
Fauriel - PC - Mathématiques TD8 - Séries entières

TD8 - Séries entières

Exercice 1. Trouver le rayon de convergence de la série entière
∑

anx
n, lorsque

1. an −→
n→∞

ℓ ̸= 0

2. an = e−n2

3. an =
nn

n!

4. an = cos( 2nπ
65537)

5. an = n!

6. a2n = αn, a2n+1 = βn, 0 <
α < β

7. a2n = 1
(1+n)n et a2n+1 =

1
(1+ 1

n
)n

.

8. an = (−i)n(n!)n

(2n+1)!

Exercice 2. Déterminer le rayon de convergence des séries entières suivantes (avec a > 0) :

∑ (2n)!

nnn!
x2n,

∑ n2n

(2n)!
x3n et

∑
anxn!

Exercice 3. Soit α ∈ R. Montrer que les séries entières
∑

anz
n et

∑
nαanz

n ont le même rayon de convergence.

Exercice 4. Déterminer le rayon de convergence R et la somme des séries entières suivantes :

1.
∞∑
n=1

xn

(n− 1)!

2.
∞∑
n=1

n2xn

3.
∞∑
n=2

x2n−1

(n− 1)!

4.
∞∑
n=0

(
3 + (−1)n

)n
zn

5.
∞∑
n=0

cos(nθ) xn, où θ ∈ R

6.
∞∑
n=1

cos(nθ)xn

n

Exercice 5. Montrer que ∀x ∈ R,
∫ x
0 t etdt =

∑∞
n=0

xn+2

(n+2)n! ·

Exercice 6. Donner le rayon de convergence et calculer :
∞∑
n=0

2n xn

(2n+ 1)!
.

Exercice 7.

1. Développer en série entière x 7→ cos3(x). Préciser son rayon de convergence.

2. Développer en série entière x 7→ ln(2 + 3x+ x2). Préciser son rayon de convergence.

3. Développer en série entière x 7→ ex sin(x). Préciser son rayon de convergence.

4. Développer en série entière f : x 7→ e−2x2

∫ x

0
e2t

2
dt. Préciser son rayon de convergence. Indication : On

commencera par trouver une équation différentielle vérifiée par f .

Exercice 8. On considère l’équation différentielle suivante pour t ∈ ]−1, 1[

(E) : (1− t2)y′′ − 2ty′ + 2y = 0

1. Déterminer les séries entières solutions de l’équation différentielle (E).

2. Après avoir calculé leurs rayons de convergence, exprimer ces solutions à l’aide de fonctions élémentaires.

3. A-t-on ainsi toutes les solutions ?

Exercice 9. On considère l’équation différentielle suivante : (E) ty′′ + 2y′ − ty = 0

1. Trouver une solution y0 de (E) développable en série entière.

2. En déduire les solutions de (E) sur R∗
+ en les cherchant sous la forme y : t 7→ y0(t)z(t), avec z à déterminer

(c’est une méthode générale lorsque l’on connaît une solution d’une équation homogène linéaire d’ordre 2).

Exercice 10 (d’après PT 2008). On considère le problème de Cauchy suivant :

y′ = xy + 1 ; y(0) = 0.
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1. Soit F (x) =

∞∑
n=0

anx
n une série entière à coefficients réels, de rayon de convergence R > 0. On suppose que

la fonction F est solution de l’équation différentielle sur ]−R,R[. Déterminer a0, a1 ainsi qu’une relation de
récurrence reliant, pour tout entier n ≥ 1, an+1 à an−1.

2. Pour tout entier naturel p ≥ 0, en déduire la valeur de a2p. Déterminer R.

3. Montrer, pour tout entier naturel p ≥ 0, a2p+1 =
2pp!

(2p+1)! .

Exercice 11. On pose f(x) =
arcsin(x)√

1− x2
.

1. Montrer que f admet un développement en série entière au voisinage de 0. Préciser son rayon de convergence.
2. Chercher une équation différentielle d’ordre 1 vérifiée par f .
3. En déduire les coefficients du développement en série entière de f .
4. En déduire le développement en série entière de arcsin2(x) au voisinage de 0.

Exercice 12. Montrer que l’application x 7→ arctan(x)

x
se prolonge en une fonction de classe C∞ sur ]−1, 1[.

Exercice 13. On note (E) l’équation différentielle x2y′′ + x(x+ 1)y′ − y = 0.
1. Chercher les solutions développables en série entière de (E).
2. Exprimer ces solutions à l’aide des fonctions usuelles.

Exercice 14. Déterminer les solutions développables en série entière des équations différentielles suivantes. On
exprimera explicitement les solutions obtenues à l’aide des fonctions usuelles.

1. y′ − x2y = 0, y(0) = 1

2. xy′′ + 2y′ + xy = 0, y(0) = 1, y′(0) = 0

3. xy′ − y = x2

1−x

4. xy′′ + 2y′ − xy = 0, y(0) = 1, y′(0) = 0

Exercice 15. Déterminer le développement en série entière des fonctions suivantes.

1. ln
(√

1+x
1−x

)
2. arctan

(
x
√
2

1−x2

)
3. 2

x2−4x+3
4. 1

x2+x+1

Exercice 16. Déterminer le développement en série entière de f : x 7→ ln2(1+ x) à l’aide d’une équation différen-
tielle.

Exercice 17. Pour tout n ∈ N, on pose an = (−1)n

2n−1

(
2n

n

)
.

1. Montrer que, pour tout n ∈ N, (n+ 1)an+1 = −2(2n− 1)an.

2. Donner le rayon de convergence R de la série entière f(x) =
∞∑
n=0

anx
n, puis montrer que f est solution

sur ]−R,R[ d’une équation différentielle linéaire du premier ordre que l’on explicitera.
3. En déduire f .

Exercice 18.

1. Soit le polynôme P (X) = (1 +X)3. Déterminer le rayon de convergence de la série entière
∑ P (n)

n!
zn.

2. Déterminer des réels a, b, c, d tels que : P (X) = aX(X − 1)(X − 2) + bX(X − 1) + cX + d.

3. En déduire que la somme de la série entière
∑ P (n)

n!
zn est de la forme Q(z)ez, où Q est un polynôme que

l’on déterminera.
4. Plus généralement, P désignant un polynôme complexe quelconque, prouver que la somme de la série entière∑ P (n)

n!
zn est de la forme Q(z)ez où Q est un certain polynôme.

Exercice 19. Calculer
∫ 1

0

ln(1 + t)

t
dt (on admettra

∞∑
n=1

1

n2
=

π2

6
).
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Exercice 20 (CCP 2011 Officiel de la Taupe). Soit (an)n∈N définie par a0 = −4, a1 = 2, a2 = 4, et pour
tout n ∈ N, an+3 = an+2 + an+1 − an. On pose bn = an+1 − an.

1. (a) Montrer que pour tout n ∈ N, bn+2 − bn = 0, puis que pour tout n ∈ N∗, an = −4 +
n−1∑
k=0

bk.

(b) Déterminer la suite (bn)n∈N, puis la suite (an)n∈N.

2. On souhaite retrouver ce résultat grâce aux séries entières.

(a) Montrer que pour tout n ∈ N, |an| ≤ 2n+2.
(b) Montrer que le rayon de convergence R de

∑
n≥0

anx
n est non nul.

(c) Soit ρ = min
(
1
2 , R

)
et x ∈] − ρ, ρ[. On pose S(x) =

∞∑
k=0

akx
k. Montrer que S(x) = −4+6x+6x2

(x+1)(x−1)2
et qu’il

existe trois réels a, b, c tels que S(x) = a
x−1 + b

(x−1)2
+ c

x+1 .
(d) Déterminer la suite (an)n∈N.

Exercice 21 (CCP 2012 Officiel de la Taupe - exo 2). Donner le domaine de définition de f : x 7→
∫ x
0

ln(1+t)
t dt.

Montrer que f est développable en série entière et donner son rayon de convergence.

Exercice 22 (CCP PC 2019 (RMS 130 exo 1370) - 2014 (ODLT)).

1. Donner le développement limité à l’ordre 3 au voisinage de 0 de f(t) = ee
t−1 (en 2019, il était donné :

f(t) = 1 + t+ t2 + 5
6 t

3 + o(t3)). En déduire f (k)(0) pour 0 ≤ k ≤ 3.

2. On pose p0 = 1 et pn+1 =
n∑

k=0

(
n

k

)
pk.

Calculer p1, p2, p3 puis montrer que pour tout n ∈ N, pn ≤ n!.

3. Montrer que le rayon de convergence R de
∑
n≥0

pn
n!

xn est non nul. On note F sa somme quand elle est définie.

4. Montrer que ∀x ∈ ]−R,R[, F ′(x) = exF (x) et en déduire que f (n)(0) = pn.

3



Fauriel - PC - Mathématiques TD8 - Séries entières

Solutions

Exercice 1. On notera pour chaque série entière étudiée R son rayon de convergence.

1. On va utiliser le critère de D’Alembert. Comme la suite numérique (an)n∈N converge vers ℓ ̸= 0, il existe N ∈ N
tel que pour tout n ≥ N , an ̸= 0. Puis, pour tout x ∈ R avec x ̸= 0,

lim
n→+∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |ℓ|
|ℓ|

|x| = |x|.

Ainsi, d’après le critère de D’Alembert, la série numérique
∑
n∈N

anx
n

• converge absolument si |x| < 1, donc R ≥ 1,
• et diverge grossièrement si |x| > 1, donc R ≤ 1.

Donc
R = 1 .

2. Pour tout n ∈ N, an ̸= 0. Puis, pour tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = e−(n+1)2

e−n2 |x| = e−2n−1|x| −→
n→+∞

0 < 1.

Ainsi, d’après le critère de D’Alembert, la série numérique
∑
n∈N

anx
n converge pour tout x ∈ R∗. Donc R ≥ |x|

pour tout x ∈ R∗, soit
R = +∞ .

3. Pour tout n ∈ N, an ̸= 0. Puis, pour tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =

∣∣∣∣(n+ 1)n+1xn+1

(n+ 1)!
.

n!

nnxn

∣∣∣∣ = (n+ 1

n

)n

|x| =
(
1 +

1

n

)n

|x| = exp

(
n ln

(
1 +

1

n

))
|x|

= exp

(
n

(
1
n + o

n→+∞

(
1
n

)))
|x| = exp

(
1 + o

n→+∞
(1)

)
|x|

−→
n→+∞

exp(1)|x| = e|x|

(par continuité de la fonction exponentielle en 1).
Ainsi, d’après le critère de D’Alembert, la série numérique

∑
n∈N

anx
n

• converge absolument si |x| < 1
e , donc R ≥ 1

e ,
• et diverge grossièrement si |x| > 1

e , donc R ≤ 1
e .

Donc

R =
1

e
.

4. Pour tout n ∈ N,
|an| ≤ 1.

Donc an = O
n→+∞

(1), donc R est supérieur ou égal au rayon de la série entière
∑
n∈N

1 · xn, qui vaut 1 (rayon

de la série géométrique). Donc
R ≥ 1.

D’autre part, la suite numérique (an)n∈N est 65537-périodique et donc pour tout k ∈ N,

a65537k = 1.

1
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Donc la suite numérique (an)n∈N ne tend pas vers 0, donc la série numérique
∑
n∈N

an diverge grossièrement,

donc la série numérique
∑
n∈N

an1
n diverge, donc

R ≤ |1| = 1.

Ainsi
R = 1 .

5. Pour tout entier n ∈ N, on a an > 0. Puis, pour tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = (n+ 1)|x| −→
n→+∞

+∞ > 1,

donc la série numérique
∑
n∈N

anx
n diverge grossièrement d’après le critère de D’Alembert. On a donc R ≤ |x|

pour tout x ∈ R∗, soit
R = 0 .

6. Notons R le rayon de convergence de la série entière
∑
n∈N

anx
n. Étudions le rayon de convergence des séries

entières
∑
n∈N

αnx2n et
∑
n∈N

βnx2n+1. Notons Ra et Rb leur rayon de convergence respectifs.

⋆ Calcul de Ra. Pour tout x ∈ R avec x ̸= 0, comme α > 0, pour tout n ∈ N,

αnx2n ̸= 0,

puis ∣∣∣∣αn+1x2n+2

αnx2n

∣∣∣∣ −→
n→+∞

|α||x2|.

Ainsi, par le critère de D’Alembert, la série numérique
∑
n∈N

αnx2n

• converge absolument si |α||x2| < 1, c’est-à-dire si |x| < 1√
α

, donc Ra ≥ 1√
α
,

• et diverge grossièrement si |a||x2| > 1, c’est-à-dire si |x| > 1√
α

, donc Ra ≤ 1√
α
.

Donc
Ra =

1√
α
.

Remarque. On peut aussi remarquer que la série numérique
∑
n∈N

αnx2n est une série géométrique de rai-

son αx2, donc converge si et seulement si |αx2| < 1, donc si et seulement si |x| < 1√
α
, et on retrouve

Ra =
1√
α

(c’est bien une égalité, car on a une équivalence).

⋆ En procédant de la même façon,

Rb =
1√
β
.

⋆ Comme la série entière
∑
n∈N

anx
n est la somme des deux séries entières précédentes :

∑
n∈N

anx
n =

∑
n∈N

αnx2n +
∑
n∈N

βnx2n+1,

alors la série entière
∑
n∈N

anx
n a un rayon de convergence R ≥ min(Ra, Rb) avec égalité si Ra ̸= Rb ce qui est

le cas ici, puisque Rb < Ra. D’où

R = Rb =
1√
β

.

2
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7. Étudions le rayon de convergence Ra de la série entière
∑
n∈N∗

1

(1 + n)n
x2n et celui Rb de la série entière∑

n∈N∗

1(
1 + 1

n

)nx2n+1.

⋆ Étude de la série entière
∑
n∈N∗

1

(n+ 1)n
x2n. Pour tout x ∈ R avec x ̸= 0, pour tout n ∈ N∗, 1

(n+1)nx
2n ̸= 0.

Puis, ∣∣∣∣∣ x2(n+1)

(1 + n+ 1)n+1
× (1 + n)n

x2n

∣∣∣∣∣ = |x|2
∣∣∣∣∣∣ 1

(2 + n)
(
1 + 1

1+n

)n
∣∣∣∣∣∣ ∼
n→+∞

|x|2

ne
−→

n→+∞
0 < 1

Remarque. En effet,(
1 +

1

1 + n

)n

= exp

(
n ln

(
1 +

1

1 + n

))
= exp

(
n

(
1

1 + n
+ o

n→+∞

(
1

1 + n

)))
= exp

(
1 + o

n→+∞
(1)

)
−→

n→+∞
e

par continuité de la fonction exponentielle en 1, c’est une limite archi-classique (elle et ses variantes...).

Donc, par le critère de D’Alembert, la série numérique
∑
n∈N∗

1

(n+ 1)n
x2n converge pour tout x ∈ R∗, ainsi Ra ≥

|x| pour tout x ∈ R∗, soit
Ra = +∞.

⋆ Étude de la série entière
∑
n∈N∗

1(
1 + 1

n

)nx2n+1. Pour tout x ∈ R avec x ̸= 0, pour tout n ∈ N∗,

1

(1+ 1
n)

nx2n+1 ̸= 0. Puis, comme pour la limite de la remarque,∣∣∣∣∣∣∣
1

(1+ 1
n+1)

n+1x
2(n+1)+1

1

(1+ 1
n)

nx2n+1

∣∣∣∣∣∣∣ −→
n→+∞

e

e
|x|2 = |x|2.

Donc, par le critère de D’Alembert, la série numérique
∑
n∈N∗

1(
1 + 1

n

)nx2n+1

• converge absolument si |x|2 < 1, c’est-à-dire si |x| < 1, donc Rb ≥ 1,
• et diverge grossièrement si |x|2 > 1, c’est-à-dire si |x| > 1, donc Rb ≤ 1.

D’où
Rb = 1.

Comme la série entière
∑
n∈N∗

anx
n est la somme des deux séries entières précédentes :

∑
n∈N∗

anx
n =

∑
n∈N∗

1

(n+ 1)n
x2n +

∑
n∈N∗

1(
1 + 1

n

)nx2n+1,

la série entière
∑
n∈N∗

anx
n a un rayon de convergence R ≥ min(Ra, Rb) avec égalité si Ra ̸= Rb ce qui est le

cas ici, puisque Ra > Ra. D’où
R = Rb = 1 .

8. Pour tout entier n ∈ N, on a an ̸= 0. Puis, pour tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = (n+ 1)n+1n!

(2n+ 3)(2n+ 2)
|x| −→

n→+∞
+∞ > 1,

donc, d’après le critère de D’Alembert, la série numérique
∑
n∈N

anx
n diverge grossièrement. On a donc R ≤ |x|

pour tout x ∈ R∗, soit
R = 0 .

3
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Exercice 2. On notera pour chaque série entière étudiée R son rayon de convergence.

1. Pour tout x ∈ R avec x ̸= 0, pour tout n ∈ N,

un =
(2n)!

nnn!
x2n ̸= 0.

Puis, ∣∣∣∣un+1

un

∣∣∣∣ = ∣∣∣∣ (2n+ 2)!x2n+2nnn!

(n+ 1)n+1(n+ 1)!(2n)!x2n

∣∣∣∣ =
∣∣∣∣∣(2n+ 2)(2n+ 1)x2

(n+ 1)2
(
1 + 1

n

)n
∣∣∣∣∣ =

∣∣∣∣∣ 2(2n+ 1)x2

(n+ 1)
(
1 + 1

n

)n
∣∣∣∣∣ −→
n→+∞

4|x|2

e

(car (
1 +

1

n

)n

= exp

(
n ln

(
1 +

1

n

))
= exp

(
n

(
1

n
+ o

n→+∞

(
1

n

)))
= exp

(
1 + o

n→+∞
(1)

)
−→

n→+∞
e

par continuité de la fonction exponentielle en 1).

D’où, par le critère de D’Alembert, la série numérique
∑
n∈N

(2n)!

nnn!
x2n

• converge absolument si |x|2 < e

4
, c’est-à-dire si |x| <

√
e

2
, donc R ≥

√
e
2 ,

• et diverge grossièrement si |x|2 > e

4
, c’est-à-dire si |x| >

√
e

2
, donc R ≤

√
e
2 .

Ainsi

R =

√
e

2
.

2. Pour tout x ∈ R avec x ̸= 0, pour tout n ∈ N,

un =
n2n

(2n)!
x3n ̸= 0.

Puis,∣∣∣∣un+1

un

∣∣∣∣ = ∣∣∣∣(2n)!(n+ 1)2n+2x3n+3

n2n(2n+ 2)!x3n

∣∣∣∣ =
∣∣∣∣∣(n+ 1)2

(
1 + 1

n

)2n
x3

(2n+ 2)(2n+ 1)

∣∣∣∣∣ =
∣∣∣∣∣(n+ 1)

(
1 + 1

n

)2n
x3

2(2n+ 1)

∣∣∣∣∣ −→
n→+∞

e2|x|3

4
.

(car(
1 +

1

n

)2n

= exp

(
2n ln

(
1 +

1

n

))
= exp

(
2n

(
1

n
+ o

n→+∞

(
1

n

)))
= exp

(
2 + o

n→+∞
(1)

)
−→

n→+∞
e2

par continuité de la fonction exponentielle en 2).

D’où, par le critère de D’Alembert, la série numérique
∑
n∈N

n2n

(2n)!
x3n

• converge absolument si
e2|x|3

4
< 1, c’est-à-dire si |x| <

(
4

e2

) 1
3

, donc R ≥
(

4
e2

) 1
3 ,

• et diverge grossièrement si
e2|x|3

4
> 1, c’est-à-dire |x| >

(
4

e2

) 1
3

, donc R ≤
(

4
e2

) 1
3 .

Ainsi

R =

(
4

e2

) 1
3

.

3. Pour tout x ∈ R avec x ̸= 0, pour tout n ∈ N, anxn! ̸= 0 (car a > 0). Puis, comme a > 0,∣∣∣∣∣an+1x(n+1)!

anxn!

∣∣∣∣∣ = a|x|nn! −→
n→+∞

{
0 si |x| < 1
+∞ si |x| > 1

.

Donc, par le critère de D’Alembert, la série numérique
∑
n∈N

anxn!

4



Fauriel - PC - Mathématiques TD8 - Séries entières

• converge absolument si |x| < 1, donc R ≥ 1,
• et diverge grossièrement si |x| > 1, donc R ≤ 1.

On a donc
R = 1 .

Exercice 3. Notons R1 et R2 les rayons de convergence des séries entières
∑
n∈N∗

anz
n et

∑
n∈N∗

nαanz
n.

⋆ Soit ρ ∈ R avec ρ > 0 tel que la suite numérique (anρ
n)n∈N∗ soit bornée. Soit ρ′ ∈]0, ρ[. Alors, pour tout n ∈ N∗,

ann
αρ′n = (anρ

n)︸ ︷︷ ︸
bornée

nα

(
ρ′

ρ

)n

︸ ︷︷ ︸
−→

n→+∞
0

−→
n→+∞

0

(la limite provenant d’une croissance comparée, car
∣∣∣ρ′ρ ∣∣∣ < 1). Donc la suite numérique (ann

αρ′n)n∈N∗ est bornée.
Donc (par définition même du rayon de convergence),

R2 ≥ ρ′,

et cela étant vrai pour tout ρ′ ∈]0, ρ[,
R2 ≥ ρ.

Or, cela est vrai pour tout ρ ∈ R∗
+ tel que la suite (anρ

n)n∈N∗ soit bornée, donc pour tout ρ ∈]0, R1[. Donc

R2 ≥ R1.

⋆ Soit ρ ∈ R avec ρ > 0 tel que la suite numérique (ann
αρn)n∈N∗ soit bornée. Soit ρ′ ∈]0, ρ[. Alors, pour

tout n ∈ N∗,

anρ
′n = (ann

αρn)︸ ︷︷ ︸
bornée

1

nα

(
ρ′

ρ

)n

︸ ︷︷ ︸
−→

n→+∞
0

(idem qu’avant). Donc la suite numérique (anρ
′n)n∈N∗ est bornée. On a donc (idem qu’avant)

R1 ≥ R2.

⋆ Ainsi
R1 = R2.

Exercice 4.

1. ⋆ Rayon de convergence : Pour tout n ∈ N∗,
1

(n− 1)!
̸= 0. Pour tout x ∈ R avec x ̸= 0,

lim
n→+∞

∣∣∣∣(n− 1)!xn+1

n!xn

∣∣∣∣ = lim
n→+∞

1

n
|x| −→

n→+∞
0 < 1.

Donc, d’après le critère de D’Alembert, la série numérique
∑
n∈N∗

xn

(n− 1)!
converge absolument pour tout x ∈

R∗, donc R ≥ |x| pour tout x ∈ R∗, soit
R = +∞ .

⋆ Calcul de la somme : pour tout réel x ∈ R,

∞∑
n=1

xn

(n− 1)!
= x

∞∑
n=1

xn−1

(n− 1)!
=

k=n−1
x

∞∑
k=0

xk

k!
= xex .
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2. ⋆ Rayon de convergence : Pour tout n ∈ N∗, on a n2 ̸= 0. Pour tout x ∈ R avec x ̸= 0,∣∣∣∣(n+ 1)2xn+1

n2xn

∣∣∣∣ −→
n→+∞

|x|,

donc, d’après le critère de D’Alembert, la série numérique
∑
n∈N∗

n2xn

• converge absolument si |x| < 1, donc R ≥ 1,
• et diverge grossièrement si |x| > 1, donc R ≤ 1.

Donc
R = 1 .

⋆ Calcul de la somme : la série entière
∑
n∈N

xn a pour rayon 1, donc la somme de cette série entière est de

classe C∞ sur ]−1, 1[, et sur cet intervalle on peut dériver terme à terme. Comme cette somme est la fonction

x 7→
∞∑
n=0

xn =
1

1− x
, en dérivant, pour x ∈]− 1, 1[ :

1

(1− x)2
= 0 +

∞∑
n=1

nxn−1,
2

(1− x)3
= 0 + 0 +

∞∑
n=2

n(n− 1)xn−2.

D’où, pour x ∈]− 1, 1[,
∞∑
n=2

n2xn−2 =
2

(1− x)3
+

∞∑
n=2

nxn−2,

puis
∞∑
n=1

n2xn = x2
∞∑
n=1

n2xn−2 =
2x2

(1− x)3
+

∞∑
n=1

nxn

(des deux côtés, pour n = 1, on a x à ajouter), ce qui donne

∞∑
n=1

n2xn =
2x2

(1− x)3
+

x

(1− x)2

puis
∞∑
n=1

n2xn =
x2 + x

(1− x)3
.

3. ⋆ Calcul du rayon de convergence : Pour tout n ∈ N, 1
(n−1)! ̸= 0. Puis, pour x ∈ R avec x ̸= 0,∣∣∣∣x2n+1

n!
.
(n− 1)!

x2n−1

∣∣∣∣ = |x2|
n

−→
n→+∞

0 < 1.

Ainsi, par le critère de D’Alembert, la série numérique
∑
n≥2

x2n−1

(n− 1)!
converge pour tout x ∈ R∗, donc R ≥ |x|

pour tout x ∈ R∗, soit
R = +∞ .

⋆ Calcul de la somme : pour tout réel x ∈ R,

∞∑
n=1

x2n−1

(n− 1)!
=

k=n−1

∞∑
k=0

x2k+1

k!
= x

∞∑
k=0

(x2)k

k!
= xex

2
.

4. ⋆ Rayon de convergence, trouvé à un exercice précédent (en cours) que

R =
1

4
.

6
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Cependant, il est direct que la série diverge grossièrement en z = 1
4 (car les termes d’indices pairs valent 1,

ne tendent pas vers 0), donc le rayon est au plus 1
4 . Et ce qui suit permet de calculer la somme pour |z| < 1

4 ,
donc le rayon est au moins 1

4 .
⋆ Calcul de la somme : pour tout z ∈ C vérifiant |z| < 1

4 ,
∞∑
n=0

(
3 + (−1)n

)n
zn =

∞∑
n=0

(4z)2n +
∞∑
n=0

(2z)2n+1 =
1

1− (4z)2
+

2z

1− (2z)2
,

les séries convergeant bien, car on a des séries géométriques de raison (4z)2 et (2z)2, avec |(4z)2| < 1
et |(2z)2| < 1 puisque |z| < 1

4 .
5. ⋆ On a

R = 1 .

En effet, pour tout n ∈ N, | cos(nθ)| ≤ 1, donc R est supérieur ou égal au rayon de la série entière
∑
n∈N

1 · xn,

qui est de rayon 1 (série géométrique), donc
R ≥ 1.

Puis, la suite numérique
(
cos(nθ)

)
n∈N ne tend pas vers 0 (car sinon, cos(2nθ) = 2 cos2(nθ) − 1 −→

n→+∞
−1,

absurde, puisqu’en tant que suite extraite, on devrait avoir cos(2nθ) −→
n→+∞

0) , donc la série numérique∑
n∈N

cos(nθ)xn diverge pour x = 1, donc

R ≤ |1| = 1.

⋆ Calcul de la somme : pour tout x ∈] − 1, 1[, la série numérique
∑
n∈N

(
eiθx

)n converge (série géométrique

de raison eiθx, avec
∣∣eiθx∣∣ = |x| < 1), donc en prenant sa partie réelle, :

∞∑
n=0

cos(nθ) xn =
∞∑
n=0

Re
((

eiθx
)n)

= Re

( ∞∑
n=0

(
eiθx

)n)

= Re

(
1

1− xeiθ

)

= Re

(
1(

1− cos(θ)x
)
− i sin(θ)x

)

=
1− cos(θ)x(

1− cos(θ)x
)2

+ x2 sin2(θ)

Donc, pour x ∈]− 1, 1[,
∞∑
n=0

cos(nθ) xn =
1− x cos(θ)

1 + x2 − 2x cos(θ)
.

6. ⋆ Calcul du rayon de convergence : pour tout n ∈ N∗,

d

dx

(
cos(nθ)xn

n

)
= cos(nθ)xn−1,

donc par le cours, la série entière
∑
n∈N

cos(nθ)xn

n
a même rayon de convergence que la série entière

∑
n∈N

cos(nθ)xn−1,

donc (multiplier par x ne change pas le rayon) que la série entière
∑
n∈N

cos(nθ)xn, qui vaut 1 (vu à la question

précédente). Donc
R = 1 .
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⋆ Calcul de la somme : Pour tout x ∈]− 1, 1[, notons

S(x) =
∞∑
n=1

cos(nθ)xn

n
.

Comme c’est la somme d’une série entière de rayon 1, sur ]−1, 1[ la fonction S est de classe C∞ et on peut
la dériver terme à terme. Donc, pour tout x ∈]− 1, 1[,

S′(x) =

∞∑
n=1

cos(nθ) xn−1,

puis, grâce à la question précédente (en faisant attention qu’il manque le terme n = 0...),

xS′(x) =
∞∑
n=1

cos(nθ) xn =
1− x cos(θ)

1 + x2 − 2x cos(θ)
− 1 =

1− x cos(θ)− x2 − 1 + 2x cos(θ)

1 + x2 − 2x cos(θ)
,

donc (en divisant par x), pour x ∈]− 1, 0[∪]0, 1[ (pour ne pas diviser par 0...),

S′(x) =
−x+ cos(θ)

1 + x2 − 2x cos(θ)
.

Pour éviter les problèmes, on remarque que cette formule reste vrai pour x = 0, puisque

S′(0) =
∞∑
n=1

cos(nθ) 0n−1 = cos(θ)

(00 = 1, puis 0n−1 = 0 pour n ≥ 2...), et

−x+ cos(θ)

1 + x2 − 2x cos(θ)

∣∣∣∣
x=0

= cos(θ).

L’égalité étant valable sur l’intervalle ]−1, 1[, en intégrant (c’est de la forme u′

u à constante près), : il
existe K ∈ R tel que, pour tout x ∈]− 1, 1[,

S(x) = −1

2
ln
(
1 + x2 − 2x cos(θ)

)
+K

(on n’oublie pas la constante d’intégration, puisqu’on est sur un intervalle). Or S(0) = 0, d’où K = 0.
Ainsi, pour tout x ∈]− 1, 1[,

S(x) = −1

2
ln
(
1 + x2 − 2x cos(θ)

)
.

Exercice 5.
Soit x ∈ R.
Pour tout réel t ∈ R,

et =

∞∑
n=0

tn

n!

(cf. cours, c’est le DSE de exp en 0, il est valable sur R), donc

t et =

∞∑
n=0

tn+1

n!
.

Cette série entière converge donc pour tout réel t ∈ R, donc est de rayon infini.
Or, on sait que la somme d’une série entière de rayon R converge normalement sur tout segment inclus dans
]−R,R[, donc ici sur tout segment inclus dans ]−∞,+∞[= R, donc sur [0, x].
On pose, pour n ∈ N,

fn : t 7→ tn+1

n!
.
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⋆ Pour tout n ∈ N, la fonction fn est continue sur [0, x] (car polynomiale).
⋆ La série de fonctions

∑
n∈N

fn converge normalement sur [0, x] (on vient de le justifier à l’aide du rayon de

convergence).
D’après le théorème d’intégration terme à terme sur un segment, alors :∫ x

0
t etdt =

∫ x

0

∞∑
n=0

tn+1

n!
dt =

∞∑
n=0

∫ x

0

tn+1

n!
dt =

∞∑
n=0

xn+2

(n+ 2)n!

Autre méthode : pour tout réel t ∈ R, et =
∞∑
n=0

tn

n!
(cf. cours, c’est le DSE de exp en 0, il est valable sur R), donc

t et =

∞∑
n=0

tn+1

n!
.

Cette série entière converge donc pour tout réel t ∈ R, donc est de rayon infini.
Donc la fonction

ϕ : t ∈ R 7→ t et

est DSE sur R. Or, comme la fonction ϕ est continue sur l’intervalle R, et 0 ∈ R, le théorème fondamental de
l’analyse donne que

Φ : x ∈ R 7→
∫ x

0
t etdt =

∫ x

0
ϕ(t)dt

est une primitive de ϕ sur R. Donc, en tant que primitive d’une fonction DSE sur R, Φ est DSE sur R, et son DSE
s’obtient, à constante près, en primitivant terme à terme celui de ϕ (cf. cours). Ainsi, il existe K ∈ R avec, pour
tout x ∈ R,

Φ(x) = K +

∞∑
n=0

xn+2

(n+ 2)n!
.

Puis, en évaluant en x = 0, comme Φ(0) = 0, on obtient K = 0 (car 0n+2 = 0 pour tout n ∈ N), et donc on a bien,
pour tout x ∈ R, ∫ x

0
t etdt = Φ(x) =

∞∑
n=0

xn+2

(n+ 2)n!
.

Exercice 6.
⋆ Calcul du rayon de convergence : Notons, pour n ∈ N, an =

2n

(2n+ 1)!
. Pour tout n ∈ N∗, on a an ̸= 0. Pour

tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = 2(n+ 1)

(2n+ 3)!
× (2n+ 1)!

2n
|x| = 1

(2n)(2n+ 3)
|x| −→

n→+∞
0 < 1.

Ainsi, d’après le critère de D’Alembert, la série numérique
∑
n∈N

anx
n converge absolument pour tout x ∈ R∗.

Donc R ≥ |x| pour tout x ∈ R∗, soit
R = +∞ .

⋆ Calcul de la somme : pour tout réel x ∈ R,
∞∑
n=0

2nxn

(2n+ 1)!
=

∞∑
n=0

(2n+ 1− 1)xn

(2n+ 1)!
=

∞∑
n=0

xn

(2n)!
−

∞∑
n=0

xn

(2n+ 1)!

(sous réserve de convergence des deux séries de droite, mais là encore, le critère de D’Alembert permet de conclure
que ce sont des séries entières de rayon infini, donc convergentes en x).
Si x > 0, :

∞∑
n=0

xn

(2n)!
=

∞∑
n=0

(
√
x)2n

(2n)!
= cosh(

√
x) et

∞∑
n=0

xn

(2n+ 1)!
=

1√
x

∞∑
n=0

(
√
x)2n+1

(2n+ 1)!
=

sinh(
√
x)√

x
.
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Si x < 0, :

∞∑
n=0

xn

(2n)!
=

∞∑
n=0

(−1)n(
√
−x)2n

(2n)!
= cos

(√
−x
)

et
∞∑
n=0

xn

(2n+ 1)!
=

1√
−x

∞∑
n=0

(−1)n(
√
−x)2n+1

(2n+ 1)!
=

sin
(√

−x
)

√
−x

.

Ainsi, pour tout x ∈ R,

∞∑
n=0

2nxn

(2n+ 1)!
=


cosh(

√
x)− sinh(

√
x)√

x
si x > 0

0 si x = 0

cos
(√

−x
)
−

sin
(√

−x
)

√
−x

si x < 0

Remarque. Et comme la fonction de droite est égale à la somme d’une série entière, elle est de classe C∞ en 0,
ce qui n’était pas du tout évident a priori !

Autre méthode pour le calcul de la somme : notons

f : x ∈ R 7→
∞∑
n=0

2nxn

(2n+ 1)!
,

puis

g : x ∈ R 7→ xf(x2) =
∞∑
n=0

2nx2n+1

(2n+ 1)!
et h : x ∈ R 7→ xf(−x2) =

∞∑
n=0

2n(−1)nx2n+1

(2n+ 1)!
.

Les fonctions g et h sont DSE sur R (une fois que l’on sait que f l’est), donc on peut les dériver terme à terme :
pour tout x ∈ R,

g′(x) =
∞∑
n=0

2n(2n+ 1)x2n

(2n+ 1)!
= 0 +

∞∑
n=1

x2n

(2n− 1)!
=

k=n−1

∞∑
k=0

x2k+2

(2k + 1)!
= x sinh(x)

et

h′(x) =
∞∑
n=0

2n(2n+ 1)(−1)nx2n

(2n+ 1)!
= 0 +

∞∑
n=1

(−1)nx2n

(2n− 1)!
=

k=n−1

∞∑
k=0

(−1)k+1x2k+2

(2k + 1)!
= −x sin(x).

Puis, en intégrant par parties,∫ x

t sinh(t)dx = [t cosh(t)]x −
∫ x

cosh(t)dt = x cosh(x)− sinh(x)

et ∫ x

−t sin(t)dt = [t cos(t)]x −
∫ x

cos(t)dt = x cos(x)− sin(x).

Comme les fonctions g et x 7→ x cosh(x) − sinh(x) ont même dérivée sur R et que R est un intervalle, on en
déduit qu’il existe K ∈ R avec, pour tout x ∈ R,

g(x) = x cosh(x)− sinh(x) +K.

Or,
K = g(0) = 0f(02) = 0,

donc pour tout x ∈ R,
xf(x2) = g(x) = x cosh(x)− sinh(x),

soit pour tout x ∈ R∗,

f(x2) = cosh(x)− sinh(x)

x
.

De même, comme les fonctions h et x 7→ x cos(x)− sin(x) ont même dérivée sur R et que R est un intervalle,
on en déduit qu’il existe C ∈ R avec, pour tout x ∈ R,

h(x) = x cos(x)− sin(x) + C.
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Or,
C = h(0) = 0f(−02) = 0,

donc pour tout x ∈ R,
xf(−x2) = h(x) = x cos(x)− sin(x),

soit pour tout x ∈ R∗,

f(−x2) = cos(x)− sin(x)

x
.

On en déduit, pour tout x ∈ R∗
+,

f(x) = f
(√

x
2)

= cosh(
√
x)− sinh(

√
x)√

x

et pour tout x ∈ R∗
−,

f(x) = f
(
−
√
−x

2)
= cos(

√
−x)− sin(

√
−x)√

−x
.

Autre méthode pour le calcul de la somme : notons

f : x ∈ R 7→
∞∑
n=0

2nxn

(2n+ 1)!
=

∞∑
n=1

2nxn

(2n+ 1)!
,

puis

g : x ∈ R∗ 7→ f(x2)

x
=

∞∑
n=1

2nx2n−1

(2n+ 1)!
et h : x ∈ R 7→ f(−x2)

x
=

∞∑
n=1

2n(−1)nx2n−1

(2n+ 1)!
.

Les fonctions g et h sont les restrictions à R∗ de fonctions DSE sur R (une fois que l’on sait que f l’est), donc on
peut les intégrer terme à terme : les fonctions

G : x ∈ R∗ 7→
∞∑
n=1

x2n

(2n+ 1)!
=

sinh(x)− x

x
et h : x ∈ R 7→

∞∑
n=1

(−1)nx2n

(2n+ 1)!
=

sin(x)− x

x

sont des primitives de g et h respectivement.
Par conséquent, pour tout x ∈ R∗,

g(x) =
x cosh(x)− sinh(x)

x2
et h(x) =

x cos(x)− sin(x)

x2
.

Donc, pour tout x ∈ R∗,

f(x2) = xg(x) = cosh(x)− sinh(x)

x
et f(−x2) = xh(x) = cos(x)− sin(x)

x
.

On en déduit, pour tout x ∈ R∗
+,

f(x) = f
(√

x
2)

= cosh(
√
x)− sinh(

√
x)√

x

et pour tout x ∈ R∗
−,

f(x) = f
(
−
√
−x

2)
= cos(

√
−x)− sin(

√
−x)√

−x
.

Exercice 7. 1) La fonction x 7→ cos(x) est DSE en 0 donc par produit, la fonction x 7→ cos3(x) est DSE en 0.
Comme cos a comme rayon de convergence R = +∞, le rayon de convergence de cos3 vaut aussi +∞ (par produit
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de Cauchy, on sait que c’est au moins +∞, mais il n’y a pas plus grand...). Puis, pour tout réel x ∈ R,

cos3(x) =

(
eix + e−ix

2

)3

=
ei3x+e−i3x+3

(
eix+e−ix

)
8

= cos(3x)
4 + 3

4 cos(x)

=
1

4

∞∑
n=0

(−1)n(3x)2n

(2n)!
+

3

4

∞∑
n=0

(−1)nx2n

(2n)!

=
∞∑
n=0

(−1)n(9n + 3)

4(2n)!
x2n

(en utilisant le DSE usuel de cos, valable sur R).
2) On a, pour tout réel x ∈ R,

x2 + 3x+ 2 = (x+ 1)(x+ 2).

Donc pour x « proche de 0 » (pour que 1 + x > 0 et 2 + x > 0),

ln(2 + 3x+ x2) = ln(1 + x) + ln(2 + x)

(dans le cas général, il faut écrire ln(2+3x+x2) = ln |1+x|+ln |2+x|, valable pour tout x ∈ R tel que 2+3x+x2 > 0,
donc si x < −2 ou x > −1).
Or les fonctions

x 7→ ln(1 + x) et x 7→ ln(2 + x)

sont DSE (en 0) et donc la fonction x 7→ ln(x2 + 3x+ 2) est DSE en 0 par combinaison linéaire.
Et pour tout x ∈]− 1, 1[,

ln(1 + x) =

∞∑
n=1

(−1)n−1xn

n

puis pour tout x ∈]− 2, 2[,

ln(2 + x) = ln(2) + ln
(
1 +

x

2

)
= ln(2) +

∞∑
n=1

(−1)n−1xn

2nn
.

Donc, pour tout x ∈]− 1, 1[,

ln(x2 + 3x+ 1) = ln(2) +
∞∑
n=1

(−1)n−1

n

(
1 +

1

2n

)
xn .

NB : on a R = 1, car on additionne deux séries entières de rayon différentes, l’une de rayon 1, l’autre de rayon 2
(et le rayon de la somme vaut alors min(1, 2) = 1).
3) Les fonctions x 7→ ex et x 7→ sin(x) sont DSE en 0, les deux sont de rayon infini. Comme on a le produit de deux
fonctions développables en série entière de rayon de convergence infinie, par produit de Cauchy, que la fonction

x 7→ ex sin(x)

est DSE en 0, de rayon au moins infini, donc infini.
Pour tout réel x ∈ R,

ex sin(x) = Im
(
e(1+i)x

)
= Im

( ∞∑
n=0

(1 + i)n

n!
xn

)
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(car on sait que ez =

∞∑
n=0

zn

n!
pour tout complexe z ∈ C). Or 1 + i =

√
2ei

π
4 . On a donc en réinjectant :

ex sin(x) = Im

( ∞∑
n=0

√
2
n
ein

π
4

n!
xn

)
=

∞∑
n=0

Im

(√
2
n
ein

π
4

n!
xn

)
=

∞∑
n=0

√
2
n

n!
sin
(
n
π

4

)
xn .

4) • Pour tout réel u ∈ R, on sait eu =
∞∑
n=0

un

n!
. Donc, pour tout réel t ∈ R, comme 2t2 est encore réel, on peut

remplacer u par 2t2, et donc

e2t
2
=

∞∑
n=0

(2t2)n

n!
=

∞∑
n=0

2n

n!
t2n.

C’est la somme d’une série entière, de rayon infini puisque cette somme existe pour tout réel t. Donc la fonction

ϕ : t 7→ e2t
2

admet un DSE en 0 de rayon infini.
Puis, la fonction ϕ est continue sur l’intervalle R, et 0 ∈ R, donc le théorème fondamental de l’analyse donne que
la fonction

Φ : x 7→
∫ x

0
e2t

2
dt

est une primitive de la fonction ϕ sur R.
Or, la fonction ϕ est DSE en 0 de rayon infini, donc la fonction Φ aussi (en tant que primitive, cf. cours).
De même que pour ϕ, la fonction

x 7→ e−2x2

est DSE en 0 de rayon infini.
Donc par produit de Cauchy, la fonction f admet un DSE en 0 de rayon (au moins) infini.
• En particulier, la fonction f est dérivable sur R, et pour tout x ∈ R,

f ′(x) = −4xe−2x2
Φ(x) + e−2x2

Φ′(x) = −4xe−2x2

∫ x

0
e2t

2
dt+ 1.

On a donc, pour tout x ∈ R,
f ′(x) = −4xf(x) + 1.

Comme la fonction f est développable en série entière de rayon infini, il existe (an) ∈ RN tel que, pour tout
réel x ∈ R,

f(x) =
∞∑
n=0

anx
n.

Or, la somme d’une série entière de rayon R est de classe C∞ sur ]−R,R[, et sur cet intervalle on peut dériver
terme à terme. Ici, R = +∞, donc pour tout réel x ∈ R,

f ′(x) = 0 +
∞∑
n=1

nanx
n−1

(le 0 est la dérivée du terme n = 0...). En réinjectant dans l’équation différentielle trouvée, : pour tout réel x ∈ R,

∞∑
n=1

nanx
n−1 + 4

∞∑
n=0

anx
n+1 = 1

soit en posant k = n− 1 et p = n+ 1,

∞∑
k=0

(k + 1)ak+1x
k + 4

∞∑
p=1

ap−1x
p = 1,

13
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puis

a1 +

∞∑
n=1

(
(n+ 1)an+1 + 4an−1

)
xn = 1 = 1 +

∞∑
n=1

0.xn.

L’égalité est vrai pour tout x ∈ R (et R est un intervalle non trivial contenant 0), donc par unicité des coefficients,
pour tout n ∈ N∗, :

(n+ 1)an+1 + 4an−1 = 0

et a1 = 1.
On a donc pour n ∈ N∗ :

an+1 =
−4

n+ 1
an−1. (1)

On a aussi a0 = f(0) = 0.
Montrons alors par récurrence, que pour tout p ∈ N, a2p = 0.
Initialisation : pour p = 0, a2·0 = a0 = 0, d’où l’initialisation.
Hérédité : soit p ∈ N, supposons a2p = 0. En prenant n = 2p+ 1 dans la relation (1), alors

a2(p+1) = a2p+2 =
−4

2p+ 2
a2p = 0.

D’où l’hérédité.
Conclusion : pour tout p ∈ N, a2p = 0.

Remarque. On aurait aussi pu remarquer que f était impaire pour dire que tous les a2p étaient nuls.

Puis, pour p ∈ N,

a2p+1 =
−4

2p+ 1
a2p−1 =

(−4)2

(2p+ 1)(2p− 1)
a2p−3 = · · · = (−4)p

(2p+ 1)(2p− 1) . . . 5.3
a1

(au dénominateur, le produit des impairs). On multiplie au numérateur et au dénominateur par les termes pairs :

a2p+1 =
(−4)p2pp!

(2p+ 1)!
a1 =

(−4)p2pp!

(2p+ 1)!
.

Montrons donc cette formule par récurrence sur p.
Initialisation : pour p = 0, a2.0+1 = a1 = 1, et

(−4)0200!

(2.0 + 1)!
a1 =

1.1.1

1
.1 = 1,

d’où l’initialisation.
Hérédité : soit p ∈ N∗, supposons a2p−1 =

(−4)p−12p−1(p−1)!
(2p−1)! a1. En prenant n = 2p dans la relation (1), alors

a2p+1 =
−4

2p+ 1
a2p−1 =

−4

2p+ 1

(−4)p−12p−1(p− 1)!

(2p− 1)!
=

−4(2p)

(2p)(2p+ 1)

(−4)p−12p−1(p− 1)!

(2p− 1)!
=

(−4)p2pp!

(2p+ 1)!
,

d’où l’hérédité.
Conclusion : pour tout p ∈ N, a2p+1 =

(−4)p2pp!
(2p+1)! .

On a donc, pour tout x ∈ R,

f(x) =
∞∑
p=0

(−4)p2pp!

(2p+ 1)!
x2p+1 .

Exercice 8.

1. Soit
f : t 7→

∑
n≥0

ant
n

14
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la somme d’une série entière de rayon de convergence R > 0. La fonction f est alors de classe C∞ sur ]−R,R[,
et on peut dériver terme à terme sur cet intervalle. Pour tout t ∈]−R,R[,

f ′(t) =
+∞∑
n=1

n ant
n−1, tf ′(t) =

+∞∑
n=1

n ant
n et f ′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2.

Alors

f solution de (E) sur ]−R,R[ ⇔ ∀t ∈]−R,R[, (1− t2)f ′′(t)− 2tf ′(t) + 2f(t) = 0

⇔ ∀t ∈]−R,R[, (1− t2)
+∞∑
n=2

n(n− 1)ant
n−2 − 2

+∞∑
n=1

n ant
n + 2

+∞∑
n=0

ant
n = 0

⇔ ∀t ∈]−R,R[,
+∞∑
n=0

(n+ 2)(n+ 1)an+2t
n −

+∞∑
n=2

n(n− 1)ant
n − 2

+∞∑
n=1

n ant
n + 2

+∞∑
n=0

ant
n = 0

⇔ ∀t ∈]−R,R[, 2a2 + 6a3t− 2a1t+ 2a0 + 2a1t+
+∞∑
n=2

[
(n+ 2)(n+ 1)an+2 − (n2 + n− 2)an

]
tn = 0

Ceci étant valable sur ]−R,R[ avec R > 0 (donc intervalle non trivial contenant 0), par unicité du dévelop-
pement en série entière, alors

f solution de (E) sur ]−R,R[ ⇔


2a2 + 2a0 = 0

6a3 = 0

∀n ≥ 2, (n+ 2)(n+ 1)an+2 − (n− 1)(n+ 2)an

⇔


a2 = −a0

a3 = 0

∀n ≥ 2, an+2 =
n− 1

n+ 1
an

⇔

∀p ≥ 1, a2p+1 = 0

∀p ≥ 0, a2p =
−1

2p− 1
a0

En effet, en distinguant les indices pairs et impairs, la condition « pour tout n ≥ 2, an+2 =
n− 1

n+ 1
an »

devient :

pour tout p ∈ N,


a2(p+1) = a2p+2 =

2p− 1

2p+ 1
a2p

a2(p+1)+1 = a(2p+1)+2 =
2p

2p+ 2
a2p+1

avec comme condition initiale : a3 = 0 (donc a1 et a0 quelconques...).
Donc, pour tout t ∈]−R,R[,

f(t) = a1t+ a0

+∞∑
p=0

−1

2p− 1
t2p.

Déterminons le rayon de convergence R de f si a0 ̸= 0.

Si a0 ̸= 0, alors pour tout p ∈ N, a2p =
−1

2p− 1
a0 ̸= 0, et donc pour t ∈ R∗,

∣∣∣∣a2p+2t
2p+2

a2pt2p

∣∣∣∣ = ∣∣∣∣2p− 1

2p+ 1
t2
∣∣∣∣ −→
p→+∞

t2.

Donc, d’après le critère de D’Alembert, la série numérique
∑
p∈N

a2pt
2p

• converge si t2 < 1, c’est-à-dire si |t| < 1. Donc

R ≥ 1,
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• diverge si t2 > 1, c’est-à-dire si |t| > 1. Donc

R ≤ 1.

Donc
R = 1.

Donc ce qui précède assure que, pour tout a1 ∈ R et a0 ∈ R∗, la fonction

t 7→ a1t+ a0

+∞∑
p=0

−1

2p− 1
t2p

est la somme d’une série entière de rayon 1, donc est définie et de classe C∞ sur ]−1, 1[, et est solution de
(E) sur ]−1, 1[.
Et, si a0 = 0, alors la fonction

t 7→ a1

est solution sur R, pour tout a1 ∈ R.
On a donc bien trouvé des solutions développables en série entière sur ]−1, 1[. Elles sont toutes de la forme :

t ∈]− 1, 1[7→ a1t+ a0

+∞∑
n=0

−1

2p− 1
t2p

pour (a0, a1) ∈ R2. Leur rayon de convergence est 1 si a0 ̸= 0 (et l’infini si a0 = 0, car alors on a un polynôme).

2. Soit t ∈ ]−1, 1[. Exprimons
+∞∑
p=0

t2p

2p− 1
à l’aide des fonctions usuelles.

ln(1 + t) = −
+∞∑
n=1

(−1)n

n
tn et − ln(1− t) =

+∞∑
n=1

tn

n
,

donc en distinguant les indices pairs et impairs,

ln(1 + t)− ln(1− t) =

+∞∑
n=1

1− (−1)n

n
tn

=
∑
n∈N∗

n=2k pair

1− (−1)n

n
tn +

∑
n∈N∗

n=2p+1 impair

1− (−1)n

n
tn

= 2

+∞∑
p=0

t2p+1

2p+ 1

=
n=p+1

2

+∞∑
n=1

t2n−1

2n− 1

On a donc, pour tout t ∈]− 1, 1[,

+∞∑
n=0

t2n

2n− 1
=

t

2
ln

(
1 + t

1− t

)
− 1

(en multipliant par
t

2
et en tenant compte du premier terme qui manquait dans la formule précédente).

Donc les solutions de (E) sont les fonctions

t ∈]− 1, 1[7→ a1t− a0
t

2
ln

(
1 + t

1− t

)
+ a0

pour (a0, a1) ∈ R2.
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3. La fonction

f1 : t 7→
+∞∑
n=0

t2n

2n− 1

est solution de (E) sur ]−1, 1[. De plus, elle est linéairement indépendante avec la fonction

f2 : t 7→ t

car l’une est paire et l’autre est impaire (la seule fonction qui est à la fois paire et impaire est la fonction
nulle).
On sait de plus que l’espace des solutions de (E) sur ]−1, 1[ est un R-espace vectoriel de dimension deux (car
on a une équation différentielle linéaire d’ordre 2 à coefficients continus, et le coefficient de y′′ ne s’annule
pas sur ]−1, 1[ ; le théorème de Cauchy linéaire s’applique donc).
La famille (f1, f2) est donc une famille libre d’un espace vectoriel de dimension 2, c’en est donc une base.
Les solutions sur ]−1, 1[ sont donc les fonctions de la forme

t ∈]− 1, 1[7→ αt+ β
+∞∑
p=0

1

2p− 1
t2p = αt+ β

(
t

2
ln

(
1 + t

1− t

)
− 1

)
avec (α, β) ∈ R2 : on les a toutes trouvées, et elles sont toutes DSE.

Exercice 9.

1. Soit

f : t 7→
+∞∑
n=0

ant
n

une fonction DSE sur ] − R,R[ avec R > 0. Alors la fonction f est de classe C∞ sur ] − R,R[, et on peut
dériver terme à terme sur ]−R,R[. On a donc, pour tout t ∈]−R,R[,

f ′(t) =
+∞∑
n=1

nant
n−1 et f ′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2.

En réinjectant dans (E), :

f est solution de (E) sur ]−R,R[ ⇔ ∀t ∈]−R,R[,
+∞∑
n=2

n(n− 1)ant
n−1 + 2

+∞∑
n=1

nant
n−1 −

+∞∑
n=0

ant
n+1 = 0

⇔ ∀t ∈]−R,R[,
+∞∑
n=1

n(n+ 1)an+1t
n +

+∞∑
n=0

2(n+ 1)an+1t
n −

+∞∑
n=1

an−1t
n = 0

⇔ ∀t ∈]−R,R[, 2a1 +
+∞∑
n=1

(
(n+ 1)(n+ 2)an+1 − an−1

)
tn = 0

Ceci étant valable sur ]−R,R[ avec R > 0 (donc intervalle non trivial contenant 0), par unicité du dévelop-
pement en série entière, alors

f solution de (E) sur ]−R,R[ ⇔

{
2a1 = 0

∀n ≥ 1, (n+ 1)(n+ 2)an+1 − an−1 = 0

⇔

∀p ≥ 0, a2p+1 = 0

∀p ≥ 0, a2p =
a0

(2p+ 1)!

En effet, (n+ 1)(n+ 2)an+1 − an−1 = 0 se réécrit

an+1 =
an−1

(n+ 1)(n+ 2)
,

et donc en distinguant les indices pairs et impairs, « pour tout n ∈ N∗, an+1 =
an−1

(n+ 1)(n+ 2)
» devient :

17
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« pour tout p ∈ N,


a2(p+1) = a(2p+1)+1 =

1

(2p+ 2)(2p+ 3)
a2p

a2(p+1)+1 = a(2p+2)+1 =
1

(2p+ 3)(2p+ 4)
a2p+1

»

avec comme condition initiale : a1 = 0 (donc a0 quelconque...).
Ainsi on a :

f(t) =
+∞∑
p=0

a0 t
2p

(2p+ 1)!
=

a0
sinh(t)

t
si t ̸= 0

a0 si t = 0

et on a R = +∞ (faire le critère de D’Alembert, ou tout simplement car on sait que sinh est DSE sur R,
donc que l’égalité

sinh(t) =
+∞∑
p=0

a0 t
2p

(2p+ 1)!

est valable pour tout t ∈ R∗, ce qui assure la convergence de la série pour tout t ∈ R∗).
Comme le rayon de cette série entière est bien strictement positif, on en déduit que la fonction f est bien
une solution DSE de (E), et c’est sur R car R = +∞.
Donc la fonction

y0 : t ∈ R 7→
+∞∑
p=0

t2p

(2p+ 1)!
=


sinh(t)

t
si t ̸= 0

1 si t = 0

répond à la question.

Remarque. Notons S l’ensemble des solutions de (E) sur R∗
+. On vient de prouver que

Vect(y0) ⊂ S.

On pourrait se poser la question : a-t-on trouvé toutes les solutions de (E) sur R∗
+, autrement dit, les solutions

de (E) sur R∗
+ sont-elles toutes DSE en 0 ?

Or, on verra plus loin que le théorème de Cauchy s’applique, et donne

dim(S) = 2.

Comme y0 n’est pas la fonction nulle,
dim

(
Vect(y0)

)
= 1,

donc on peut affirmer
Vect(y0) ⊊ S.

Donc il y a des solutions de (E) sur R∗
+ qui ne sont pas DSE en 0, et que l’on a pas encore trouvé.

2. Soit y une fonction deux fois dérivable sur R∗
+. Pour tout t ∈ R∗

+,

y0(t) =
sinh(t)

t

(avec y0(0) = 1), puis si on note
z =

y

y0

(qui est une fonction bien définie, car la fonction y0 ne s’annule jamais), alors la fonction z est deux fois
dérivable par quotient de fonctions qui le sont, dont celle du dénominateur qui ne s’annule pas.
Donc,

y = y0z, y′ = y0z
′ + y′0z et y′′ = y0z

′′ + 2y′0z
′ + y′′0z,

ce qui donne

ty′′ + 2y′ − ty = 0 ⇔ ty0z
′′ + (2ty′0 + 2y0)z

′ = 0 ⇔ z′′ = −2

(
y′0
y0

+
1

t

)
z′

(car y0 ne s’annule pas) sur R∗
+.
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Comme la fonction
A : t 7→ ln

∣∣y0(t)∣∣+ ln(t)

est une primitive de la fonction continue

a : t 7→ y′0(t)

y0(t)
+

1

t

sur R∗
+, et que la dernière équivalence traduit une équation différentielle d’ordre 1 dont z′ est solution, :

y est solution de (E) sur R∗
+ ⇔ ∃λ ∈ R, z′ : t ∈ R∗

+ 7→ λe−2 ln |y0(t)|−2 ln(t) =
λ

t2y0(t)2
=

λ

sinh2(t)

⇔ ∃(λ, µ) ∈ R2, z : t ∈ R∗
+ 7→ µ− λ

cosh(t)

sinh(t)

⇔ ∃(λ, µ) ∈ R2, y : t ∈ R∗
+ 7→ µ

sinh(t)

t
− λ

cosh(t)

t

Autre rédaction possible : La rédaction ici est importante, pour qu’on puisse affirmer avoir trouvé toutes
les solutions, et pas seulement celles d’une forme particulière. Certains de mes élèves commencent la rédaction
de cette question ainsi :
Soit z : R∗

+ → R une fonction deux fois dérivable sur R∗
+, et posons

y : t ∈ R∗
+ 7→ y0(t)z(t).

Alors, comme produit, la fonction y est deux fois dérivable sur R∗
+, et (par le même calcul que précédemment),

y est solution de (E) sur R∗
+ ⇔ ∃(λ, µ) ∈ R2, y : t ∈ R∗

+ 7→ µ
sinh(t)

t
− λ

cosh(t)

t
.

Le problème, à cette étape, est que l’on ne sait pas si l’on a trouvé toutes les solutions. On a trouvé les
solutions qui se mettaient sous la forme y = y0z avec z deux fois dérivables sur R∗

+, mais c’est tout. Alors,
soit on vérifie que toute solution est sous cette forme (ce qui provient de ce que y0 ne s’annule pas sur R∗

+,
et c’est ce que j’ai fait par la première méthode), soit on utilise une idée plus générale (et qu’il est utile de
connaître et comprendre), faite à partir du théorème de Cauchy, comme dans ce qui suit :
Notons f et g les fonctions

f : t ∈ R∗
+ 7→ sinh(t)

t
et g : t ∈ R∗

+ 7→ cosh(t)

t
.

Notons S l’ensemble des solutions de (E) sur R∗
+. Comme (E) est une équation différentielle linéaire homo-

gène, on sait que S est un espace vectoriel.
Comme

• R∗
+ est un intervalle,

• les coefficients de (E) sont les fonctions

t 7→ t, t 7→ 2 et t 7→ −t,

donc sont des fonctions continues sur R∗
+,

• le coefficient devant y′′ ne s’annule pas sur R∗
+, donc (E) est d’ordre 2,

alors le théorème de Cauchy s’applique, et donne

dim(S) = 2.

Enfin, la famille (f, g) est libre, puisque, pour (a, b) ∈ R2, si af + bg = 0, alors pour tout t ∈ R∗
+,

0 = af(t) + bg(t) = a
sinh(t)

t
+ b

cosh(t)

t
donc 0 = a sinh(t) + b cosh(t).
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On a envie de prendre t = 0, mais on ne peut pas car t est dans R∗
+. Pour garder cette idée, faisons tendre t vers 0+ :

par continuité de sinh et cosh en 0, alors

0 = lim
t→0+

0 = lim
t→0+

(
a sinh(t) + b cosh(t)

)
= a sinh(0) + b cosh(0) = b.

En reportant, alors a sinh(t) = 0 pour tout t ∈ R∗
+, donc a = 0 (car sinh n’est pas la fonction nulle sur R∗

+).
Donc la famille (a, b) est bien libre.
Donc la famille (a, b) est une famille libre de deux vecteurs de S, et dim(S) = 2, donc (a, b) est une base de
S.
Conclusion : on a bien trouvé toutes les solutions de (E) sur R∗

+.

Remarque. On a le même résultat sur R∗
−, par le même calcul. Les seules solutions qui se prolongent par

continuité en 0 sont alors celles avec λ = 0 et le même µ sur R∗
+ et R∗

− (il coïncide avec f(0)), et on sait alors
(grâce à la question 1) qu’elles sont DSE sur R.

Exercice 10. 1) F est la somme d’une série entière de rayon R, donc la fonction F est de classe C∞ sur ]−R,R[,
et sur cet intervalle on peut dériver terme à terme, soit pour x ∈ ]−R,R[,

F ′(x) =
∞∑
n=0

(n+ 1)an+1x
n = a1 +

∞∑
n=1

(n+ 1)an+1x
n.

Puis, pour x ∈ ]−R,R[,

xF (x) + 1 = 1 +

∞∑
n=1

an−1x
n

(après un changement d’indice), donc (comme ]−R,R[ est un intervalle non trivial puisque R > 0, et contenant 0),
par unicité des coefficients,

F est solution sur ]−R,R[ de l’équation différentielle y′ = xy + 1 avec y(0) = 0 ⇔ F (0) = 0 et ∀x ∈ ]−R,R[, F ′(x) = xF (x) + 1

⇔


a0 = F (0) = 0

a1 = 1

∀n ∈ N∗, (n+ 1)an+1 = an−1

Remarque.

1. L’énoncé ne demandait qu’une implication (on supposait que F était solution). On a fait mieux ici : on a
rédigé pour avoir l’équivalence (ce sont les même calculs, pourquoi s’en priver ?).

2. Remarquons que ce système définit de manière unique une suite (an)n∈N.

2) En distinguant les indices pairs et impairs, soit n = 2p (avec p ≥ 1 pour avoir n ∈ N∗) et n = 2p+1 (avec p ≥ 0
pour avoir n ∈ N∗), (

∀n ∈ N∗, an+1 =
an−1

n+ 1

)
⇔


∀p ∈ N, a2p+2 =

a2p
2p+2

∀p ∈ N∗, a2p+1 =
a2p−1

2p+1

Montrons alors par récurrence que a2p = 0 pour tout entier p ∈ N.
Initialisation : pour p = 0, a0 = 0 car a0 = F (0) = 0.
Hérédité : soit p ∈ N, supposons a2p = 0, alors

a2p+2 =
1

2p+ 2
a2p =

1

2p+ 2
× 0 = 0,

d’où l’hérédité.
Conclusion : pour tout p ∈ N, a2p = 0.
Donc pour tout x ∈ ]−R,R[,

F (x) =

∞∑
p=0

a2p+1x
2p+1,
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avec a1 = 1 et, pour tout p ∈ N∗,
a2p+1 =

a2p−1

2p+ 1
.

Montrons alors par récurrence que a2p+1 > 0 pour tout entier p ∈ N (pour pouvoir utiliser le critère de D’Alembert).
Initialisation : pour p = 0, a1 = 1 > 0.
Hérédité : soit p ∈ N∗, supposons a2p−1 > 0, alors

a2p+2 =
1

2p+ 1
a2p−1 > 0

comme produit de deux réels strictement positifs, d’où l’hérédité.
Conclusion : pour tout p ∈ N, a2p+1 > 0.
Donc, pour tout x ∈ R avec x ̸= 0, pour tout entier p ∈ N, a2p+1x

2p+1 ̸= 0. Or,∣∣∣∣a2p+1x
2p+1

a2p−1x2p−1

∣∣∣∣ = x2

2p+ 1
−→

p→+∞
0 < 1,

donc par le critère de D’Alembert, la série numérique
∑
p∈N

a2p+1x
2p+1 converge pour tout x ∈ R∗, donc R ≥ |x|

pour tout x ∈ R∗, donc
R = +∞ .

Remarque. Et grâce aux équivalences de la question 1, la fonction F définie ainsi est alors solution de l’équation
différentielle sur R.

3) Pour tout p ∈ N∗, en itérant la relation,

a2p+1 =
1

(2p+ 1)(2p− 1) . . . 5.3
a1 =

2p(2p− 2) . . . 4.2

(2p+ 1)!
=

2pp!

(2p+ 1)!

(en multipliant/divisant par les pairs). Montrons-le par récurrence sur p.
Initialisation : pour p = 0, a1 = 1 et

200!

(2.0 + 1)!
=

1.1

1
= 1,

on a bien égalité.
Hérédité : soit p ∈ N∗, supposons a2p−1 =

2p−1(p−1)!(
2(p−1)+1

)
!
= 2p−1(p−1)!

(2p−1)! . Alors

a2p+1 =
1

2p+ 1
a2p−1 =

1

2p+ 1

2p−1(p− 1)!

(2p− 1)!
=

2p

(2p)(2p+ 1)

2p−1(p− 1)!

(2p− 1)!
=

2pp!

(2p+ 1)!
,

d’où l’hérédité.
Conclusion : pour tout p ∈ N,

a2p+1 =
2pp!

(2p+ 1)!
.

Et donc, la fonction

F : x 7→
∞∑
p=0

2pp!

(2p+ 1)!
x2p+1

est solution sur R du problème de Cauchy considéré.

Exercice 11.

1. ⋆ On sait que la fonction
u 7→ (1 + u)−

1
2

est DSE sur ]−1, 1[. Ainsi, il existe (an)n∈N avec, pour tout u ∈]− 1, 1[,

1√
1 + u

= (1 + u)−
1
2 =

∞∑
n=0

anu
n.
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Remarque. On sait calculer les coefficients an pour n ∈ N, mais on n’en a pas besoin ici.

Or, pour tout x ∈]− 1, 1[, −x2 ∈]− 1, 1[, donc « on peut poser u = −x2 », et donc pour tout x ∈]− 1, 1[,

1√
1− x2

=
∞∑
n=0

an(−x2)n =
∞∑
n=0

an(−1)nx2n.

Donc la fonction
x 7→ 1√

1− x2

admet un DSE au voisinage de 0 de rayon au moins 1 (en fait, exactement 1).
⋆ On en déduit : comme arcsin est une primitive de la fonction

x 7→ 1√
1− x2

,

la fonction arcsin admet un DSE au voisinage de 0, de rayon au moins 1 (là encore, exactement 1, puisque le
précédent vaut exactement 1).
Donc par produit de Cauchy, la fonction

f : x 7→ arcsin(x)√
1− x2

est DSE en 0, de rayon R au moins égal à 1 : R ≥ 1. De plus

f(x) ∼
x→1−

π
2√

1− x2
−→
x→1−

+∞,

donc la série entière de somme f sur ]−1, 1[ a une limite infinie en 1−, donc ne peut pas avoir R > 1 (sinon,
comme la somme d’une série entière de rayon R est continue sur ]−R,R[, elle serait continue en 1 ∈ ]−R,R[,
donc aurait une limite finie en 1). Donc R ≤ 1. Donc

R = 1 .

2. La fonction f étant DSE sur ]−1, 1[, elle est de classe C∞ sur cet intervalle. Et, pour tout x ∈]− 1, 1[,

f ′(x) =
1

1− x2
− 1

2

−2x arcsin(x)

(1− x2)
3
2

=
1

1− x2
+

x

1− x2
f(x).

Ainsi la fonction f est solution sur ]−1, 1[ de l’équation différentielle

(1− x2)y′ − xy = 1 (E).

3. Je vais rédiger cette question comme si on ne savait pas que f était DSE sur ]−1, 1[.
Soit

f : x 7→
∞∑
n=0

anx
n

la somme d’une série entière de rayon de convergence R > 0. La fonction f est donc de classe C∞ sur ]−R,R[
et sur cet intervalle on peut dériver terme à terme. On a donc : pour tout x ∈ ]−R,R[,

f ′(x) =

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n, puis x2f ′(x) =

∞∑
n=1

nanx
n+1 =

∞∑
n=2

(n− 1)an−1x
n.

Or, pour tout x ∈ ]−R,R[, f(x) =
∞∑
n=0

anx
n, et donc

xf(x) =
∞∑
n=1

an−1x
n
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(après changement d’indice).
En réinjectant dans (E), :

f est solution de (E) sur ]−R,R[ ⇔ ∀x ∈ ]−R,R[, f ′(x)− x2f ′(x)− xf(x) = 1

⇔ ∀x ∈ ]−R,R[,
∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=2

(n− 1)an−1x
n −

∞∑
n=1

an−1x
n = 1

⇔ ∀x ∈ ]−R,R[,

∞∑
n=2

(
(n+ 1)an+1 − nan−1

)
xn + a1 + 2a2x− a0x = 1 = 1 + 0.x+

∞∑
n=2

0.xn

Ainsi, (comme ]−R,R[ est un intervalle non trivial, puisque R > 0, contenant 0), par unicité des coefficients,

f est solution de (E) sur ]−R,R[ ⇔


a1 = 1

2a2 − a0 = 0

∀n ≥ 2, (n+ 1)an+1 − nan−1 = 0

⇔


a1 = 1

a2 =
1
2a0

∀n ≥ 2, an+1 =
n

n+ 1
an−1

⇔

a1 = 1

∀n ≥ 1, an+1 =
n

n+ 1
an−1

.

Si n est pair, n = 2p (avec p ≥ 1 pour que n ≥ 1) : on a a2p+1 =
2p

2p+ 1
a2p−1 et a3 =

2 a0
3

. Donc en itérant,

a2p+1 =
(2p)(2p− 2) . . . 2

(2p+ 1) . . . 3
a1 =

(2pp!)2

(2p+ 1)!

(en multipliant/divisant par les pairs). Montrons-le par récurrence sur p ∈ N.
Initialisation : pour p = 0, a1 = 1 et

(200!)2

(2.0 + 1)!
=

(1.1)2

1
= 1,

il y a égalité.

Hérédité : soit p ∈ N∗, supposons a2p−1 =

(
2p−1(p−1)!

)2(
2(p−1)+1

)
!
=

(
2p−1(p−1)!

)2
(2p−1)! , alors

a2p+1 =
2p

2p+ 1
a2p−1 =

2p

2p+ 1

(
2p−1(p− 1)!

)2
(2p− 1)!

=
2p

2p+ 1

2p

2p

(
2p−1(p− 1)!

)2
(2p− 1)!

=
(2pp!)2

(2p+ 1)!
,

d’où l’hérédité.
Conclusion : on a bien, pour tout p ∈ N,

a2p+1 =
(2pp!)2

(2p+ 1)!
.

D’autre part, pour n impair, n = 2p + 1 (avec p ≥ 0 pour avoir n ≥ 1), a2p+2 = 2p+1
2p+2a2p. Donc, si a0 = 0,

alors
a2p = 0

pour tout p ∈ N (récurrence directe).
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Donc, montré que f fonction DSE sur ]−R,R[ est solution de (E) sur ]−R,R[ avec la condition initiale f(0) =
0 (qui donne a0 = 0) si et seulement si

f(x) =
∞∑
p=0

(2pp!)2

(2p+ 1)!
x2p+1

pour tout x ∈ ]−R,R[.
Comme la fonction

x 7→ arcsin(x)√
1− x2

est DSE sur ]−1, 1[, solution de (E) sur ]−1, 1[ et nulle en zéro, c’est donc la fonction précédente.

Remarque. D’après le critère d’Alembert (...), on retrouve R = 1 à partir des formules ci-dessus.

4. La fonction arcsin est dérivable sur ]−1, 1[, donc par produit, la fonction arcsin2 aussi, et on a(
arcsin2

)′
= 2f

sur ]−1, 1[.
Or la fonction f est DSE sur ]−1, 1[, donc par primitivation, la fonction arcsin2 aussi, et on peut primitiver
terme à terme : pour tout x ∈]− 1, 1[,

arcsin2(x) = arcsin2(0) + 2
∞∑
p=0

(2pp!)2

(2p+ 1)!

x2p+2

2p+ 2
=

∞∑
p=0

2
(2pp!)2

(2p+ 2)!
x2p+2 .

Exercice 12. On a pour tout x ∈ ]−1, 1[,

arctan(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1
.

Donc pour tout x ∈]− 1, 1[\{0},

f(x) =
arctan(x)

x
=

∞∑
n=0

(−1)nx2n

2n+ 1
.

Notons

g : x ∈]− 1, 1[7→
∞∑
n=0

(−1)nx2n

2n+ 1
.

Pour tout x ∈] − 1, 1[, g(x) est la somme d’une série convergente (qui vaut f(x) si x ̸= 0, 1 si x = 0), donc la
fonction g est la somme d’une série entière de rayon au moins 1. Donc la fonction g est de classe C∞ sur ]−1, 1[.
De plus,

f = g sur ]−1, 1[ \ {0}.

Ainsi, la fonction g est un prolongement de la fonction f en 0, et il est de classe C∞ sur ]−1, 1[, ce qui répond à la
question.
Autre façon de le présenter : pour x ∈]− 1, 1[\{0},

f(x) =
arctan(x)

x
∼

x→0

x

x
= 1 −→

x→0
1,

donc la fonction f se prolonge par continuité en 0. Notons f̃ ce prolongement, il est donc défini par : pour
tout x ∈]− 1, 1[,

f̃(x) =

{
f(x) = arctan(x)

x si x ̸= 0

1 si x = 0
.
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Puis, pour tout x ∈]− 1, 1[\{0},

f̃(x) = f(x) =
arctan(x)

x
=

1

x

∞∑
n=0

(−1)nx2n+1

2n+ 1
=

∞∑
n=0

(−1)nx2n

2n+ 1
.

Et, en x = 0,

f̃(0) = 1 =
∞∑
n=0

(−1)n02n

2n+ 1
,

car
∞∑
n=0

(−1)n02n

2n+ 1
=

(−1)000

1
+

∞∑
n=1

(−1)nx2n

2n+ 1
= 1 +

∞∑
n=0

0 = 0

(car 00 = 1, et pour n ∈ N∗, 02n = 0).
Donc, pour tout x ∈]− 1, 1[,

f̃(x) =
∞∑
n=0

(−1)nx2n

2n+ 1
.

La fonction f̃ est donc sur ]−1, 1[ la somme d’une série entière, et cette série entière est au moins de rayon 1
puisqu’elle converge sur ]−1, 1[ (en fait, son rayon est exactement 1, on l’a facilement par le critère de D’Alembert),
donc sa somme, soit f̃ , est de classe C∞ sur ]−1, 1[.
Donc on a bien prolongé f en une fonction de classe C∞ sur ]−1, 1[.

Exercice 13.

1. Soit

f : x 7→
∞∑
n=0

anx
n

la somme d’une série entière de rayon de convergence R > 0. Alors sur ]−R,R[, la fonction f est de classe
C∞, et on peut dériver terme à terme. Donc, pour tout x ∈ ]−R,R[,

f ′(x) =

∞∑
n=1

nanx
n−1 et f ′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Donc, pour tout x ∈ ]−R,R[,

x(x+1)f ′(x) =

∞∑
n=1

nanx
n+1+

∞∑
n=1

nanx
n =

∞∑
n=2

(n−1)an−1x
n+

∞∑
n=1

nanx
n et x2f ′′(x) =

∞∑
n=2

n(n−1)anx
n.

En réinjectant dans (E), :

f est solution sur ]−R,R[ ⇔ ∀x ∈ ]−R,R[, x2f ′′(x) + x(x+ 1)f(x)− f(x) = 0

⇔ ∀x ∈ ]−R,R[,
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

(n− 1)an−1x
n +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

⇔ ∀x ∈ ]−R,R[, a1x− a0 − a1x+

∞∑
n=2

(
n(n− 1)an + (n− 1)an−1 + nan − an

)
xn = 0 = 0 + 0.x+

∞∑
n=2

0.xn

Par unicité des coefficients (comme ]−R,R[ est un intervalle non trivial, puisque R > 0), alors

f est solution sur ]−R,R[ ⇔


a0 = 0

a1 − a1 = 0

∀n ≥ 2, n(n− 1)an + (n− 1)an−1 + nan − an = 0

⇔

a0 = 0

∀n ≥ 2, an = − n− 1

n2 − 1
an−1 = − 1

n+ 1
an−1
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(on peut bien diviser par n2 − 1, car n ≥ 2...).
Donc

f est solution sur ]−R,R[ ⇔

a0 = 0

∀n ∈ N∗, an =
(−1)n−12

(n+ 1)!
a1

(on fait attention que, la première relation est a2 =
−1

3
a1). Donc

f est solution sur ]−R,R[ ⇔ x ∈ ]−R,R[ 7→ 2a1

∞∑
n=1

(−1)n+1

(n+ 1)!
xn,

où R est le rayon de la série entière
∞∑
n=1

(−1)n+1

(n+ 1)!
xn (si a1 ̸= 0).

Or, pour tout n ∈ N∗, (−1)n+1

(n+1)! ̸= 0, et donc pour tout x ∈ R avec x ̸= 0,

lim
n→+∞

∣∣∣∣(−1)n+1xn+1

(n+ 1)!
.

n!

(−1)nxn

∣∣∣∣ = 1

n+ 1
|x| −→

n→+∞
0 < 1.

Donc, d’après le critère d’Alembert, la série numérique
∞∑
n=1

(−1)n+1

(n+ 1)!
xn converge pour tout réel x ∈ R∗.

Donc R ≥ |x| pour tout x ∈ R∗, c’est-à-dire
R = +∞.

Donc les solutions DSE sur R de (E) sont les fonctions

x ∈ ]−R,R[ 7→ 2a1

∞∑
n=1

(−1)n+1

(n+ 1)!
xn

pour a1 ∈ R quelconque.
2. Pour x ∈ R, :

x

∞∑
n=1

(−1)n+1xn

(n+ 1)!
=

∞∑
n=1

(−1)n+1xn+1

(n+ 1)!
=

k=n+1

∞∑
k=2

(−x)k

k!

(série exponentielle, dont il manque les deux premiers termes). D’où

x
∞∑
n=1

(−1)n+1xn

(n+ 1)!
= −1 + x+ e−x.

Donc

f(x) = 2a1
e−x − 1 + x

x

pour tout x ∈ R∗ (et f(0) = 0).

Exercice 14. Soit

y : x 7→
∞∑
n=0

anx
n

la somme d’une série entière de rayon R > 0. La fonction y est alors de classe C∞ sur ]−R,R[, et sur cet intervalle,
on peut dériver terme à terme : pour tout x ∈ ]−R,R[,

y′(x) =

∞∑
n=0

(n+ 1)an+1x
n et y′′(x) =

∞∑
k=2

k(k − 1)akx
k−2 =

n=k−1

∞∑
n=1

(n+ 1)nan+1x
n−1.

1) Pour tout x ∈ ]−R,R[,

y′(x)− x2y(x) =
∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=2

an−2x
n = a1 + 2a2x+

∞∑
n=2

(
(n+ 1)an+1 − an−2

)
xn,
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donc (comme ]−R,R[ est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,
∀x ∈ ]−R,R[, y′(x)− x2y(x) = 0 = 0 + 0 +

∞∑
n=2

0.xn

y(0) = 1

⇔


a1 = 0

a2 = 0

∀n ≥ 2, (n+ 1)an+1 = an−2

a0 = y(0) = 1

⇔


∀n ∈ N, a3n+1 = 0

∀n ∈ N, a3n+2 = 0

∀n ∈ N, a3n = 1
(3n)(3n−3)...3a0 =

1
3nn!

(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices de la forme 3n+
1, 3n+ 2 et 3n, puisque : pour tout n ∈ N,

a3(n+1) = a3n+3 =
1

3n+3a3n = 1
3(n+1)a3n

a3(n+1)+1 = a3n+4 =
1

3n+4a3n+1

a3(n+1)+2 = a3n+5 =
1

3n+5a3n+2

avec les conditions initiales


a0 = 1

a1 = 0

a2 = 0

...).

Comme, pour tout réel x ∈ R,

0 ≤ |a3nx3n| =
|x3|n

3nn!
≤ |x3|n

n!
et que la série numérique ∑

n∈N

|x3|n

n!

converge pour tout x ∈ R (série exponentielle de somme e|x
3|), par critère de comparaison des séries à termes

positifs, on en déduit que la série numérique ∑
n∈N

a3nx
3n

converge absolument (donc converge) pour tout x ∈ R, donc R ≥ |x| pour tout x ∈ R, soit

R = +∞.

Donc ce qui précède donne que la fonction

y : x 7→
∞∑
n=0

x3n

3nn!
= e

x3

3

a un rayon de convergence infini, et est solution du problème de Cauchy considéré sur R, et c’est la seule solution
DSE.

Remarque. Le théorème de Cauchy (qui s’applique car l’équation différentielle est homogène d’ordre 1, sous
forme normalisée, et x 7→ −x2 est continue sur l’intervalle R, avec 0 ∈ R) nous permet d’affirmer que c’est la seule
solution sur R (sans ajouter la condition DSE).

2) Pour tout x ∈ ]−R,R[,

xy′′(x) + 2y′(x) + xy(x) =
∞∑
n=1

(n+ 1)nan+1x
n + 2

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=1

an−1x
n

= 2a1 +

∞∑
n=1

(
(n+ 1)nan+1 + 2(n+ 1)an+1 + an−1

)
xn

= 2a1 +
∞∑
n=1

(
(n+ 1)(n+ 2)an+1 + an−1

)
xn
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donc (comme]−R,R[ est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,
∀x ∈ ]−R,R[, xy′′(x) + 2y′(x) + xy(x) = 0 = 0 +

∞∑
n=1

0.xn

y(0) = 1

y′(0) = 0

⇔


2a1 = 0

∀n ∈ N∗, (n+ 1)(n+ 2)an+1 + an−1 = 0

a0 = y(0) = 1

a1 = y′(0) = 0

⇔

{
∀n ∈ N, a2n+1 = 0

∀n ∈ N, a2n = (−1)n

(2n+1)!a0 =
(−1)n

(2n+1)!

(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices pairs et impairs,
puisque : pour tout n ∈ N, {

a2(n+1) = a(2n+1)+1 = − 1
(2n+2)(2n+3)a2n

a2(n+1)+1 = − 1
(2n+1)(2n+1)a2n+1

avec les conditions initiales

{
a0 = 1

a1 = 0
).

Puis, pour tout n ∈ N, (−1)n

(2n+1)! ̸= 0, donc pour tout x ∈ R avec x ̸= 0,∣∣∣∣∣∣∣
(−1)n+1(

2(n+1)+1
)
!
x2(n+1)

(−1)n

(2n+1)!x
2n

∣∣∣∣∣∣∣ =
x2

(2n+ 2)(2n+ 3)
−→

n→+∞
0 < 1,

donc le critère de D’Alembert donne que la série numérique
∑
n∈N

(−1)nx2n

(2n+ 1)!
converge pour tout x ∈ R∗, donc le

rayon R de la série entière associée vérifie R ≥ |x| pour tout x ∈ R∗, donc

R = +∞.

Donc la fonction

y : x 7→
∞∑
n=0

(−1)nx2n

(2n+ 1)!

a un rayon de convergence infini, et est solution du problème de Cauchy considéré sur R, et c’est la seule solution
DSE.

Remarque. Le théorème de Cauchy ne s’applique pas ici, car l’équation différentielle est d’ordre 2 sur R∗
+ et R∗

−,
mais le coefficient de y′′ s’annule en x = 0, et c’est justement en x = 0 que l’on prend les conditions initiales !

Puis, on reconnaît un DSE usuel : pour tout x ∈ R∗,

y(x) =
sin(x)

x

(et y(0) = 1).
3) Pour tout x ∈]− 1, 1[,

x2

1− x
= x2

∞∑
n=0

xn =

∞∑
n=2

xn

(série géométrique de raison x). Et pour tout x ∈ ]−R,R[,

xy′(x)− y(x) =
∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = −a0 +

∞∑
n=1

(n− 1)anx
n,
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donc, en notant S = min(1, R) > 0, (comme]−S, S[ est un intervalle non trivial puisque S > 0, contenant 0), par
unicité des coefficients,

∀x ∈]− S, S[, xy′(x)− y(x) = x2

1−x ⇔ ∀x ∈]− S, S[, −a0 +

∞∑
n=1

(n− 1)anx
n =

∞∑
n=2

xn

⇔ ∀x ∈]− S, S[, −a0 + (1− 1)a1x+
∞∑
n=2

(n− 1)anx
n = 0 + 0.x+

∞∑
n=2

xn

⇔


a0 = 0

(1− 1)a1 = 0

∀n ≥ 2, (n− 1)an = 1

⇔

{
a0 = 0

∀n ≥ 2, an = 1
n−1

Donc

y est solution sur ]−S, S[ ⇔ ∀x ∈ ]−R,R[, y(x) = a1x+
∞∑
n=2

xn

n− 1
=

k=n−1
a1x+ x

∞∑
k=1

xk

k
= a1x− x ln(1− x)

(en reconnaissant un DSE usuel). Or, on sait que la fonction x 7→ ln(1− x) est DSE sur ]−1, 1[, donc on en déduit
que R = 1 (mais on peut le retrouver par le critère de D’Alembert, par exemple...) et donc S = 1, et donc ce qui
précède donne que les solutions DSE sont les fonctions

x 7→ a1x− x ln(1− x),

et elles sont solutions et DSE sur ]−1, 1[.
4) Pour tout x ∈ ]−R,R[,

xy′′(x) + 2y′(x) + xy(x) =
∞∑
n=1

(n+ 1)nan+1x
n + 2

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=1

an−1x
n

= 2a1 +

∞∑
n=1

(
(n+ 1)nan+1 + 2(n+ 1)an+1 − an−1

)
xn

= 2a1 +
∞∑
n=1

(
(n+ 1)(n+ 2)an+1 − an−1

)
xn

donc (comme ]−R,R[ est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,

∀x ∈ ]−R,R[, xy′′(x) + 2y′(x) + xy(x) = 0 = 0 +
∞∑
n=1

0.xn

y(0) = 1

y′(0) = 0

⇔


2a1 = 0

∀n ∈ N∗, (n+ 1)(n+ 2)an+1 − an−1 = 0

a0 = y(0) = 1

a1 = y′(0) = 0

⇔

{
a1 = 0

∀n ∈ N∗, an+1 =
1

(n+1)(n+2)an−1

⇔

{
∀n ∈ N, a2n+1 = 0

∀n ∈ N, a2n = 1
(2n+1)!a0 =

1
(2n+1)!
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(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices pairs et impairs,
puisque : pour tout n ∈ N, {

a2(n+1) = a(2n+1)+1 =
1

(2n+2)(2n+3)a2n

a2(n+1)+1 =
1

(2n+3)(2n+4)a2n+1

avec les conditions initiales

{
a0 = 1

a1 = 0
).

Puis, pour tout n ∈ N, 1
(2n+1)! ̸= 0, donc pour tout x ∈ R avec x ̸= 0,∣∣∣∣∣∣∣

1(
2(n+1)+1

)
!
x2(n+1)

1
(2n+1)!x

2n

∣∣∣∣∣∣∣ =
x2

(2n+ 2)(2n+ 3)
−→

n→+∞
0 < 1,

donc le critère de D’Alembert donne que la série numérique
∑
n∈N

x2n

(2n+ 1)!
converge pour tout x ∈ R∗, donc le

rayon R de la série entière associée vérifie R ≥ |x| pour tout x ∈ R∗, donc

R = +∞.

Donc la fonction

y : x 7→
∞∑
n=0

x2n

(2n+ 1)!

a un rayon de convergence infini, et est solution du problème de Cauchy considéré sur R, et c’est la seule solution
DSE.

Remarque. Le théorème de Cauchy ne s’applique pas ici, car l’équation différentielle est d’ordre 2 sur R∗
+ et R∗

−,
mais le coefficient de y′′ s’annule en x = 0, et c’est justement en x = 0 que l’on prend les conditions initiales !

Puis, on reconnaît un DSE usuel : pour tout x ∈ R∗,

y(x) =
sinh(x)

x

(et y(0) = 1).

Exercice 15. 1) On se place pour x proche de 0, donc 1 + x > 0 et 1− x > 0 (concrètement, pour x ∈]− 1, 1[).
Donc en séparant les termes pairs et impairs,

f(x) = ln

(√
1 + x

1− x

)
=

1

2
ln(1 + x)− 1

2
ln(1− x)

=
1

2

∞∑
k=1

(−1)k−1

k
xk − 1

2

∞∑
k=1

−1

k
xk

=

∞∑
k=1

(−1)k−1 + 1

2k
xk

=

∞∑
k≥1

k = 2n pair

(−1)k−1 + 1

2k
xk +

∞∑
k≥1

k = 2n+ 1 impair

(−1)k−1 + 1

2k
xk

= 0 +
∞∑
n=0

x2n+1

2n+ 1

pour x ∈]− 1, 1[ (DSE usuels).
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Remarque. Le rayon de convergence vaut 1 par le critère de D’Alembert pour les séries numériques.

2) Notons

f : x 7→ arctan

(
x
√
2

1− x2

)
,

la fonction arctan est dérivable sur R, la fonction x 7→ x
√
2

1−x2 est dérivable sur R \ {−1, 1}, donc sur ]−1, 1[, donc la
fonction f aussi par composition.
Pour x ∈]− 1, 1[,

f ′(x) =
√
2
1− x2 − (−2x)x

(1− x2)2
1

1 +
(

x
√
2

1−x2

)2 =
√
2
1 + x2

1 + x4
.

Or, pour tout u ∈ C, si |u| < 1, alors
1

1 + u
=

∞∑
n=0

(−u)n

(série géométrique de raison −u avec |−u| < 1). Et, pour x ∈]−1, 1[, on a |x4| < 1, donc « on peut poser u = x4 »,
ce qui donne, pour x ∈]− 1, 1[,

f ′(x) =
√
2(1 + x2)

∞∑
n=0

(−1)nx4n =
√
2

∞∑
n=0

(−1)nx4n +
√
2

∞∑
n=0

(−1)nx4n+2

C’est l’écriture d’une somme d’une série entière, c’est valable pour x ∈]− 1, 1[, donc la fonction f ′ est DSE sur (au
moins) ]−1, 1[ (en fait, c’est exactement sur ]−1, 1[, car en 1, la série diverge).
Comme la fonction f est une primitive de f ′, et que la fonction f ′ est DSE sur ]−1, 1[, on sait que la fonction f
est DSE sur ]−1, 1[, et on peut primitiver terme à terme : comme f(0) = 0, pour tout x ∈]− 1, 1[,

f(x) = f(0) +
√
2

∞∑
n=0

(−1)n

4n+ 1
x4n+1 +

√
2

∞∑
n=0

(−1)n

4n+ 3
x4n+3

=
√
2

∞∑
n=0

(−1)n

4n+ 1
x4n+1 +

√
2

∞∑
n=0

(−1)n

4n+ 3
x4n+3

3) Pour tout x ∈]− 1, 1[ (ainsi |x| < 1 et
∣∣x
3

∣∣ < 1, pour utiliser l’expression d’une série géométrique de raison x et
de raison x

3 ),
f(x) = 2

x2−4x+3

= 2
(x−1)(x−3)

= − 1
x−1 + 1

x−3

= 1
1−x − 1

3
1

1−x
3

=
∞∑
n=0

xn − 1

3

∞∑
n=0

xn

3n

=

∞∑
n=0

(
1− 1

3n+1

)
xn

Remarque. Le rayon de convergence vaut 1, comme addition d’une série entière de rayon 1 et une autre de
rayon 3.
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4) Notons j = e
2iπ
3 . Alors pour x ∈] − 1, 1[ (ainsi

∣∣∣xj ∣∣∣ = |x| < 1 et
∣∣∣x
j

∣∣∣ = |x| < 1, pour utiliser l’expression d’une
série géométrique de raison x

j et x
j
) :

f(x) = 1
x2+x+1

= 1
(x−j)(x−j)

= 1
i
√
3

1
x−j −

1
i
√
3

1
x−j

= − 1
i
√
3j

1
1−x

j
+ 1

i
√
3 j

1
1−x

j

= − 1
i
√
3j

∞∑
n=0

xn

jn
+

1

i
√
3j

∞∑
n=0

xn

j
n

= − 1
i
√
3j

∞∑
n=0

j2nxn +
1

i
√
3 j

∞∑
n=0

jnxn

car 1
j = j2 et 1

j
= j.

Donc

f(x) =
1

i
√
3

∞∑
n=0

(
jn+1 − j2n−1

)
xn.

• Si n = 3k (avec k ∈ N),
1

i
√
3

(
jn+1 − j2n−1

)
= 1.

• Si n = 3k + 1 (avec k ∈ N),
1

i
√
3

(
jn+1 − j2n−1

)
= −1.

• Si n = 3k + 2 (avec k ∈ N),
1

i
√
3

(
jn+1 − j2n−1

)
= 0.

D’où finalement, pour x ∈]− 1, 1[,

f(x) =

∞∑
k=0

x3k −
∞∑
k=0

x3k+1 .

Autre façon : de l’écriture

f(x) = − 1

i
√
3j

1

1− x
j

+
1

i
√
3 j

1

1− x
j

,

on sait que la fonction f est DSE en 0 (comme somme de deux sommes de séries entières, qui s’écrivent comme
des séries géométriques qui convergent pour x ∈]− 1, 1[).
Par conséquent, il existe (an)n∈N ∈ CN avec, pour tout x ∈]− 1, 1[,

f(x) =
∞∑
n=0

anx
n.

Or, pour tout x ∈]− 1, 1[,
(1 + x+ x2)f(x) = 1,

donc

1 =
∞∑
n=0

anx
n +

∞∑
n=1

an−1x
n +

∞∑
n=2

an−2x
n = a0 + (a0 + a1)x+

∞∑
n=2

(an + an−1 + an−2)x
n.

Par unicité des coefficients (comme ]−1, 1[ est un intervalle non trivial), on a a0 = 1, a1 = −a0 = −1, et pour tout
entier n ≥ 2,

an = −an−1 − an−2.
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On vérifie alors que a2 = 0, a3 = 1, a4 = −1, a5 = 0,... (on montre par récurrence sur k ∈ N que « a3k = 1,
a3k+1 = −1, a3k+2 = 0 » pour tout k ∈ N).

Exercice 16. La fonction f est dérivable sur ]− 1,+∞[ par opérations usuelles.
Pour tout x ∈]− 1,+∞[,

f ′(x) = 2
ln(1 + x)

1 + x
, f ′′(x) = 2

1− ln(1 + x)

(1 + x)2
,

donc

(1 + x)f ′′(x) + f ′(x) =
2

1 + x
.

Comme la fonction x 7→ ln(1 + x) est DSE en 0 (de rayon 1), par produit de Cauchy la fonction f est DSE en 0
(de rayon au moins 1). Il existe donc (an)n∈N ∈ RN avec, pour tout x ∈]− 1, 1[,

f(x) =
∞∑
n=0

anx
n.

De plus, la fonction f étant la somme d’une série entière sur ]−1, 1[ (donc de rayon au moins 1), elle est de classe
C∞ sur ]−1, 1[, et sur cet intervalle on peut dériver terme à terme. Alors, pour x ∈]− 1, 1[,

f ′(x) =

∞∑
n=0

(n+ 1)an+1x
n et f ′′(x) =

∞∑
n=0

(n+ 1)(n+ 2)an+2x
n.

Donc pour tout x ∈]− 1, 1[, en utilisant le DSE de la série géométrique (valable car | − x| < 1),
∞∑
n=0

2(−1)nxn =
2

1 + x
= (1 + x)f ′′(x) + f ′(x)

=
∞∑
n=0

(n+ 1)(n+ 2)an+2x
n +

∞∑
n=1

n(n+ 1)an+1x
n +

∞∑
n=0

(n+ 1)an+1x
n

= 2a2 + a1 +

∞∑
n=1

(n+ 1)
(
(n+ 2)an+2 + (n+ 1)an+1

)
xn

Donc par unicité des coefficients (car l’égalité est vraie sur un intervalle non réduit à un point, à savoir ]−1, 1[, qui
contient 0), {

2a2 + a1 = 2

∀n ∈ N∗, (n+ 2)an+2 + (n+ 1)an+1 = 2 (−1)n

n+1

et on a a1 = f ′(0) = 0, donc a2 = 1.
Notons, pour n ∈ N, un = nan et vn = un+2 + un+1 = 2 (−1)n

n+1 , alors pour tout n ≥ 3,

n−2∑
k=1

(−1)kvk =

n−2∑
k=1

(
(−1)kuk+2 − (−1)k−1uk+1

)
= (−1)n−2un − u2︸︷︷︸

=2

car on a une somme télescopique. Par conséquent, pour n ≥ 3,

(−1)nun = 2 +
n−2∑
k=1

(−1)k2
(−1)k

k + 1
= 2

n−1∑
k=1

1

k
,

soit

an = 2
(−1)n

n

n−1∑
k=1

1

k
.

On vérifie directement que cela reste vrai pour n = 2. Et donc, pour tout x ∈]− 1, 1[,

ln2(1 + x) =

∞∑
n=2

2
(−1)n

n

(
n−1∑
k=1

1

k

)
xn .
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Exercice 17. 1) Pour tout n ∈ N,

(n+ 1)an+1 = −(−1)n n+1
2n+1

(
2n+ 2

n+ 1

)
= −(−1)n n+1

2n+1
(2n+2)!

(n+1)!(n+1)!

= −(−1)n n+1
2n+1

(2n+2)(2n+1)
(n+1)2

(
2n

n

)
= − n+1

2n+1
(2n+2)(2n+1)

(n+1)2
(2n− 1)an

= −2(2n− 1)an

2) Pour tout entier n ∈ N, an ̸= 0, et pour tout x ∈ R avec x ̸= 0,∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = 2(2n− 1)

n+ 1
|x| −→

n→+∞
4|x|.

Donc, par le critère de D’Alembert, la série numérique
∑
n∈N

anx
n

• converge absolument si 4|x| < 1, c’est-à-dire si |x| < 1

4
, donc R ≥ 1

4 ,

• et diverge grossièrement si 4|x| > 1, c’est-à-dire si |x| > 1

4
, donc R ≤ 1

4 .

Donc

R =
1

4
.

Puis, la fonction f est la somme d’une série entière de rayon R, donc est de classe C∞ sur ]−R,R[, et sur cet
intervalle on peut dériver terme à terme. Donc pour tout x ∈ R avec |x| < R = 1

4 on a

f ′(x) =
∞∑
n=0

(n+ 1)an+1x
n =

∞∑
n=0

−2(2n− 1)anx
n = 2f(x)− 4

∞∑
n=0

nanx
n = 2f(x)− 4xf ′(x).

Donc la fonction f est solution de l’équation différentielle

(1 + 4x)y′ = 2y

sur ]−R,R[.
3) Les solutions de cette équation différentielle sur

]
−1

4 ,
1
4

[
(intervalle sur lequel 1 + 4x ne s’annule pas) sont les

fonctions
y : x 7→ A exp

(
1

2
ln(1 + 4x)

)
= A

√
1 + 4x

pour A ∈ R. Comme f(0) = a0 = −1, on en déduit que

f(x) = −
√
1 + 4x

pour tout x ∈
]
−1

4 ,
1
4

[
.

Exercice 18. 1) Soit z ∈ C∗.
P (n) ∼

n→+∞
n3,

donc pour n ∈ N grand on a P (n) ̸= 0, et∣∣∣∣∣∣
P (n+1)zn+1

(n+1)!

P (n)zn

n!

∣∣∣∣∣∣ ∼
n→+∞

(n+ 1)3

(n+ 1)n3
|z| ∼

n→+∞

1

n
|z| −→

n→+∞
0 < 1.
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Donc, par le critère de D’Alembert, la série numérique
∑
n∈N

P (n)

n!
zn converge pour tout z ∈ C∗, donc le rayon R

cherché vérifie R ≥ |z| pour tout z ∈ C∗, donc
R = +∞ .

2) On a
(1 +X)3 = X(X − 1)(X − 2) + 6X(X − 1) + 7X + 1,

donc
a = 1, b = 6, c = 7 et d = 1

(on résout le système obtenu en développant aX(X−1)(X−2)+bX(X−1)+cX+d et en identifiant les coefficients
avec ceux de P ).
3) Pour tout z ∈ C,

∞∑
n=0

P (n)

n!
zn =

∞∑
n=0

n(n− 1)(n− 2) + 6n(n− 1) + 7n+ 1

n!
zn

= 0 + 0 + 0 +
∞∑
n=3

1

(n− 3)!
zn + 6

(
0 + 0 +

∞∑
n=2

1

(n− 2)!
zn

)
+ 7

(
0 +

∞∑
n=1

1

(n− 1)!
zn

)
+

∞∑
n=0

1

n!
zn

(sous réserve de convergence de ces séries)

=
k=n−3
p=n−2
q=n−1

∞∑
k=0

zk+3

k!
+ 6

∞∑
p=0

zp+2

p!
+ 7

∞∑
q=0

zq+1

q!
+

∞∑
n=0

zn

n!

=
(
z3 + 6z2 + 7z + 1

)
ez

car on reconnaît des séries exponentielles (après changement d’indice), donc convergentes.
4) Pour tout k ∈ N∗, posons

Nk = X(X − 1) . . . (X − k + 1),

et N0 = 1.
Soit p ∈ N tel que P ∈ Cp[X]. Comme pour tout k ∈ N, deg(Nk) = k, la famille (Nk)k∈[[0,p]] est une base de Cp[X]
(famille échelonnée en degré, donc libre, et de cardinal p+1 = dim

(
Cp[X]

)
), donc il existe (a0, . . . , ap) ∈ Cp+1 tel

que

P =

p∑
k=0

akNk.

Or, pour tout k ∈ N, pour tout n ∈ N,

Nk(n)

n!
=

{
1

(n−k)! si n ≥ k

0 si n < k
,

donc
∞∑
n=0

P (n)

n!
zn =

p∑
k=0

ak

∞∑
n=0

Nk(n)

n!
zn =

p∑
k=0

ak

∞∑
n=k

1

(n− k)!
zn =

j=n−k

p∑
k=0

ak

∞∑
j=0

zj+k

j!
=

p∑
k=0

akz
kez,

et la série initiale converge, comme combinaison linéaire de séries convergentes (séries exponentielles). Donc en
posant

Q =

p∑
k=0

akX
k,

on a bien le résultat, et de plus deg(Q) = p = deg(P ) (car ap ̸= 0, car Np est le seul polynôme de degré au moins p
parmi les Nk pour k ∈ [[0, p]], et que P est de degré p).
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Exercice 19. • Remarquons que la fonction

t 7→ ln(1 + t)

t

se prolonge en une fonction f continue sur le segment [0, 1] (en posant f(0) = 1), donc l’intégrale a du sens (elle
converge).
• Pour t ∈]0, 1[, le DSE de ln donne

f(t) =
ln(1 + t)

t
=

∞∑
k=0

(−1)k
tk

k + 1
,

et cette formule reste valable pour t = 0 (avec le prolongement).
Or, la série entière ∑

k∈N
(−1)k

tk

k + 1

converge pour tout t ∈ [0, 1[, donc est de rayon au moins 1, donc par le cours, converge normalement (donc
uniformément) sur [0, a] pour tout a ∈ [0, 1[.

Remarque. On le retrouve rapidement, car si t ∈ [0, a], pour tout k ∈ N,∣∣∣∣(−1)k
tk

k + 1

∣∣∣∣ ≤ ak

k + 1
≤ ak,

et que la série numérique
∑
k∈N

ak converge (série géométrique de raison a avec a ∈]− 1, 1[).

• Comme de plus, pour tout k ∈ N, la fonction

t 7→ (−1)k
tk

k + 1

est continue sur [0, 1[, donc sur [0, a] pour tout a ∈ [0, 1[, le théorème d’intégration terme à terme sur un segment
s’applique, et donne : pour tout a ∈ [0, 1[,∫ a

0

ln(1 + t)

t
dt =

∫ a

0
f(t)dt =

∞∑
k=0

∫ a

0
(−1)k

tk

k + 1
dt =

∞∑
k=0

(−1)k
ak+1

(k + 1)2
.

• Puis, pour tout k ∈ N, pour tout a ∈ [0, 1],∣∣∣∣(−1)k
ak+1

(k + 1)2

∣∣∣∣ ≤ 1

(k + 1)2
,

donc si on note

fk : a ∈ [0, 1] 7→ (−1)k
ak+1

(k + 1)2
,

on a
∥fk∥∞ ≤ 1

(k + 1)2
.

Or, la série numérique ∑
k∈N

1

(k + 1)2
=

p=k+1

∑
p≥1

1

p2

converge (Riemann, 2 > 1), donc par critère de comparaison des séries à termes positifs, la série numérique∑
k∈N

∥fk∥∞ converge.

Donc la série de fonctions
∑
k∈N

fk converge normalement sur [0, 1].

De plus, pour tout k ∈ N, la fonction fk est continue sur [0, 1] (car polynomiale).
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Donc le théorème de continuité des séries de fonctions s’applique, et donne que la fonction

∞∑
k=0

fk

est continue sur [0, 1]. En particulier,

∞∑
k=0

(−1)k
ak+1

(k + 1)2
=

∞∑
k=0

fk(a) −→
a→1−

∞∑
k=0

fk(1) =

∞∑
k=0

(−1)k
1

(k + 1)2
=

π2

12

• En effet,

2N∑
n=1

1

n2︸ ︷︷ ︸
−→

N→+∞
π2

6

=
∑

1≤n≤2N
n=2k pair

1

n2
+

∑
1≤n≤2N

n=2k+1 impair

1

n2
=

N∑
k=1

1

(2k)2
+

N−1∑
k=0

1

(2k + 1)2
=

1

4

N∑
k=1

1

k2︸ ︷︷ ︸
−→

N→+∞
π2

6

+
N−1∑
k=0

1

(2k + 1)2
,

donc

lim
N→+∞

N−1∑
k=0

1

(2k + 1)2
=

π2

6
− 1

4
× π2

6
=

π2

8
.

Puis

2N∑
n=1

(−1)n+1

n2
=

∑
1≤n≤2N
n=2k pair

(−1)n+1

n2
+

∑
1≤n≤2N

n=2k+1 impair

(−1)n+1

n2
= −

N∑
k=1

1

(2k)2
+

N−1∑
k=0

1

(2k + 1)2
= −1

4

N∑
k=1

1

k2︸ ︷︷ ︸
−→

N→+∞
π2

6

+
N−1∑
k=0

1

(2k + 1)2︸ ︷︷ ︸
−→

N→+∞
π2

8

donc
∞∑
k=0

(−1)k
1

(k + 1)2
=

n=k+1

∞∑
n=1

(−1)n+1

n2
= −1

4
× π2

6
+

π2

8
=

π2

12
.

• Or, la fonction f est continue sur [0, 1], donc∫ 1

0

ln(1 + t)

t
dt =

∫ 1

0
f(t)dt = lim

a→1

∫ a

0
f(t)dt = lim

a→1

∫ a

0

ln(1 + t)

t
dt = lim

a→1

∞∑
k=0

(−1)k
ak+1

(k + 1)2
=

π2

12
.

Remarque. On a fait ainsi car on n’a pas convergence normale de la série de fonctions

∞∑
k=0

(−1)k
tk

k + 1

sur [0, 1] (car
∥∥∥(−1)k tk

k+1

∥∥∥
∞,[0,1]

= 1
k+1 est le terme d’une série divergente).

Cependant, grâce au critère des séries alternées, on peut montrer la convergence uniforme sur [0, 1], ce qui nous
autorise directement à intervertir intégrale sur [0, 1] et série et évite de passer par l’intégrale sur [0, a]. Mais je
trouve cette démonstration intéressante (plein d’idées utiles là dedans...).

Exercice 20. 1a) Pour tout entier n ∈ N,

bn+2 − bn = an+3 − an+2 − an+1 + an = 0

d’après la relation vérifiée par (an).
Montrons ensuite la relation demandée par récurrence sur n ∈ N∗.
Initialisation : pour n = 1,

−4 +
1−1∑
k=0

bk = −4 + b0 = −4 + a1 − a0 = a1

car a0 = −4, donc l’initialisation est vraie.
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Hérédité : soit n ∈ N∗, supposons an = −4 +

n−1∑
k=0

bk. Alors

−4 +

(n+1)−1∑
k=0

bk = −4 + bn +
n−1∑
k=0

bk = an + bn = an+1,

d’où l’hérédité.
Conclusion : on a bien, pour tout n ∈ N∗,

an = −4 +
n−1∑
k=0

bk.

Remarque. L’égalité reste vraie pour n = 0, si on prend comme convention qu’une somme vide vaut 0.

1b) Par récurrence directe (ou en remarquant que (b2n)n∈N et (b2n+1)n∈N sont des suites géométriques de raison 1),

b2n = b0 = a1 − a0 = 6 et b2n+1 = b1 = a2 − a1 = 2

pour tout entier n ∈ N.
Par conséquent, pour tout entier n ∈ N, en distinguant les indices pairs et impairs dans la somme,

a2n = −4+

n−1∑
k=0

b2k+

n−1∑
k=0

b2k+1 = −4+6n+2n = −4 + 8n et a2n+1 = −4+

n∑
k=0

b2k+

n−1∑
k=0

b2k+1 = −4+6(n+1)+2n = 2 + 8n .

2a) On le montre par récurrence triple sur n ∈ N.
Initialisation : D’après les valeurs données pour a0, a1, a2, c’est vrai au rang n = 0, 1 et 2 :

|a0| ≤ 22 = 4, |a1| ≤ 23 = 8 et |a2| ≤ 24 = 16.

Hérédité : puis, soit n ∈ N. Si |an| ≤ 2n+2, |an+1| ≤ 2n+3 et |an+2| ≤ 2n+4, alors par inégalité triangulaire,

|an+3| = |an+2+ an+1− an| ≤ |an+2|+ |an+1|+ |an| ≤ 2n+4+2n+3+2n+2 = 2n+2(4+2+1) ≤ 2n+2× 8 = 2(n+3)+2

d’où l’hérédité.
Conclusion : par récurrence triple, que, pour tout n ∈ N,

|an| ≤ 2n+2.

2b) Grâce à la question précédente, la suite numérique
(
an
2n

)
n∈N est bornée (en valeur absolue est majorée par 4),

donc le rayon R vérifie

R ≥ 1

2
.

Autre rédaction possible : comme |an| ≤ 2n+2 pour tout entier n ∈ N, le rayon R de la série entière
∑
n∈N

anx
n

est supérieur ou égal à celui de ∑
n∈N

2n+2xn = 4
∑
n∈N

(2x)n,

or cette dernière série converge si (et seulement si) |2x| < 1, donc son rayon est au moins (en fait égal à) 1
2 , donc

R ≥ 1

2
.

2c) Pour tout réel x ∈ R,
(x+ 1)(x− 1)2 = x3 − x2 − x+ 1,
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donc pour tout x ∈]− ρ, ρ[,

(x+ 1)(x− 1)2S(x) = (x3 − x2 − x+ 1)
∞∑
k=0

akx
k

=
∞∑
k=0

akx
k+3 −

∞∑
k=0

akx
k+2 −

∞∑
k=0

akx
k+1 +

∞∑
k=0

akx
k

=
p=k+3
n=k+2
q=k+1

∞∑
p=3

ap−3x
p −

∞∑
n=2

an−2x
n −

∞∑
q=1

aq−1x
q +

∞∑
k=0

akx
k

= a0 + (a1 − a0)x+ (a2 − a1 − a0)x
2 +

∞∑
k=3

(ak−3 − ak−2 − ak−1 + ak)x
k

= a0 + (a1 − a0x) + (a2 − a1 − a0)x
2 +

∞∑
k=3

0

= −4 + 6x+ 6x2

En réduisant au même dénominateur, on obtient (pour x ̸= 1 et x ̸= −1) :

a

x− 1
+

b

(x− 1)2
+

c

x+ 1
=

(a+ c)x2 + (b− 2c)x+ (b− a+ c)

(x+ 1)(x− 1)2

en identifiant, on veut


a+ c = 6

b− 2c = 6

b− a+ c = −4

, soit

a = 7, b = 4, c = −1 .

2d) On utilise ensuite que, pour tout x ∈]− 1, 1[,

1

x− 1
= −

∞∑
n=0

xn,
1

(x− 1)2
=

∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn et
1

x+ 1
=

∞∑
n=0

(−1)nxn

(en reconnaissant des séries géométriques de raison x et −x, et géométrique dérivée de raison x, qui convergent
pour x ∈]− 1, 1[).
On a alors, pour tout x ∈]− ρ, ρ[,

S(x) = −7

∞∑
n=0

xn + 4

∞∑
n=0

(n+ 1)xn −
∞∑
n=0

(−1)nxn =
∞∑
n=0

(
− 7 + 4(n+ 1)− (−1)n

)
xn.

Ceci étant valable sur ]−ρ, ρ[ au moins (intervalle non trivial, puisque ρ > 0, contenant 0), par unicité des coeffi-
cients, alors pour tout entier n ∈ N,

an = −7 + 4(n+ 1)− (−1)n .

Exercice 21. Soit
g : t 7→ ln(1 + t)

t
,

la fonction g est définie et continue sur ] − 1,+∞[\{0} par quotient de fonctions continues, dont celle du déno-
minateur qui ne s’annule pas sur cet ensemble, la fonction g se prolonge par continuité en 0 en posant g(0) = 1
car

ln(1 + t) ∼
t→0

t, donc g(t) −→
t→0

1.
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La fonction g est alors continue sur l’intervalle ] − 1,+∞[, et 0 ∈] − 1,+∞[, donc le théorème fondamental de
l’analyse donne que la fonction

f : x 7→
∫ 1

0
g(t)dt,

est l’unique primitive de g sur ]− 1,+∞[ qui s’annule en 0.
Donc la fonction f est définie et dérivable (au moins) sur ]− 1,+∞[.

Remarque. On peut se demander si la fonction f existe en −1, autrement dit si l’intégrale

I =

∫ −1

0

ln(1 + t)

t
dt

converge. Or, par le théorème de changement de variable, avec le changement affine u = 1 + t, l’intégrale I a la
même nature (et si convergence, même valeur) que l’intégrale∫ 0

1

ln(u)

1 + u
du.

Or, la fonction

u 7→ ln(u)

1 + u

est continue sur ]0, 1] et
ln(u)

1 + u
∼

u→0
ln(u),

et on sait que la fonction ln est intégrable sur ]0, 1], donc il y a convergence de l’intégrale, donc en fait la fonction f
est définie sur [−1,+∞[ !
Par contre, pour x < −1, f(x) n’existe pas, car la fonction t 7→ ln(1+t)

t n’est pas définie sur ]x,−1[ !

Puis, on peut développer la fonction t 7→ ln(1 + t) en série entière sur ]−1, 1[ (cours), ce qui donne, pour tout
t ∈]− 1, 1[\{0},

g(t) =
1

t

∞∑
n=1

(−1)n−1

n
tn =

p=n−1

∞∑
p=0

(−1)p

p+ 1
tp.

Cette égalité reste vraie en t = 0 (avec le prolongement de g que l’on a fait avant), et donc la fonction g est
développable en série entière sur ]−1, 1[ (puisque c’est la somme d’une série entière sur ]−1, 1[).
Donc la fonction f aussi, en tant que primitive d’une fonction DSE sur ]−1, 1[, et la fonction f a même rayon
que f ′ = g, donc 1 (application directe du critère de D’Alembert).

Remarque. De plus, on peut primitiver terme à terme : pour tout x ∈]− 1, 1[,

f(x) = f(0)︸︷︷︸
=0

+

∞∑
p=0

(−1)p

(p+ 1)2
xp+1 =

∞∑
p=0

(−1)p

(p+ 1)2
xp+1.

On peut même montrer (mais là, c’est une application des théorèmes de continuité des séries de fonctions) que
l’égalité reste vraie si x = ±1...

Exercice 22. 1) On sait (par le cours)

et − 1 = t+
t2

2
+

t3

6
+ o

t→0
(t3).

Puis, et − 1 −→
t→0

0, donc par composition de DL,

f(t) = 1 +
(
et − 1

)
+

1

2

(
et − 1

)2
+

1

6

(
et − 1

)3
+ o

t→0

((
et − 1

)3)
.

Puis, (
et − 1

)3 ∼
t→0

t3, donc o
t→0

((
et − 1

)3)
= o

t→0
(t3).
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Enfin, (
et − 1

)3
= t3 + o

t→0
(t3) et

(
et − 1

)2
= t2 + t3 + o

t→0
(t3),

donc

f(t) = 1 + t+
t2

2
+

t3

6
+

1

2
(t2 + t3) +

1

6
t3 + o

t→0
(t3) = 1 + t+ t2 +

5

6
t3 + o

t→0
(t3) .

Or, la fonction f est de classe C∞ sur R (par composition de fonctions de classe C∞ sur R), donc par la formule
de Taylor-Young,

f(t) = f(0) + f ′(0)t+
f ′′(0)

2
t2 +

f ′′′(0)

6
t3 + o

t→0
(t3).

Par unicité du DL, on en déduit

f(0) = 1 f ′(0) = 1 f ′′(0) = 2 f ′′′(0) = 5 .

2) p1 =

(
0

0

)
p0 = p0 = 1 .

p2 =

(
1

0

)
p0 +

(
1

1

)
p1 = p0 + p1 = 2 .

p3 =

(
2

0

)
p0 +

(
2

1

)
p1 +

(
2

2

)
p2 = p0 + 2p1 + p2 = 5 .

Montrons par récurrence forte sur n ∈ N que pn ≤ n!.
Initialisation : pour n = 0,

p0 = 1 ≤ 1 = 0!,

donc la proposition est vraie si n = 0.
Hérédité : soit n ∈ N, supposons que pk ≤ k! pour tout k ∈ [[0, n]]. Alors

pn+1 =
n∑

k=0

(
n

k

)
pk ≤

n∑
k=0

(
n

k

)
k! =

n∑
k=0

n!

(n− k)!
= n!

n∑
k=0

1

(n− k)!

Or, pour tout k ∈ [[0, n]], (n− k)! ≥ 1, donc 1
(n−k)! ≤ 1, et donc

n∑
k=0

1

(n− k)!
≤

n∑
k=0

1 = n+ 1,

ce qui donne
pn+1 ≤ n!× (n+ 1) = (n+ 1)!.

D’où l’hérédité.
Conclusion : on a bien montré par récurrence sur n que pn ≤ n! pour tout n ∈ N.
3) De la question précédente, alors, pour tout n ∈ N,

0 ≤ pn
n!

≤ 1

(la positivité est immédiate par récurrence forte aussi), donc la suite numérique(pn
n!

)
n∈N

=
(pn
n!

1n
)
n∈N

est bornée. Or, par définition,

R = sup

{
x ∈ R | la suite

(pn
n!

xn
)
n∈N

est bornée
}
,

donc R ≥ 1, ce qui assure bien R > 0.
4) La fonction F est la somme d’une série entière de rayon R, donc est de classe C∞ sur ]−R,R[, et sur cet intervalle
on peut dériver terme à terme. Donc pour tout x ∈ ]−R,R[,

F ′(x) =
∞∑
n=1

pn
n!

nxn−1 =
∞∑
n=1

pn
(n− 1)!

xn−1 =
∞∑
n=0

pn+1

n!
xn.
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Puis, ex =

∞∑
n=0

xn

n!
pour tout réel x ∈ R, donc par produit de Cauchy de séries numériques absolument convergentes

(les séries entières convergent absolument en tout point de l’intervalle ouvert de convergence), pour tout x ∈
]−R,R[,

exF (x) =
∞∑
n=0

(
n∑

k=0

1

(n− k)!

pk
k!

)
xn =

∞∑
n=0

(
1

n!

n∑
k=0

(
n

k

)
pk

)
xn

En utilisant la définition de pn+1 pour n ∈ N, on en déduit

exF (x) =

∞∑
n=0

pn+1

n!
xn = F ′(x)

pour tout x ∈ ]−R,R[.
La fonction F est donc solution sur ]−R,R[ de l’équation différentielle linéaire

y′ = exy.

Comme la fonction x 7→ ex est continue sur l’intervalle ]−R,R[ et admet x 7→ ex comme primitive sur cet intervalle,
on sait résoudre directement cette équation différentielle, et donc il existe λ ∈ R tel que

F : x ∈ ]−R,R[ 7→ λee
x
.

Puis, en évaluant en 0,
λe = F (0) = p0 = 1, donc λ = e−1,

et donc
F : x ∈ ]−R,R[ 7→ ee

x−1 = f(x).

Donc, pour tout entier n ∈ N,
F (n)(0) = f (n)(0)

(ici on utilise que R > 0). Or, comme la fonction F est la somme d’une série entière, on sait calculer les coefficients
de la série entière en fonction des dérivées successives de F en 0 (une fonction DSE en 0 est la somme de sa série
de Taylor) : pour tout entier n ∈ N,

pn
n!

=
F (n)(0)

n!
.

Ceci donne bien
pn = f (n)(0)

pour tout entier n ∈ N.
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