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DS 2 - Normes, suites et séries de fonctions, algèbre

Samedi 18/10/2025 - 4h
Calculatrice interdite

1. La notation des copies tiendra compte de la qualité de la rédaction.

2. Si vous repérez ce qui vous pensez être une erreur d’énoncé, signalez le sur votre
copie et poursuivez votre composition en expliquant vos initiatives.

3. Encadrez ou soulignez vos résultats.

Exercice 1 - ITC - E3A PC 2017 Maths 1 (exercice 4)

On dit qu’un entier naturel n est premier si, et seulement si, il admet exactement deux diviseurs : 1 et lui-même.
0 et 1 ne sont donc pas des nombres premiers. Par contre, 3 est un nombre premier puisque l’ensemble de ses
diviseurs est exactement {1, 3}.
Toutes les fonctions demandées ci-après seront à réaliser dans le langage Python. On pourra au fil des questions
utiliser les fonctions construites dans les questions précédentes.

1. Écrire une fonction divise(p,q) d’arguments deux entiers naturels non nuls p et q, renvoyant True si p
divise q et False sinon.

2. Écrire une fonction estpremier(p) d’argument un entier naturel p, renvoyant 1 si p est premier et 0 sinon.

3. Écrire une fonction phi(p) d’argument un entier naturel p, renvoyant le nombre de nombres premiers infé-
rieurs ou égaux à p.

4. Pour n ∈ N, on désigne par φ(n) le nombre d’entiers inférieurs ou égaux à n.
Pour la suite de cet exercice, on admettra le résultat suivant, appelé théorème des nombres premiers :

φ(n) ∼
n→+∞

n

ln(n)
.

Pour n ∈ N⋆, on définit Θ(n) =
∣∣∣φ(n) ln(n)n − 1

∣∣∣.
(a) Rappeler la définition de deux suites équivalentes (les suites envisagées seront supposées n’avoir aucun

terme nul).
(b) Prouver que le théorème des nombres premiers implique qu’il existe une infinité de nombres premiers.
(c) Écrire une fonction test(epsilon) d’argument réel epsilon strictement positif, renvoyant le premier

entier naturel N ⩾ 50 tel que Θ(N) ⩽ ϵ.
(d) Donner une suite d’instructions permettant de tracer le graphe de la fonction Θ sur [[50, 5000]].

Exercice 2 - E3A PC 2017 Maths 1 (exercice 1)

On considère la fonction ζ de la variable réelle x définie par la relation ζ(x) =
∑+∞

n=1
1
nx lorsque cette notation a

du sens.
Pour tout entier n ∈ N⋆, on considère la fonction fn définie sur ]1,+∞[ par :

∀x ∈]1,+∞[, fn(x) =
1

nx
.

1. Déterminer l’ensemble de définition de ζ.

2. Soit a ∈]1,+∞[. Montrer que la fonction ζ est continue sur l’intervalle [a,+∞[.
Que peut-on en déduire pour la continuité de la fonction ζ ?
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3. Soit n ∈ N⋆.

(a) Montrer que : ∀k ∈ N⋆, ∀x ∈]1,+∞[, f
(k)
n (x) = (− ln(n))k

nx .
(b) Montrer que la fonction ζ est de classe C∞ sur ]1,+∞[ et donner l’expression de ζ(k)(x) pour tout k ∈ N⋆

et tout x ∈]1,+∞[ sous forme d’une série.

Indication : on pourra montrer que ζ est Ck pour tout k ∈ N.

4. Préciser le sens de variation de ζ.

5. On se propose dans cette question de justifier l’existence et de déterminer la valeur de la limite de la fonction
ζ en +∞.

(a) Montrer que ζ possède une limite finie en +∞.
(b) Soit N ∈ N⋆. Montrer que : ∀x ⩾ 2, 1 ⩽ ζ(x) ⩽

∑N
k=1

1
nx +

∑+∞
k=N+1

1
n2 .

(c) En déduire la valeur de la limite de ζ en +∞.

6. On considère à présent h ∈]0,+∞[.
À l’aide d’une comparaison série-intégrale, déterminer un encadrement de ζ(1+h) puis un équivalent de ζ(x)
lorsque x tend vers 1.

7. Donner l’allure de la représentation graphique de la fonction ζ.

8. On pose ∀x ∈]0,+∞[, F (x) =
∑+∞

n=1
(−1)n

nx .

(a) Justifier que F est bien définie.
(b) Montrer que F est continue sur R+.
(c) Montrer que : ∀x ∈]1,+∞[, ζ(x) + F (x) = 21−xζ(x).
(d) Déterminer ensuite la limite de F en +∞.

Exercice 3 - CCINP PC 2002 Maths 1 (extrait adapté de la partie 2)

Soit A = (ai,j) une matrice de Mn(C) et N une norme quelconque sur Cn. On pose :

MA = max
1⩽i⩽n

n∑
j=1

|ai,j |.

On pose aussi N∞ la norme infinie sur Cn définie par :

∀X = (xi)1⩽i⩽n ∈ Cn, N∞(X) = max
1⩽i⩽n

|xi|.

On identifiera Cn et Mn,1(C), c’est-à-dire que l’on considerera que (x0, . . . , xn) ∈ Cn et

x0
...
xn

 ∈ Mn,1(C) repré-

sentent le même objet. Ainsi N∞ définit également une norme sur l’ensemble des matrices colonnes.
Pour toute matrice A de Mn(C), on note également Sp(A) l’ensemble des valeurs propres complexes de A et on
appelle rayon spectral de A le réel ρ(A) défini par :

ρ(A) = max
λ∈Sp(A)

|λ|.

Enfin, on qualifie de norme matricielle toute norme φ définie sur Mn(C) vérifiant la propriété :

∀(A,B) ∈ (Mn(C))2, φ(AB) ⩽ φ(A)φ(B).

1. (a) Montrer que pour tout X ∈ Cn : N∞(AX) ⩽ MAN∞(X).
(b) Montrer qu’il existe une constante CA telle que :

∀X ∈ Cn, N(AX) ⩽ CAN(X).
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(c) Montrer que l’ensemble
{
N(AX)

N(X)
| X ∈ Cn \ {0}

}
possède une borne supérieure dans R.

On notera dans la suite :
Ñ(A) = sup

X∈Cn\{0}

N(AX)

N(X)
.

(d) Montrer que Ñ∞(A) ⩽ MA.

(e) On pose : G =

1 1 0
1 −1 1
2 −5 3

.

Déterminer un vecteur X0 de C3 tel que N∞(X0) = 1 et N∞(GX0) = 10. En déduire la valeur de
Ñ∞(A).

2. Soit i0 un entier compris entre 1 et n tel que
n∑

j=1

|ai0,j | = MA. En considérant le vecteur Y de Cn de

composantes yj définies par :

yj =

{
ai0,j
|ai0,j |

si ai0,j ̸= 0

1 si ai0,j = 0

montrer que MA ⩽ Ñ∞(A) et en déduire que Ñ∞(A) = MA.

3. Montrer que :

(a) Ñ(A) = 0 ⇔ A = 0n.
(b) ∀λ ∈ C, Ñ(λA) ⩽ |λ|Ñ(A).
(c) En déduire : ∀λ ∈ C, Ñ(λA) = |λ|Ñ(A).
(d) ∀B ∈ Mn(C), Ñ(A+B) ⩽ Ñ(A) + Ñ(B).
(e) ∀X ∈ Cn, N(AX) ⩽ Ñ(A)N(X).
(f) Déduire de ces résultats que Ñ est une norme matricielle sur Mn(C). On lui donne le nom de norme

matricielle subordonnée à la norme N .

4. (a) En considérant une valeur propre λ de A telle que |λ| = ρ(A), montrer que :

ρ(A) ⩽ Ñ(A).

(b) Donner un exemple simple de matrice A non nulle vérifiant ρ(A) = Ñ∞(A).
(c) Montrer que si A est nilpotente non nulle, on a l’égalité stricte :

ρ(A) < Ñ(A).

Indication : on pourra montrer que si A est nilpotente, alors Sp(A) = {0}.

5. Montrer que si lim
k→+∞

Ak = 0n alors ρ(A) < 1.

Dans la suite du problème, on admettra que, réciproquement, si ρ(A) < 1 alors lim
k→+∞

Ak = 0n.

6. (a) Montrer que pour tout k entier naturel non nul : ρ(A) ⩽
[
Ñ(Ak)

] 1
k .

(b) Montrer que pour tout α ∈ C, ρ(αA) = |α|ρ(A).
(c) Soit ϵ > 0 et Aϵ = A

ρ(A)+ϵ . Vérifier que ρ(Aϵ) < 1 et en déduire l’existence d’un entier naturel kϵ tel
que :

∀k ∈ N,
(
k ⩾ kϵ ⇒ Ñ(Ak) ⩽ (ρ(A) + ϵ)k

)
.

(d) En déduire que lim
k→+∞

[
Ñ(Ak)

] 1
k
= ρ(A).
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Exercice 4 - Centrale-Supélec PC 2014 Maths 2 (extrait adapté de la partie 2)

Pour (a, b) ∈ C2, on désigne par M(a, b) la matrice carrée complexe M(a, b) =

(
a −b

b a

)
∈ M2(C).

Une matrice de la forme M(a, b) sera appelée quaternion. On considèrera en particulier les quaternions e = I2 =
M(1, 0), I = M(0, 1), J = M(i, 0), K = M(0,−i) et on notera H = {M(a, b) | (a, b) ∈ C2} le sous-ensemble de
M2(C) constitué par tous les quaternions.
On veillera à ne pas confondre la matrice I = M(0, 1) et la matrice unité I2 = e = M(1, 0).
Partie I - Le « corps » des quaternions
On note C = M2(C) l’ensemble des matrices complexes à deux lignes et deux colonnes.

1. (a) Donner sans justification une base et la dimension de C en tant que R-espace vectoriel.
(b) Montrer que H est un sous-espace vectoriel de C et que {e, I, J,K} en est une base sur le corps R.
(c) Montrer que H est stable par multiplication.

2. (a) Vérifier que toute matrice de H non nulle est inversible.
(b) Montrer que H \ {0} est stable par passage à l’inverse.

H a toutes les propriétés d’un corps (comme R ou C) sauf la commutativité pour la multiplication. On dit que
c’est un anneau à divisions (ou parfois un corps non-commutatif ).

3. (a) Calculer les produits deux à deux des matrices e, I, J , K. On présentera les résultats dans un tableau
à double entrée.

(b) On appelle H-système de matrices de taille n toute famille finie (A1, . . . , Ap) de matrices de Mn(C)
telles que : {

∀i ∈ [[1, p]], A2
i = In,

∀(i, j) ∈ [[1, p]]2 tel que i ̸= j, AiAj +AjAi = 0.

Montrer que (iI, iJ, iK) est un H-système.

Partie II - Conjugaison et normes
Ainsi tout élément q ∈ H s’écrit de manière unique q = xe+ yI + zJ + tK avec x, y, z, t ∈ R.
Pour x, y, z, t ∈ R et q = xe+yI+ zJ + tK, on pose q⋆ = xe−yI− zJ − tK ∈ H et N(q) = x2+y2+ z2+ t2 ∈ R+.

4. Vérifier que q 7→
√
N(q) est une norme sur H.

5. (a) Vérifier que, pour tout q ∈ H, q⋆ est la transposée de la matrice dont les coefficients sont les conjugués
des coefficients de q.

(b) En déduire que pour tout (q, r) ∈ H2, (qr)⋆ = r⋆q⋆.
(c) Montrer que q⋆⋆ = q pour tout q ∈ H et que q 7→ q⋆ est un automorphisme du R-espace vectoriel H.
(d) Pour q ∈ H, exprimer qq⋆ à l’aide de N(q). En déduire la relation valable pour tout (q, r) ∈ H2 :

N(qr) = N(q)N(r).

6. (a) Soient (x, y, z, t) ∈ R4 et q = xe+ yI + zJ + tK. Exprimer la trace de la matrice q ∈ M2(C) en fonction
du réel x.

(b) En déduire que, pour tout (q, r) ∈ H2, qr − rq = q⋆r⋆ − r⋆q⋆.
(c) Soient a, b, c et d des quaternions. Établir la relation (acb⋆)d+ d⋆(acb⋆)⋆ = (acb⋆)⋆d⋆ + d(acb⋆).

En déduire l’identité (N(a) +N(b))(N(c) +N(d)) = N(ac− d⋆b) +N(bc⋆ + da).
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