
Introduction aux bases de données
ITC PC

M. Charles

Introduction

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

def retirer_eleve(nom):
 del eleves[nom]

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

• Écrire une fonction qui change le nom
de la matière « Alld » en « Allemand ».

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

• Écrire une fonction qui change le nom
de la matière « Alld » en « Allemand ».

def changer_nom_matiere(ancien, nouveau):
 for (nom, donnees) in eleves.items():
 liste = donnees["options"]
 for i in len(liste):
 if liste[i] == ancien:
 liste[i] = nouveau

changer_nom_matiere("Alld", "Allemand")

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

• Écrire une fonction qui change le nom
de la matière « Alld » en « Allemand ».

• Écrire une fonction qui affiche la liste
des élèves en SES.

2 / 25

Exemple

eleves = {
 "Tristan LETENEBREUX": {
 "options": ["Alld", "HGGSP", "Maths"],
 "contact_parent": "06 92 55 48 12",
 },
 "Geneviève LAJOIE": {
 "options": ["Alld", "SES", "Maths"],
 "contact_parent": "e.lajoie@gmail.com",
 },
 "Adam DURAND": {
 "options": ["Espagnol", "SES",
"Physique"],
 "contact_parent": "jrdurand@orange.fr",
 },
 ...
}

def ajouter_eleve(nom, contact_parent):
 assert(nom not in eleves)
 eleves[nom] = {
 "options": [],
 "contact_parent": contact_parent,
 }

• Écrire une fonction qui retire un élève
du dictionnaire.

• Écrire une fonction qui change le nom
de la matière « Alld » en « Allemand ».

• Écrire une fonction qui affiche la liste
des élèves en SES.

def eleve_dans_matiere(nom):
 liste = eleves[nom]["options"]
 for i in len(liste):
 if liste[i] == nom:
 return True
 return False

def liste_matiere(matiere):
 for nom in eleves.keys():
 if eleve_dans_matiere(nom):
 print(nom)

liste_matiere("SES")

2 / 25

Exemple : analyse

Quel est le problème ?

Les informations sur les options suivies sont redondantes entre les élèves.

3 / 25

Exemple : analyse

Le problème n’est pas simplifié si on trie par option d’abord :
options = {
 "HGGSP": {
 "Tristan TENEBREUX": "06 92 55 48 12",
 ...
 },
 "SES": {
 "Geneviève LAJOIE": "e.lajoie@gmail.com",
 "Adam DURAND": "jrdurand@orange.fr",
 ...
 },
 "Alld": {
 "Tristan TENEBREUX": "06 92 55 48 12",
 "Geneviève LAJOIE": "e.lajoie@gmail.com",
 ...
 },
 "Espagnol": {
 "Adam DURAND": "jrdurand@orange.fr",
 ...
 }
 "Maths": {
 "Tristan TENEBREUX": "06 92 55 48 12",
 "Geneviève LAJOIE": "e.lajoie@gmail.com",
 ...
 },
 "Physique": {
 "Adam DURAND": "jrdurand@orange.fr",
 ...
 }
}

• Il est certes facile de changer le nom de
« Alld »

• Mais désormais, rajouter un élève est
très difficile.

• Changer le contact des parents pose
alors le même problème.

4 / 25

Exemple : solution

Solution ? Il faut deux tableaux de données.

eleves = {
 0: {
 "nom": "Tristan TENEBREUX",
 "contact_parent": "06 92 55 48 12"
 },
 1: {
 "nom": "Geneviève LAJOIE",
 "contact_parent": "e.lajoie@gmail.com"
 },
 2: {
 "nom": "Adam DURAND",
 "contact_parent": "jrdurand@orange.fr"
 },
 ...
}

options = {
 "HGGSP": [0, ...],
 "SES": [1, 2, ...],
 "Alld": [0, 1, ...],
 "Espagnol": [2, ...],
 "Maths": [0, 1, ...],
 "Physique": [2, ...],
 ...
}

5 / 25

Exemple : solution

Il reste de nombreuses difficultés :
• Comment attribuer des numéros aux élèves de manière unique ?
• Comment valider au mieux les références croisées ?
• Les indirections dans la lecture des données sont sources d’erreur.
• Comment gérer des données dont le volume dépasse la capacité de la mémoire ?

La solution à tout ça : les bases de données relationnelles.

6 / 25

Principe des BDD(R)

Les bases de données (relationnelles) forment un paradigme d’organisation des
données qui permet de maximiser la cohérence des informations tout en minimisant
la redondance. Il est alors bien plus facile de lire, ajouter ou modifier des données.

7 / 25

Principe des BDD(R)

Les bases de données (relationnelles) forment un paradigme d’organisation des
données qui permet de maximiser la cohérence des informations tout en minimisant
la redondance. Il est alors bien plus facile de lire, ajouter ou modifier des données.

Au lieu d’un unique tableau global monolithique, une base de données (relationnelle)
est constituée d’un ensemble de « petites » tables qui permettent de mieux organiser les
données.

7 / 25

Exemple

table Eleve

idEleve Nom Contact parent
1 Tristan TENEBREUX 06 92 55 48 12
2 Geneviève LAJOIE e.lajoie@gmail.com
3 Adam DURAND jrdurand@orange.Fr

table Option

idOption Nom
1 HGGSP
2 ESH
3 Alld
4 Espagnol
5 Maths
6 Physique

table Affectations

idEleve idOption
1 1
1 3
1 5
2 2
2 3
2 5
… …

8 / 25

Vocabulaire spécifique

Tables etc.

Une table est un ensemble de lignes, chaque ligne contenant les valeurs de différents
attributs.

Chaque attribut possède un domaine, qui correspond à l’ensemble des valeurs qu’il peut
prendre.

Vocabulaire intuitif Vocabulaire BDD Ex.
Table Relation Eleve

Colonne Attribut Nom
Ligne Enregistrement
Type Domaine text

10 / 25

Schémas de tables et de BDD

• Le schéma relationnel d’une table est l’ensemble ordonné de ses attributs et des
domaines associés. Exemples :
‣ table Véhicule(idVéhicule int, Modèle text, Km int)
‣ table Produit(idProduit int, Ref text, Prix money)

• L’ensemble des schémas de toutes les tables est appelé schéma de la base de données.

11 / 25

Exercice

Donner le schéma de la base de données : (on pourra utiliser les domaines int et text)

table Eleve

idEleve Nom Contact parent
1 Tristan TENEBREUX 06 92 55 48 12
2 Geneviève LAJOIE e.lajoie@gmail.com
3 Adam DURAND jrdurand@orange.Fr

table Option

idOption Nom
1 HGGSP
2 ESH
3 Alld
4 Espagnol
5 Maths
6 Physique

table Affectations

idEleve idOption
1 1
1 3
1 5
2 2
2 3
2 5
… …

12 / 25

Exercice : solution

Eleve(idEleve int, Nom text, Contact_Parent text)
Option(idOption int, Nom text)
Affectations(idEleve int, idEleve int)

13 / 25

Exercice : solution

Eleve(idEleve int, Nom text, Contact_Parent text)
Option(idOption int, Nom text)
Affectations(idEleve int, idEleve int)

• Clé primaire : colonne dans une table permettant d’identifier de manière unique les
lignes de la table. Exemples :
‣ dans la table Eleve : idEleve ;
‣ dans la table Option : idOption

• Clé étrangère : colonne dans une table dont les valeurs correspondent à un identifiant
unique dans une autre table.

13 / 25

Exercice 2

Que représente et comment fonctionne la base de données définies par le schéma
suivant ?

Client(idClient int, Nom text, Prénom text, Adresse text)
Produit(idProduit int, Ref text, Prix money)
Livreur(idLivreur int, Nom text, Prénom text)
Véhicule(idVéhicule int, Modèle text, Kms int)
Commande(
 id int, idClient int, idProduit int, idLivreur int,
 idVéhicule int, Jour date, Heure time, Livré time
)

14 / 25

Requêtes SQL simples

Opérations unaires

Les opérations unaires travaillent sur une seule table. Elles peuvent être vues comme
des fonctions qui prennent une table en entrée et produisent une table en sortie.

16 / 25

Langages de requête

Les bases de données sont en général situées sur un serveur qui implémente un certain
système de gestion de base de données (SGBD). Parmi les exemples les plus connus,
citons MySQL, Oracle, Microsoft SQL Server, PostgreSQL, etc.

Lorsqu’on souhaite accéder aux données d’un serveur de bases de données, on
l’interroge à l’aide d’une requête. Les requêtes sont formulées dans un langage de
requête spécifique.

17 / 25

Le langage de requête SQL

Le programme des CPGE préconise l’apprentissage du langage de requête SQL. En
particulier, il s’agit d’être capable de traduire des calculs « simples » en requêtes SQL.

Développement par IBM dans les années 70 :

1. SQUARE (Specifying Queries in A Relational Environment)
2. SEQUEL
3. SQL
4. Structured Query Language

18 / 25

Projection avec SELECT … FROM

La projection est une opération permettant de conserver certaines colonnes d’une
table. En SQL :

SELECT c1, ..., ck FROM T ;

En général, on utilise une projection en fin de calcul, pour éliminer les colonnes que l’on
ne souhaite pas voir dans le résultat.

19 / 25

Projection avec SELECT … FROM

Exemple. La table des noms et prénoms des clients peut être obtenue par la requête

SELECT Nom, Prénom FROM Client ;

qui a pour résultat la table

Nom Prénom
Dumbledore Albus

Weasley Fred
McGonagall Minerva

Riddle Tom
Weasley Georges
Diggory Cédric

20 / 25

Sélection avec WHERE

La sélection est une opération permettant de conserver les lignes d’une table qui
vérifient un certain critère. En SQL :

SELECT * FROM T WHERE condition·s ;

C’est l’opération la plus souvent utilisée.

21 / 25

Sélection avec WHERE

Exemple. La table des pizzas coûtant moins de 11 euros peut être obtenue par la requête

SELECT * FROM Produit WHERE Prix <= 11 ;

qui a pour résultat la table

idProduit Ref Prix
2 Royale 9.00
4 Bretonne 11.00
6 Végétarienne 11.00

22 / 25

Renommage avec AS

Il est parfois utile de pouvoir renommer un ou des attributs. En SQL :

SELECT c1 AS a1, ..., ck AS ak FROM T ;

23 / 25

Renommage avec AS

Exemple. Si on souhaite renommer Ref par Pizza dans la table Produit, on écrira

SELECT Ref AS Pizza FROM Produit ;

24 / 25

Combinaisons de mots-clé

Une requête peut être construite en combinant différents mots-clé. Exemple :

SELECT Prix, Ref AS Pizza
FROM Produit
WHERE Prix >= 12 ;

Résultat :

Prix Pizza
13.00 Savoyarde
12.00 Forézienne
12.00 Océane
13.00 Canicatti

25 / 25

