Introduction aux bases de données
ITC PC

M. Charles

Introduction

eleves = {

“Tristan LETENEBREUX": {
"options": ["Alld", "HGGSP", "Maths"],
"contact parent": "06 92 55 48 12",

o

"Genevieve LAJOIE": {
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com",

)
"Adam DURAND": {

"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",

b

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

eleves = { « Ecrire une fonction qui retire un éléve
"Tristan LETENEBREUX": { . ,
"options": ["Alld", "HGGSP", "Maths"], du dictionnaire.

"contact parent": "06 92 55 48 12",

o

"Genevieve LAJOIE": {
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com",

)
"Adam DURAND": {

"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",

b

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

eleves = { o Ecrire une fonction qui retire un éleve
"Tristan LETENEBREUX": { o]
"options": ["Alld", "HGGSP", "Maths"], du dictionnaire.
"contact parent": "06 92 55 48 12",
}, def retirer eleve(nom):

"Genevieve LAJOIE": {
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com",

del eleves[nom]

)
"Adam DURAND": {

"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",

b

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

eleves = { o Ecrire une fonction qui retire un éleve
"Tristan LETENEBREUX": { o ,
"options": ["Alld", "HGGSP", "Maths"], du dlctlonnalre.
‘contact_parent®: "06 92 55 48 127, o Ecrire une fonction qui change le nom
Wy .
"Geneviéve LAJOIE": { de la matiére « Alld » en « Allemand ».
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com",
i

"Adam DURAND": {
"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",

b

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

SLEVES S o « Ecrire une fonction qui retire un éleve
"Tristan LETENEBREUX": { o)
"options": ["Alld", "HGGSP", "Maths"], du dictionnaire.
} ‘contact_parent®: "06 92 55 48 12, » Ecrire une fonction qui change le nom
"Geneviéve LAJOIE": { de la matiere « Alld » en « Allemand ».
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com", def changer nom matiere(ancien, nouveau):
}, for (nom, donnees) in eleves.items():
"Adam DURAND": { liste = donnees["options"]
"options": ["Espagnol", "SES", for i in len(liste):
"Physique"], if liste[i] == ancien:
"contact parent": "jrdurand@orange.fr", liste[i] = nouveau
},

changer nom matiere("Alld", "Allemand")

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

SLEUES — o o Ecrire une fonction qui retire un éleve
"Tristan LETENEBREUX": { o ,
"options": ["Alld", "HGGSP", "Maths"], du dictionnaire.
‘contact_parent®: 06 92 55 48 127, « Ecrire une fonction qui change le nom
}, -
"Geneviéve LAJOIE": { de la matiere « Alld » en « Allemand ».
optionst: I%ALLdY, “S&S%, “Mathstl, « Ecrire une fonction qui affiche la liste
"contact parent": "e.lajoie@gmail.com",
}, des éleves en SES.

"Adam DURAND": {
"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",
},

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

2/25

eleves = {
"Tristan LETENEBREUX": {
"options": ["Alld", "HGGSP", "Maths"],
"contact parent": "06 92 55 48 12",
o
"Genevieve LAJOIE": {
"options": ["Alld", "SES", "Maths"],
"contact parent": "e.lajoie@gmail.com",
}
"Adam DURAND": {
"options": ["Espagnol"”, "SES",
“"Physique"],
"contact parent": "jrdurand@orange.fr",

b

def ajouter eleve(nom, contact parent):
assert(nom not in eleves)
eleves[nom] = {
"options": [],
"contact parent": contact parent,

Ecrire une fonction qui retire un éleve
du dictionnaire.

Ecrire une fonction qui change le nom
de la matiere « Alld » en « Allemand ».
Ecrire une fonction qui affiche la liste

des éleves en SES.

def eleve dans matiere(nom):
liste = eleves[nom]["options"]
for i in len(liste):
if liste[i] == nom:
return True
return False

def liste matiere(matiere):
for nom in eleves.keys():
if eleve dans matiere(nom):
print(nom)

liste matiere("SES")

2/25

Exemple : analyse

Quel est le probléeme ?

Les informations sur les options suivies sont redondantes entre les éleves.

3/25

Exemple : analyse

Le probleme n’est pas simplifié si on trie par option d’abord :

options = {
"HGGSP": {

"Tristan TENEBREUX": "06 92 55 48 12",

b
"SES": {

"Genevieve LAJOIE": "e.lajoie@gmail.com",

"Adam DURAND":

b
"Alld": {

"jrdurand@orange.fr",

"Tristan TENEBREUX": "06 92 55 48 12",
"Genevieve LAJOIE": "e.lajoie@gmail.com",

}
"Espagnol": {
"Adam DURAND":

}
"Maths": {

"jrdurand@orange.fr",

"Tristan TENEBREUX": "06 92 55 48 12",
"Genevieve LAJOIE": "e.lajoie@gmail.com",

},
"Physique": {
"Adam DURAND":

"jrdurand@orange.fr",

Il est certes facile de changer le nom de
« Alld »

Mais désormais, rajouter un éleve est
tres difficile.

Changer le contact des parents pose
alors le méme probleme.

4/ 25

Exemple : solution

Solution ? Il faut deux tableaux de données.

eleves = { options = {

0: { "HGGSP": [0, ...],
"nom": "Tristan TENEBREUX", "SES": [1, 2, ...],
“contact parent": "06 92 55 48 12" "Alld": [0, 1, ...],

}, "Espagnol”: [2, ...],

1: { "Maths": [0, 1, ...],
"nom": "Genevieve LAJOIE", "Physique": [2, ...],
“contact parent": "e.lajoie@gmail.com"

}, }

2: A
"nom": "Adam DURAND",

“contact parent": "jrdurand@orange.fr"

},

}

5/25

Exemple : solution

Il reste de nombreuses difficultés :

- Comment attribuer des numéros aux éleves de maniere unique ?

« Comment valider au mieux les références croisées ?

« Les indirections dans la lecture des données sont sources d’erreur.

« Comment gérer des données dont le volume dépasse la capacité de la mémoire ?

La solution a tout ca : les bases de données relationnelles.

6/25

Principe des BDD(R)

Les bases de données (relationnelles) forment un paradigme d’organisation des
données qui permet de maximiser la cohérence des informations tout en minimisant
la redondance. Il est alors bien plus facile de lire, ajouter ou modifier des données.

7/25

Principe des BDD(R)

Les bases de données (relationnelles) forment un paradigme d’organisation des
données qui permet de maximiser la cohérence des informations tout en minimisant
la redondance. Il est alors bien plus facile de lire, ajouter ou modifier des données.

Au lieu d’'un unique tableau global monolithique, une base de données (relationnelle)
est constituée d’'un ensemble de « petites » tables qui permettent de mieux organiser les
données.

7/25

table Eleve

idEleve | Nom Contact parent

1 Tristan TENEBREUX | 06 92 55 48 12

2 Genevieve LAJOIE |e.lajoie@gmail.com

3 Adam DURAND jrdurand@orange.Fr

table Option table Affectations
1dOption | Nom idEleve | idOption
1 HGGSP 1 1

2 ESH 1 3

3 Alld 1 5

4 Espagnol 2 2

5 Maths 2 3

6 Physique 2 5

8/25

Vocabulaire spécifique

Une table est un ensemble de lignes, chaque ligne contenant les valeurs de différents
attributs.

Chaque attribut possede un domaine, qui correspond a ’ensemble des valeurs qu’il peut

prendre.
Vocabulaire intuitif | Vocabulaire BDD | Ex.
Table Relation Eleve
Colonne Attribut Nom
Ligne Enregistrement
Type Domaine text

10/ 25

Schémas de tables et de BDD

e« Le schéma relationnel d’'une table est ’ensemble ordonné de ses attributs et des
domaines associés. Exemples :

» table Véhicule(idVéhicule int, Modele text, Km int)
» table Produit(idProduit int, Ref text, Prix money)

« L’ensemble des schémas de toutes les tables est appelé schéma de la base de données.

11/25

Exercice

Donner le schéma de la base de données : (on pourra utiliser les domaines int et text)

table Eleve

idEleve | Nom Contact parent

1 Tristan TENEBREUX | 06 92 55 48 12

2 Genevieve LAJOIE | e.lajoie@gmail.com

3 Adam DURAND jrdurand@orange.Fr
table Option table Affectations
idOption | Nom idEleve | idOption
1 HGGSP 1 1

2 ESH 1 3

3 Alld 1 5

= Espagnol 2 2

5 Maths 2 3

6 Physique 2 5

12 /25

Exercice : solution

Eleve(idEleve int, Nom text, Contact Parent text)
Option(idOption int, Nom text)
Affectations(idEleve int, idEleve int)

13 /25

Exercice : solution

Eleve(idEleve int, Nom text, Contact Parent text)
Option(idOption int, Nom text)
Affectations(idEleve int, idEleve int)

« Clé primaire : colonne dans une table permettant d’identifier de maniere unique les
lignes de la table. Exemples :
» dans la table Eleve : idEleve ;
» dans la table Option : idOption

 Clé étrangere : colonne dans une table dont les valeurs correspondent a un identifiant
unique dans une autre table.

13 /25

Exercice 2

Que représente et comment fonctionne la base de données définies par le schéma
suivant ?

Client(idClient int, Nom text, Prénom text, Adresse text)
Produit(idProduit int, Ref text, Prix money)
Livreur(idLivreur int, Nom text, Prénom text)
Véhicule(idVéhicule int, Modele text, Kms int)
Commande (
id int, idClient int, idProduit int, idLivreur int,
idVéhicule int, Jour date, Heure time, Livré time

14/ 25

Requétes SQL simples

Opérations unaires

Les opérations unaires travaillent sur une seule table. Elles peuvent étre vues comme
des fonctions qui prennent une table en entrée et produisent une table en sortie.

16 / 25

Langages de requéte

Les bases de données sont en général situées sur un serveur qui implémente un certain
systéme de gestion de base de données (SGBD). Parmi les exemples les plus connus,

citons MySQL, Oracle, Microsoft SQL Server, PostgreSQL, etc.

Lorsqu’on souhaite accéder aux données d'un serveur de bases de données, on
I'interroge a I'aide d’'une requéte. Les requétes sont formulées dans un langage de
requéte spécifique.

17 /25

Le langage de requéte SQL

Le programme des CPGE préconise 'apprentissage du langage de requéte SOL. En
particulier, il s’agit d’étre capable de traduire des calculs « simples » en requétes SQL.

Développement par IBM dans les années 70 :

1. SQUARE (Specifying Queries in A Relational Environment)
2. SEQUEL

3. SQL

4. Structured Query Language

18 /25

Projection avec

La projection est une opération permettant de conserver certaines colonnes d'une
table. En SQL :

SELECT c1, ..., ck FROM T ;

En général, on utilise une projection en fin de calcul, pour éliminer les colonnes que 1'on
ne souhaite pas voir dans le résultat.

19/ 25

Projection avec

Exemple. La table des noms et prénoms des clients peut étre obtenue par la requéte
SELECT Nom, Prénom FROM Client ;

qui a pour résultat la table

Nom Prénom
Dumbledore | Albus
Weasley Fred
McGonagall | Minerva
Riddle Tom
Weasley | Georges
Diggory Cédric

20/ 25

Sélection avec WHERE

La sélection est une opération permettant de conserver les lignes d’'une table qui

vérifient un certain critere. En SQL :
SELECT * FROM T WHERE condition-s

[}
’

C’est 'opération la plus souvent utilisée.

21/ 25

Sélection avec WHERE

Exemple. La table des pizzas colGitant moins de 11 euros peut étre obtenue par la requéte

SELECT * FROM Produit WHERE Prix <= 11 ;

qui a pour résultat la table

idProduit Ref Prix
2 Royale 9.00
4 Bretonne |11.00
6 Végétarienne | 11.00

22/ 25

Renommage avec AS

Il est parfois utile de pouvoir renommer un ou des attributs. En SQL :

SELECT c1 AS al, ..., ck AS ak FROM T ;

23/ 25

Renommage avec AS

Exemple. Si on souhaite renommer Ref par Pizza dans la table Produit, on écrira

SELECT Ref AS Pizza FROM Produit ;

24 /25

Combinaisons de mots-clé

Une requéte peut étre construite en combinant différents mots-clé. Exemple :

SELECT Prix, Ref AS Pizza
FROM Produit
WHERE Prix >= 12 ;

Résultat :

Prix Pizza
13.00 | Savoyarde
12.00 | Forézienne
12.00 | Océane
13.00 | Canicatti

25/ 25

