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Chapitre 9 - Polynômes annulateurs

1 Polynômes d’endomorphismes et de matrices carrées

1.1 Généralités

Définition : Polynômes d’endomorphismes

Soit P ∈ K[X] un polynôme. Notons :

P = anX
n + an−1X

n−1 + · · ·+ a1X
1 + a0X

0

où a0, ..., an sont des coefficients de K.
Soit u ∈ L(E) avec E un K-espace vectoriel. On définit alors :

P (u) = anu
n + an−1u

n−1 + · · ·+ a1u
1 + a0 u0︸︷︷︸

=Id

.

Remarques :
• on définit de même P (A) = anA

n+an−1A
n−1+ · · ·+a1A1+a0 A0︸︷︷︸

=In

où A ∈ Mn(K).

• Si u ∈ L(E) alors P (u) ∈ L(E). Donc P (u) est un endomorphisme. En particulier,
on peut l’évaluer sur un vecteur x ∈ E. Cela conduit à des notations comme la
suivante : P (u)(x) qui signifie que l’on considère l’image de x par l’endomorphisme
P (u).
La même remarque s’applique aux matrices : P (A) est une matrice.

• À u fixé, on a (λP + Q)(u) = λP (u) + Q(u). Ainsi, toujours à u fixé, la fonction
φ : P 7→ P (u) est linéaire. C’est une application linéaire de l’espace des polynômes
dans l’espace des endomorphismes.

• L’image de φ est donc l’ensemble des endomorphismes que l’on peut obtenir par
combinaisons linéaires des puissances de u. On la note souvent K[u] (l’ensemble des
polynômes en u). C’est un sous-espace vectoriel de L(E).

• En revanche, à P fixé, l’application ψ : u 7→ P (u) n’a aucune raison d’être linéaire.
• Encore une fois, les mêmes résultats s’appliquent aux matrices et donc K[A] est un

sous-espace vectoriel de Mn(K).

Proposition

Soient P et Q deux polynômes de K[X]. Soit u ∈ L(E). On a :

(PQ)(u) = P (u) ◦Q(u).

En particulier :

P (u) ◦Q(u) = (PQ)(u) = (QP )(u) = Q(u) ◦ P (u)

et donc P (u) et Q(u) commutent.

Démonstration : À faire en classe. □

Remarques :
• Si on pose Q = X, alors Q(u) = u. Ainsi u et P (u) commutent. Dit autrement, u

commutent avec tout polynôme en u.
• Le résultat précédent peut se réexprimer de la manière suivante : les éléments de
K[u] commutent tous avec u (et même entre eux).
L’ensemble des endomorphismes qui commutent avec u est appelé le commutant de
u. On le note souvent C(u). On a donc : K[u] ⊂ C(u). On peut montrer que C(u) est
un sous-espace vectoriel de L(E) et donc K[u] est un sous-espace vectoriel de C(u).

Corollaire

Soit P un polynôme de K[X]. Soit u ∈ L(E).
Ker(u) est stable par P (u).

Démonstration : À faire en classe. □

Remarques :
• Les résultats précédents s’adaptent aux cas des matrices. En particulier P (A) et
Q(A) commutent et A commutent avec tout polynôme en A.
On peut le résumer en K[A] ⊂ C(A).

• On a également Ker(A) est stable par P (A) ce qui signifie que pour X ∈ Mn,1(K)
tel que AX = 0 alors A(P (A)X) = 0.
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1.2 Polynômes annulateurs

Définition : Polynôme annulateur d’un endomorphisme

Soit u ∈ L(E). Soit P ∈ K[X]. On dit que P est un polynôme annulateur de u (ou
que P annule u) si :

P (u) = 0L(E).

Remarques :
• On dit de même que P est un polynôme annulateur de A ∈ Mn(K) si P (A) = 0n.
• Le polynôme nul est toujours annulateur. Donc l’ensemble des polynômes annula-

teurs d’un endomorphisme u n’est jamais vide.
• On peut faire mieux. Si dimE = n, alors dimL(E) = n2. Donc toute famille d’en-

domorphismes de cardinal supérieur strict à n2 est nécessairement liée.
En particulier Id, u, u2, ..., un

2

forment une famille liée et donc il existe des coeffi-
cients (a0, . . . , an2) non tous nuls tels que :

a0Id + a1u+ · · ·+ an2un
2

= 0.

D’où le polynôme P = an2Xn2

+ · · ·+ a0 est un polynôme non nul annulateur de u.
• On verra sous peu qu’on peut encore affiner ce résultat et qu’il existe toujours un

polynôme annulateur de degré au plus n.
• L’ensemble des polynômes annulateurs forme une structure est hors-programme que

l’on appelle un idéal.
Exemples :

• Si u est un projecteur alors u2 = u donc u2 − u = 0 et ainsi X2 −X est annulateur
de u.

• Si u est une symétrie alors u2 = Id et donc X2 − 1 est annulateur de u.

• X2 + 1 est annulateur de A =

(
0 −1
1 0

)
.

• Si u est diagonalisable et que Sp(u) = {λ1, . . . , λp} alors (X − λ1) · · · (X − λp) est
annulateur de u.

Proposition

Soit u un endomorphisme de E et soit P un polynôme annulateur de u. Notons d
le degré de P .
Alors pour tout k ⩾ d, uk peut s’exprimer comme un polynôme de degré au plus
d− 1 en u.

Exemple : Calculer les puissances successives de A =

0 0 1
1 0 1
0 1 1

 de polynôme annula-

teur X3 −X2 −X − 1.
Remarque : Si P de degré d est annulateur de u, alors tout polynôme en u peut s’écrire
comme un polynôme de degré au plus d − 1 en u. Donc K[u] ⊂ Kd−1[u] (et il y a même
égalité).

Proposition

Soit u un endomorphisme de E et soit P un polynôme annulateur de u. Notons d
le degré de P .
Si P (0) ̸= 0 alors u est inversible et l’inverse de u peut s’exprimer comme un
polynôme en u de degré au plus d− 1.

Exemple : reprendre l’exemple précédent.

2 Polynômes annulateurs et réduction

2.1 Valeurs propres

Proposition

Soit u un endomorphisme et P un polynôme annulateur de u. Soit λ ∈ Sp(u).
On a P (λ) = 0.

Démonstration : À faire en cours. □

Remarque : De manière plus générale, si u(x) = λx alors P (u)(x) = P (λ)x.
Exemples :

• Quelles sont les valeurs propres possibles pour un projecteur ?

• X2 + 1 est annulateur de A =

(
0 −1
1 0

)
. Qu’en déduire pour le spectre réel ?

2.2 Diagonalisabilité

Proposition

Soit u un endomorphisme de E.
u est diagonalisable si et seulement si u admet un polynôme annulateur scindé à
racines simples.
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Démonstration : Hors-programme □

Remarque : Bien que la démonstration soit hors-programme, il est facile de constater
que c’est une condition nécessaire à la diagonalisabilité. L’intérêt cependant pour nous est
bien le sens contraire : c’est aussi une condition suffisante.
Exemples :

• Tout projecteur est diagonalisable.
• Toute symétrie est diagonalisable.

Corollaire

u est diagonalisable si et seulement si
∏

λ∈Sp(u)(X − λ) est annulateur de u.

Exemple : La seule matrice nilpotente diagonalisable est la matrice nulle.

Proposition : Diagonalisabilité de l’endomorphisme induit

Soit u un endomorphisme de E et soit F un espace stable par u.
Si u est diagonalisable, alors uF est diagonalisable.

Démonstration : À faire en cours. □

2.3 Polynôme caractéristique

Théorème : Théorème de Cayley-Hamilton

Soit A ∈ Mn(K). χA est un polynôme annulateur de A.

Démonstration : Hors-programme □

Remarques :
• Évidemment le même théorème existe pour les endomorphismes.
• Puisque degχA = n, il existe toujours un polynôme annulateur de degré au plus n.
• Cela donne une autre méthode pour calculer les puissances de matrices : calculer le

polynôme caractéristique, en déduire un polynôme annulateur, l’utiliser pour expri-
mer les puissances comme polynôme de degré au plus n− 1.

• En particulier, si χA(0) ̸= 0 alors A est inversible et on peut aussi utiliser ce résultat
pour en calculer l’inverse.
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