entière $\sum a_n z^n$ la borne supérieure dans $[0, +\infty] = \mathbb{R}_+ \cup \{+\infty\}$ de l'ensemble des réels positifs tels que la suite $(a_n r^n)$ est bornée.

Remarque : On note parfois le rayon de convergence $R(\sum a_n z^n)$. **Exemples :**

- Le rayon de convergence de $\sum z^n$ est 1.
- Le rayon de convergence de $\sum nz^n$ est 1.
- De manière générale, $R(\sum n^{\alpha}z^n)=1$ pour tout $\alpha\in\mathbb{R}$ (quitte à commencer la somme à n=1).

- Le rayon de convergence de $\sum \frac{z^n}{n!}$ est $+\infty$.
- Le rayon de convergence de $\sum n!z^n$ est 0.

Proposition

Soit R le rayon de convergence de la série entière $\sum a_n z^n$.

- Si |z| < R alors la série numérique $\sum a_n z^n$ converge absolument.
- \bullet Si |z|>R alors la série numérique $\sum a_n z^n$ diverge grossièrement.

Démonstration: À faire en classe.

Remarque : Si |z| = R, on ne peut pas *a priori* conclure. Par exemple $\sum \frac{z^n}{n}$ a pour rayon de convergence 1. La série numérique converge pour z = -1 (TSSA) mais diverge pour z = 1 (série harmonique).

Définition : Intervalle ouvert et disque ouvert de convergence

Soient $\sum a_n z^n$ une série entière et R son rayon de convergence.

Si la série entière est définie sur \mathbb{R} , on appelle intervalle ouvert de convergence l'intervalle] -R,R[.

Si la série entière est définie sur \mathbb{C} , on appelle disque ouvert de convergence $\circ B(0,R)=\{z\in\mathbb{C},\ |z|< R\}.$

Remarque : le cercle $S(0,R)=\{z\in\mathbb{C},\ |z|=R\}$ est appelé le cercle d'incertitude de la série entière.

1.2 Calcul de rayon de convergence

Proposition

Soit $\sum a_n z^n$ une série entière. On note R son rayon de convergence.

- Si $\sum a_n z_0^n$ converge alors $R \geqslant |z_0|$.
- Si $\sum a_n z_0^n$ diverge alors $R \leq |z_0|$.
- Si $\sum a_n z_0^n$ est semi-convergente (convergente mais pas absolument) alors $R = |z_0|$.

П

Proposition: Comparaison de séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières. On note R_a et R_b leurs rayons de convergence respectifs.

- Si $a_n = O(b_n)$ alors $R_a \geqslant R_b$.
- A fortiori, si $a_n = o(b_n)$ alors $R_a \geqslant R_b$.
- Si $|a_n| \sim |b_n|$ alors $R_a = R_b$.

Exemple : Minorer le rayon de convergence de $\sum a_n z^n$ où a_n est le nombre de diviseurs entiers de n.

Proposition : Règle de d'Alembert

Soit $\sum a_n z^n$ une série entière telle que ses coefficients sont non nuls à partir d'un certain rang. Notons R son rayon de convergence.

Si
$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to +\infty]{} \ell \in [0, +\infty]$$
 alors:

- si $\ell = 0$, alors $R = +\infty$;
- si $\ell \in \mathbb{R}_+^*$ alors $R = \frac{1}{\ell}$;
- si $\ell = +\infty$ alors R = 0.

Exemple : Déterminer le rayon de convergence de $\sum a_n z^n$ où $a_n = \frac{(2n)!}{n!n^n}$

1.3 Opérations arithmétiques

Proposition : Somme de séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières. On note R_a et R_b leurs rayons de convergence respectifs.

Le rayon de convergence R de la série entière $\sum (a_n + b_n) z^n$ vérifie $R \geqslant \min(R_a, R_b)$. De plus, si $R_a \neq R_b$ alors $R = \min(R_a, R_b)$.

Proposition : Rappel : produit de Cauchy de deux séries numériques

Soit $\sum a_n$ et $\sum b_n$ deux séries numériques. On pose $c_n = \sum_{k=0}^n a_k b_{n-k}$. Si $\sum a_n$ et $\sum b_n$ convergent absolument alors $\sum c_n$ converge absolument et :

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

Proposition : Produit de Cauchy de deux séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières. On note R_a et R_b leurs rayons de convergence respectifs.

On pose $c_n = \sum_{k=0}^n a_k b_{n-k}$. La série entière $\sum c_n z^n$ est appelée le produit de Cauchy de $\sum a_n z^n$ et $\sum b_n z^n$.

Le rayon de convergence R de la série entière $\sum c_n z^n$ vérifie $R \geqslant \min(R_a, R_b)$.

2 Régularité de la somme d'une série entière

Dans cette partie, pour une série entière $\sum a_n z^n$ de rayon de convergence, on considère la fonction somme définie sur]-R,R[par :

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Cette fonction définie d'une partie de $\mathbb R$ dans $\mathbb C$ peut être étudiée et on s'intéresse particulièrement à sa régularité. L'étude de la régularité en -R et R n'est pas un objectif du programme.

2.1 Convergence normale et continuité

Proposition: Convergence normale sur tout segment

Soit $[a, b] \subset]-R, R[$. La série entière converge normalement sur [a, b].

Démonstration : À faire en classe.

Proposition : Continuité sur les réels

S est continue sur]-R,R[.

Démonstration: À faire en classe.

Remarque : on peut aussi considérer la fonction somme \underline{S} définie sur le disque ouvert de convergence. C'est une fonction des complexes dans les complexes. On peut aussi donner un sens à la continuité d'une telle fonction en tant que fonction d'un espace vectoriel normé dans lui-même. Mais pour l'instant, nous n'avons pas les outils pour étudier ce point.

2.2 Primitive

Proposition

S admet une primitive sur]-R,R[. De plus, on a pour tout $x\in]-R,R[$:

$$\int_0^x \left(\sum_{n=0}^{+\infty} a_n t^n \right) dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

Démonstration: À faire en classe.

Remarque : en tant que série entière, $\sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ a un rayon de convergence R' et on déduit de ce qui précède que $R' \geqslant R$. On peut en fait montrer que R = R'. En effet, soit $t = R + \epsilon$ avec $\epsilon > 0$. Montrons que $\sum \frac{a_n}{n+1} t^n$ diverge grossièrement. On a :

$$\frac{a_n}{n+1}t^n = a_n(t+\epsilon/2)^n \underbrace{\frac{(1+\epsilon)^n}{(n+1)(1+\epsilon/2)^n}}_{\to +\infty}.$$

Le seul moyen d'avoir $\frac{a_n}{n+1}t^n \to 0$ serait d'avoir $a_n(t+\epsilon/2)^n \to 0$. Mais $\sum a_n(t+\epsilon/2)^n$ diverge grossièrement donc ce n'est pas le cas.

On peut en fait généraliser ce résultat avec la proposition suivante.

Proposition

 $\sum a_n z^n$ et $\sum n a_n z^n$ ont même rayon de convergence.

2.3 Dérivées successives

Proposition

Avec les notations précédentes :

- S est \mathcal{C}^{∞} sur]-R,R[;
- pour tout $k \in \mathbb{N}$ et pour tout $x \in]-R,R[$, on a :

$$S^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$

• pour tout $k \in \mathbb{N}$, on a $a_k = \frac{S^{(k)}(0)}{k!}$.

Démonstration: À faire en classe.

Remarque : on remarque en particulier que le comportement d'une série entière est entièrement déterminée par son comportement au voisinage de l'origine.

3 Développement en séries entières

3.1 Généralités

Définition : Fonction développable en série entière

Soit $f: I \to \mathbb{C}$. Soit r > 0. On dit que f est développable en série entière sur $]-r,r[\subset I$ s'il existe une série entière $\sum a_n x^n$ de rayon de convergence $R \geqslant r$ tel que :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Exemple:

- $x \mapsto \frac{1}{1-x}$ est développable en série entière sur] -1, 1[;
- exp est développable en série entière sur \mathbb{R} ;
- $x \mapsto \ln(1+x)$ est développable en série entière sur] -1,1[. Par construction, elle ne l'est pas en dehors (puisque non définie en x=-1).

Définition : Série de Taylor

Soit f une fonction de classe C^{∞} sur]-r,r[. On appelle série de Taylor de f la série entière $\sum \frac{f^{(n)}(0)}{r!}x^n$.

Proposition: Unicité du développement en série entière

Si f est développable en série entière sur]-r,r[alors :

- la série de Taylor converge sur]-r,r[;
- pour tout $x \in]-r, r[$, on a $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

${\bf Remarques:}$

- Si la fonction est développable en série entière, alors nécessairement la série de Taylor est la série correspondante.
- En revanche, la série de Taylor peut exister sans que la fonction ne soit développable en série entière, même si la fonction est $C^{+\infty}$ sur]-r,r[.

On peut par exemple considérer la fonction $f: x \mapsto e^{-\frac{1}{x^2}}$ prolongée par continuité en 0. Elle est \mathcal{C}^{∞} et toutes ses dérivées successives en 0 sont nulles. Donc la série de Taylor existe et converge (sur \mathbb{R} entier) mais vaut systématiquement 1. Ainsi il n'existe pas d'intervalle ouvert de coïncidence entre la série entière et la fonction.

- Dit autrement, être développable en série entière est une condition de régularité plus forte que $C^{+\infty}$.
- Dans les cas désespéré, on peut chercher à montrer le caractère développable en série entière avec le théorème suivant.

Proposition : Formule de Taylor avec reste intégral

Soit $n \in \mathbb{N}$ et soit f une application de classe \mathcal{C}^{n+1} sur un intervalle I et soit $a \in I$. Alors :

$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \int_{a}^{x} \frac{(x - t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Remarques:

- Soit $x \in I$ fixé. Si $\int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt \xrightarrow[n \to +\infty]{} 0$ alors $\sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k \xrightarrow[n \to +\infty]{} f(x)$. Donc la série numérique converge et f est bien égale à la série entière en x. Si c'est vrai pour tout $x \in]-r, r[$ alors f est visiblement développable en série entière sur]-r, r[.
- En pratique, on pourra montrer que $||f^{(n)}||_{\infty,V} = O(n!)$ sur un voisinage $V \subset]-1,1[$ de 0 fixé. Dans ce cas, en effet, la condition précédente est remplie.
- J'insiste, cette méthode est à utiliser en dernier recours uniquement. En effet, il va falloir calculer les dérivées successives de f à l'infini, ce qui peut suivant la situation devenir très vite très compliqué.

3.2 Développements des fonctions usuelles

À partir de la somme d'une série géométrique on peut montrer :

- $\forall x \in]-1, 1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n.$
- $\forall x \in]-1,1[, \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n.$
- $\forall x \in]-1,1[, \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}.$
- $\forall x \in]-1,1[, \ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}.$
- $\forall x \in]-1,1[, \frac{1}{1+x^2} = -\sum_{n=0}^{+\infty} (-1)^n x^{2n}.$
- $\forall x \in]-1,1[, \arctan(x) = -\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$

On peut montrer que à partir des théorèmes de régularité que :

- $\forall x \in \mathbb{R}, \ e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$
- $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$.
- $\forall x \in \mathbb{R}, \text{ sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}.$
- $\forall z \in \mathbb{C}$, $e^{(z)} = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ (plus subtile à monter, poser $t \mapsto e^{zt}$).
- $\forall x \in \mathbb{R}, \cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
- $\forall x \in \mathbb{R}, \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

Proposition : Binôme de Newton généralisé

Pour tout $x \in]-1,1[$, on a:

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n$$

en posant:

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!}.$$

Démonstration : À faire en cours à partir de $(1+x)y' - \alpha y = 0$. À savoir refaire, c'est une méthode exigible du programme.

4 Séries géométriques et exponentielles d'une variable complexe

Proposition

La somme d'une série entière d'une variable complexe est continue sur son disque ouvert de convergence.

Démonstration: Hors-programme

Proposition

Pour tout $z \in \mathbb{C}$ tel que |z| < 1, la série $\sum z^n$ est absolument convergente et on a :

$$\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}.$$

La fonction $z\mapsto \frac{1}{1-z}$ est donc développable en série entière sur le disque ouvert de rayon 1.

Proposition

Pour tout $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ est absolument convergente et on a :

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = \exp(z).$$

La fonction exp est donc développable en série entière sur \mathbb{C} .

Corollaire

On peut ainsi retrouver le résultat suivant à l'aide du produit de Cauchy :

$$\exp(z) \exp(z') = \exp(z + z').$$

pour tout $z, z' \in \mathbb{C}$.

5 Exemples d'applications

5.1 Résolution d'une équation différentielle linéaire

On considère l'équation :

$$(T): (1-x^2)y'' - xy' + p^2y = 0$$

où p est un paramètre réel ou complexe.

Soit f une solution de (T) supposée développable en série entière au voisinage de l'origine.

- 1. Réécrire (T) en remarquant que $x(xy')' = xy' + x^2y''$.
- 2. En déduire une relation de récurrence entre a_{n+2} et a_n .
- 3. Si une suite (a_n) satisfait cette relation de récurrence, montrer que les séries entières $\sum a_{2n}x^n$ et $\sum a_{2n+1}x^n$ ont un rayon de convergence au moins égal à 1 puis montrer que c'est le cas aussi pour $\sum a_nx^n$.

- 4. Quelle est la dimension de l'espace des solutions de (T) développables en série entière? En existe-t-il d'autres?
- 5. Que dire de la solution particulière satisfaisant la condition initiale y(0) = 1 et y'(0) = 0 lorsque p est un entier positif pair?
- 6. (Mines-Ponts MP) Caractériser les $\alpha \in \mathbb{R}^*$ tels que la fonction $x \mapsto \cos(\alpha \arcsin(x))$ soit polynomiale.

5.2 Résolution d'une équation de récurrence linéaire

On appelle $n^{\text{ème}}$ nombre de Bell le nombre B_n de partitions différentes de [1, n].

- 1. Calculer B_0, B_1, B_2, B_3 .
- 2. Justifier que $\forall n \in \mathbb{N}, \ B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$.

Dans la suite, on considère la série entière $B: x \mapsto \sum_{n=0}^{+\infty} \frac{B_n}{n!} x^n$.

- 3. Justifier que cette série entière a un rayon de convergence au moins égal à 1.
- 4. Montrer que B satisfait sur] -1,1[l'équation différentielle $B'-e^xB=0$.
- 5. En déduire une expression de B sur]-1,1[.
- 6. En déduire la formule dite de Dobiński : $\forall n \in \mathbb{N}, \ B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$.