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1 Polyndémes d’endomorphismes et de matrices carrées

1.1 Généralités

Définition : Polynémes d’endomorphismes
Soit P € K[X] un polynéme. Notons :
P=a,X"+a, 1 X" '+ -+ a1 X' +apX°

ol ag, ..., an sont des coefficients de K.
Soit u € L(E) avec E un K-espace vectoriel. On définit alors :

-1 1
P(u) = apt” + ap_qu™ 4+ -+ agut +ag u .
—1d

Remarques :

e on définit de méme P(A) = a, A" +a, 1 A" '+ a1 A +ag A° ou A € M, (K).

=In

e Siu € L(E) alors P(u) € L(E). Donc P(u) est un endomorphisme. En particulier,
on peut ’évaluer sur un vecteur z € F. Cela conduit & des notations comme la
suivante : P(u)(z) qui signifie que l'on considére I'image de x par ’endomorphisme
P(u).

La méme remarque s’applique aux matrices : P(A) est une matrice.

e A ufixé, on a (AP + Q)(u) = AP(u) + Q(u). Ainsi, toujours & u fixé, la fonction
¢ : P — P(u) est linéaire. C’est une application linéaire de I’espace des polynomes
dans l'espace des endomorphismes.

e [’image de ¢ est donc I'’ensemble des endomorphismes que 1’on peut obtenir par
combinaisons linéaires des puissances de u. On la note souvent K[u] (I’ensemble des
polynomes en u). C’est un sous-espace vectoriel de L(E).

e En revanche, a P fixé, Papplication ¢ : u — P(u) n’a aucune raison d’étre linéaire.

e Encore une fois, les mémes résultats s’appliquent aux matrices et donc K[A] est un
sous-espace vectoriel de M,, (K).

Démonstration :

Démonstration :

Proposition
Soient P et @ deux polynémes de K[X]. Soit u € £(E). On a :
(PQ)(u) = P(u) 0 Q(u).
En particulier :
P(u) 0 Q(u) = (PQ)(u) = (QP)(u) = Q(u) o P(u)

et donc P(u) et Q(u) commutent.

A faire en classe. O

Remarques :

e Sion pose @ = X, alors Q(u) = u. Ainsi v et P(u) commutent. Dit autrement, u
commutent avec tout polynéme en u.

e Le résultat précédent peut se réexprimer de la maniére suivante : les éléments de
K[u] commutent tous avec u (et méme entre eux).

L’ensemble des endomorphismes qui commutent avec u est appelé le commutant de
u. On le note souvent C(u). On a donc : K[u] C C(u). On peut montrer que C(u) est
un sous-espace vectoriel de £(E) et donc K[u] est un sous-espace vectoriel de C(u).

Corollaire

Soit P un polynéme de K[X]. Soit u € L(E).
Ker(u) est stable par P(u).

A faire en classe. O

Remarques :

e Les résultats précédents s’adaptent aux cas des matrices. En particulier P(A) et
Q(A) commutent et A commutent avec tout polynoéme en A.

On peut le résumer en K[A] C C(A).

e On a également Ker(A) est stable par P(A) ce qui signifie que pour X € M, ;(K)
tel que AX =0 alors A(P(A)X) =0.
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1.2 Polynémes annulateurs

Définition : Polynéme annulateur d’un endomorphisme

Soit u € L(E). Soit P € K[X]. On dit que P est un polynéme annulateur de v (ou
que P annule w) si :

Remarques :
e On dit de méme que P est un polyndéme annulateur de A € M,,(K) si P(A) = 0,,.

e Le polynéme nul est toujours annulateur. Donc ’ensemble des polynémes annula-
teurs d’un endomorphisme u n’est jamais vide.

e On peut faire mieux. Si dim E = n, alors dim £(E) = n%. Donc toute famille d’en-
domorphismes de cardinal supérieur strict & n? est nécessairement liée.

En particulier Id, u, u?, ..., u™ forment une famille lide et donc il existe des coeffi-
cients (ag, . .., a,2) non tous nuls tels que :

agld+ aqu+---+ anzunz =0.

D’oit le polynome P = a,2X™ + -+ ag est un polynoéme non nul annulateur de u.

e On verra sous peu qu’on peut encore affiner ce résultat et qu’il existe toujours un
polynéme annulateur de degré au plus n.

e L’ensemble des polyndmes annulateurs forme une structure est hors-programme que
I’on appelle un idéal.

Exemples :

2 2

e Si u est un projecteur alors u? = u donc u? —u = 0 et ainsi X? — X est annulateur

de u.

e Si u est une symétrie alors u? = Id et donc X? — 1 est annulateur de w.

1 0

e Si u est diagonalisable et que Sp(u) = {A1,..., A, } alors (X — A1) --- (X — \,) est
annulateur de w.

e X2+ 1 est annulateur de A = (O _1).

Proposition

Soit © un endomorphisme de F et soit P un polynéme annulateur de u. Notons d
le degré de P.

Alors pour tout k > d, uF peut s’exprimer comme un polynéme de degré au plus
d—1en u.

= o O

0 1
Exemple : Calculer les puissances successives de A = [ 1 1| de polynéme annula-
0 1

teur X3 — X2 - X — 1.

Remarque : Si P de degré d est annulateur de u, alors tout polynéme en u peut s’écrire
comme un polynéme de degré au plus d — 1 en u. Donc Klu] C Ky_1[u] (et il y a méme

égalite).

Proposition

Soit u un endomorphisme de E et soit P un polyndéme annulateur de u. Notons d

le degré de P.

Si P(0) # 0 alors u est inversible et l'inverse de u peut s’exprimer comme un

polynéme en u de degré au plus d — 1.

Exemple : reprendre 'exemple précédent.

2 Polynomes annulateurs et réduction

2.1 Valeurs propres
Proposition

Soit w un endomorphisme et P un polynéme annulateur de u. Soit A € Sp(u).
On a P(\) = 0.

Démonstration : A faire en cours.
Remarque : De maniére plus générale, si u(x) = Az alors P(u)(xz) = P(\)z.
Exemples :

e Quelles sont les valeurs propres possibles pour un projecteur ?

0

e X2 41 est annulateur de A = <1

-1 .
0 > Qu’en déduire pour le spectre réel 7

2.2 Diagonalisabilité
Proposition

Soit u un endomorphisme de E.

u est diagonalisable si et seulement si v admet un polynéme annulateur scindé a

racines simples.
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Démonstration : Hors-programme O

Remarque : Bien que la démonstration soit hors-programme, il est facile de constater
que c’est une condition nécessaire a la diagonalisabilité. L’intérét cependant pour nous est
bien le sens contraire : c¢’est aussi une condition suffisante.

Exemples :

e Tout projecteur est diagonalisable.

e Toute symétrie est diagonalisable.
Corollaire

u est diagonalisable si et seulement si [ )\ESp(u)(X — A) est annulateur de wu.

Exemple : La seule matrice nilpotente diagonalisable est la matrice nulle.
Proposition : Diagonalisabilité de ’endomorphisme induit

Soit u un endomorphisme de E et soit F' un espace stable par u.
Si u est diagonalisable, alors up est diagonalisable.

Démonstration : A faire en cours. u

2.3 Polyndéme caractéristique
Théoréme : Théoréme de Cayley-Hamilton

Soit A € M,,(K). x4 est un polynéme annulateur de A.

Démonstration : Hors-programme (]

Remarques :
e Evidemment le méme théoréme existe pour les endomorphismes.
e Puisque deg x4 = n, il existe toujours un polyndéme annulateur de degré au plus n.

e Cela donne une autre méthode pour calculer les puissances de matrices : calculer le
polyndme caractéristique, en déduire un polynéme annulateur, I'utiliser pour expri-
mer les puissances comme polyndéme de degré au plus n — 1.

e En particulier, si x 4(0) # 0 alors A est inversible et on peut aussi utiliser ce résultat
pour en calculer 'inverse.



