CHAPITRE 9 - POLYNÔMES ANNULATEURS

1 Polynômes d'endomorphismes et de matrices carrées

1.1 Généralités

Définition: Polynômes d'endomorphismes

Soit $P \in \mathbb{K}[X]$ un polynôme. Notons :

$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X^1 + a_0 X^0$$

où $a_0, ..., a_n$ sont des coefficients de \mathbb{K} .

Soit $u \in \mathcal{L}(E)$ avec E un K-espace vectoriel. On définit alors :

$$P(u) = a_n u^n + a_{n-1} u^{n-1} + \dots + a_1 u^1 + a_0 \underbrace{u^0}_{=\mathrm{Id}}.$$

Remarques:

- on définit de même $P(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A^1 + a_0 \underbrace{A^0}_{=I_n}$ où $A \in \mathcal{M}_n(\mathbb{K})$.
- Si $u \in \mathcal{L}(E)$ alors $P(u) \in \mathcal{L}(E)$. Donc P(u) est un endomorphisme. En particulier, on peut l'évaluer sur un vecteur $x \in E$. Cela conduit à des notations comme la suivante : P(u)(x) qui signifie que l'on considère l'image de x par l'endomorphisme P(u).

La même remarque s'applique aux matrices : P(A) est une matrice.

- À u fixé, on a $(\lambda P + Q)(u) = \lambda P(u) + Q(u)$. Ainsi, toujours à u fixé, la fonction $\varphi: P \mapsto P(u)$ est linéaire. C'est une application linéaire de l'espace des polynômes dans l'espace des endomorphismes.
- L'image de φ est donc l'ensemble des endomorphismes que l'on peut obtenir par combinaisons linéaires des puissances de u. On la note souvent $\mathbb{K}[u]$ (l'ensemble des polynômes en u). C'est un sous-espace vectoriel de $\mathcal{L}(E)$.
- En revanche, à P fixé, l'application $\psi: u \mapsto P(u)$ n'a aucune raison d'être linéaire.
- Encore une fois, les mêmes résultats s'appliquent aux matrices et donc $\mathbb{K}[A]$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.

Proposition

Soient P et Q deux polynômes de $\mathbb{K}[X]$. Soit $u \in \mathcal{L}(E)$. On a :

$$(PQ)(u) = P(u) \circ Q(u).$$

En particulier:

$$P(u) \circ Q(u) = (PQ)(u) = (QP)(u) = Q(u) \circ P(u)$$

et donc P(u) et Q(u) commutent.

Démonstration: À faire en classe.

Remarques:

- Si on pose Q = X, alors Q(u) = u. Ainsi u et P(u) commutent. Dit autrement, u commutent avec tout polynôme en u.
- Le résultat précédent peut se réexprimer de la manière suivante : les éléments de $\mathbb{K}[u]$ commutent tous avec u (et même entre eux).

L'ensemble des endomorphismes qui commutent avec u est appelé le commutant de u. On le note souvent $\mathcal{C}(u)$. On a donc : $\mathbb{K}[u] \subset \mathcal{C}(u)$. On peut montrer que $\mathcal{C}(u)$ est un sous-espace vectoriel de $\mathcal{L}(E)$ et donc $\mathbb{K}[u]$ est un sous-espace vectoriel de $\mathcal{C}(u)$.

Corollaire

Soit P un polynôme de $\mathbb{K}[X]$. Soit $u \in \mathcal{L}(E)$. Ker(u) est stable par P(u).

Démonstration: À faire en classe.

Remarques:

- Les résultats précédents s'adaptent aux cas des matrices. En particulier P(A) et Q(A) commutent et A commutent avec tout polynôme en A. On peut le résumer en $\mathbb{K}[A] \subset \mathcal{C}(A)$.
- On a également $\operatorname{Ker}(A)$ est stable par P(A) ce qui signifie que pour $X \in \operatorname{M}_{n,1}(\mathbb{K})$ tel que AX = 0 alors A(P(A)X) = 0.

1.2 Polynômes annulateurs

Définition: Polynôme annulateur d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$. On dit que P est un polynôme annulateur de u (ou que P annule u) si :

$$P(u) = 0_{\mathcal{L}(E)}.$$

Remarques:

- On dit de même que P est un polynôme annulateur de $A \in M_n(\mathbb{K})$ si $P(A) = 0_n$.
- \bullet Le polynôme nul est toujours annulateur. Donc l'ensemble des polynômes annulateurs d'un endomorphisme u n'est jamais vide.
- On peut faire mieux. Si dim E = n, alors dim L(E) = n². Donc toute famille d'endomorphismes de cardinal supérieur strict à n² est nécessairement liée.
 En particulier Id, u, u², ..., un² forment une famille liée et donc il existe des coefficients (a0,..., an²) non tous nuls tels que :

$$a_0 \operatorname{Id} + a_1 u + \dots + a_{n^2} u^{n^2} = 0.$$

D'où le polynôme $P = a_{n^2}X^{n^2} + \cdots + a_0$ est un polynôme non nul annulateur de u.

- ullet On verra sous peu qu'on peut encore affiner ce résultat et qu'il existe toujours un polynôme annulateur de degré au plus n.
- L'ensemble des polynômes annulateurs **n'est pas** un espace vectoriel (la structure est hors-programme, c'est ce qu'on appelle un idéal).

Exemples:

- Si u est un projecteur alors $u^2 = u$ donc $u^2 u = 0$ et ainsi $X^2 X$ est annulateur de u.
- Si u est une symétrie alors $u^2 = \text{Id}$ et donc $X^2 1$ est annulateur de u.
- $X^2 + 1$ est annulateur de $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- Si u est diagonalisable et que $\mathrm{Sp}(u) = \{\lambda_1, \dots, \lambda_p\}$ alors $(X \lambda_1) \cdots (X \lambda_p)$ est annulateur de u.

Proposition

Soit u un endomorphisme de E et soit P un polynôme annulateur de u. Notons d le degré de P.

Alors pour tout $k\geqslant d,$ u^k peut s'exprimer comme un polynôme de degré au plus d-1 en u.

Exemple : Calculer les puissances successives de $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ de polynôme annula-

teur $X^3 - X^2 - X - 1$.

Remarque : Si P de degré d est annulateur de u, alors tout polynôme en u peut s'écrire comme un polynôme de degré au plus d-1 en u. Donc $\mathbb{K}[u] \subset \mathbb{K}_{d-1}[u]$ (et il y a même égalité).

Proposition

Soit u un endomorphisme de E et soit P un polynôme annulateur de u. Notons d le degré de P.

Si $P(0) \neq 0$ alors u est inversible et l'inverse de u peut s'exprimer comme un polynôme en u de degré au plus d-1.

Exemple: reprendre l'exemple précédent.

2 Polynômes annulateurs et réduction

2.1 Valeurs propres

Proposition

Soit u un endomorphisme et P un polynôme annulateur de u. Soit $\lambda \in \mathrm{Sp}(u)$. On a $P(\lambda) = 0$.

Démonstration : À faire en cours.

Remarque : De manière plus générale, si $u(x) = \lambda x$ alors $P(u)(x) = P(\lambda)x$. Exemples :

- Quelles sont les valeurs propres possibles pour un projecteur?
- $X^2 + 1$ est annulateur de $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Qu'en déduire pour le spectre réel?

2.2 Diagonalisabilité

Proposition

Soit u un endomorphisme de E.

 \boldsymbol{u} est diagonalisable si et seulement si \boldsymbol{u} admet un polynôme annulateur scindé à racines simples.

Démonstration : Hors-programme

Remarque : Bien que la démonstration soit hors-programme, il est facile de constater que c'est une condition nécessaire à la diagonalisabilité. L'intérêt cependant pour nous est bien le sens contraire : c'est aussi une condition suffisante.

Exemples:

- Tout projecteur est diagonalisable.
- Toute symétrie est diagonalisable.

Corollaire

u est diagonalisable si et seulement si $\prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)$ est annulateur de u.

Exemple: La seule matrice nilpotente diagonalisable est la matrice nulle.

Proposition : Diagonalisabilité de l'endomorphisme induit

Soit u un endomorphisme de E et soit F un espace stable par u. Si u est diagonalisable, alors u_F est diagonalisable.

Démonstration: À faire en cours.

2.3 Polynôme caractéristique

Théorème : Théorème de Cayley-Hamilton

Soit $A \in M_n(\mathbb{K})$. χ_A est un polynôme annulateur de A.

Démonstration : Hors-programme

Remarques:

- Évidemment le même théorème existe pour les endomorphismes.
- Puisque deg $\chi_A = n$, il existe toujours un polynôme annulateur de degré au plus n.
- Cela donne une autre méthode pour calculer les puissances de matrices : calculer le polynôme caractéristique, en déduire un polynôme annulateur, l'utiliser pour exprimer les puissances comme polynôme de degré au plus n-1.
- En particulier, si $\chi_A(0) \neq 0$ alors A est inversible et on peut aussi utiliser ce résultat pour en calculer l'inverse.