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TDS8 - SERIES ENTIERES

Exercice 1. Trouver le rayon de convergence de la série entiére g anx™, lorsque

1. ay n—go l 7£ 0 4. ap = COS(G%?Q?) 7. agn W et aopy1 =
=n! 1
2. a, = e 5. ap=n! fEmsn
nn 6 agn = Ozn, aon+1 = an 0 < '
3. ap = — <8 8. q, = A"
" ol @ - On @n+1)!

Exercice 2. Déterminer le rayon de convergence des séries entiéres suivantes (avec a > 0) :

2 X

Exercice 3. Soit a € R. Montrer que les séries entiéres g anz" et g n“a,z" ont le méme rayon de convergence.

Exercice 4. Déterminer le rayon de convergence R et la somme des séries entiéres suivantes :

1. Z (nrn_”l)' 3. Z (22j—11)' 5. Zcos(n@) z", onf eR
n=1 ’ n=2 : _

2 in%@" 4 i B3+ (=1)™")"2" 6. Z cos(nb)x
n=1 n=0 n=1

Exercice 5. Montrer que Vz € R, [teldt =37 (n%;;n,

n

2n x
Exercice 6. Donner le rayon de convergence et calculer : g m
n !

=0

Exercice 7.
1. Développer en série entiére x + cos®(x). Préciser son rayon de convergence.
2. Développer en série entiére x +— In(2 + 3z + 332). Préciser son rayon de convergence.
3. Développer en série entiére x — e sin(x). Préciser son rayon de convergence.

x
. .y 02 2 . L
4. Développer en série entiére f : z +— e 2% e?"dt. Préciser son rayon de convergence. Indication : On

0
commencera par trouver une équation différentielle vérifiée par f.

Exercice 8. On considére ’équation différentielle suivante pour ¢t € |—1, 1]
(B): (1—-t)y" =2ty +2y=0

1. Déterminer les séries entiéres solutions de I’équation différentielle (E).

2. Aprés avoir calculé leurs rayons de convergence, exprimer ces solutions & I'aide de fonctions élémentaires.

3. A-t-on ainsi toutes les solutions ?

Exercice 9. On considére 'équation différentielle suivante : (E) ty" +2y —ty =0
1. Trouver une solution yy de (E) développable en série entiére.

2. En déduire les solutions de (E) sur R* en les cherchant sous la forme y : t — yo()2(t), avec z & déterminer
(c’est une méthode générale lorsque 'on connait une solution d’une équation homogéne linéaire d’ordre 2).

Exercice 10 (d’aprés PT 2008). On considére le probléme de Cauchy suivant :

v =xy+1; y(0) = 0.
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[e.e]
1. Soit F(zx) = Z a,x" une série enticre A coefficients réels, de rayon de convergence R > 0. On suppose que

n=0
la fonction F' est solution de I’équation différentielle sur | — R, R[. Déterminer ag, a; ainsi qu’une relation de

récurrence reliant, pour tout entier n > 1, ap41 & apn—1.

2. Pour tout entier naturel p > 0, en déduire la valeur de asy,. Déterminer R.

3. Montrer, pour tout entier naturel p > 0, agpy1 = @ipiﬁ)!.

arcsin(x)

V1—a22'

. Montrer que f admet un développement en série entiére au voisinage de 0. Préciser son rayon de convergence.

Exercice 11. On pose f(r) =

1
2. Chercher une équation différentielle d’ordre 1 vérifiée par f.

3. En déduire les coefficients du développement en série entiére de f.
4

. En déduire le développement en série entiére de arcsin?(z) au voisinage de 0.

arctan(x
Exercice 12. Montrer que 'application = — 7()

se prolonge en une fonction de classe C* sur |—1, 1].
Exercice 13. On note (E) I'équation différentielle 22y” + x(x + 1)y’ —y = 0.

1. Chercher les solutions développables en série entiére de (E).

2. Exprimer ces solutions a l’aide des fonctions usuelles.
Exercice 14. Déterminer les solutions développables en série entiére des équations différentielles suivantes. On
exprimera explicitement les solutions obtenues & 1’aide des fonctions usuelles.

2

1.y —2%y=0,y(0)=1 3. xy —y =15

X
—T
2. 2y +2y +2y=0,y(0)=1,4'(0) =0 4. zy" + 2y —2y=0,y(0)=1,¢'(0) =0
Exercice 15. Déterminer le développement en série entiére des fonctions suivantes.

2 1
1. ln( %f—;) 2. arctan(l“_‘g) 3. s 4 o

Exercice 16. Déterminer le développement en série entiére de f : x — 1n2(1 + z) al'aide d'une équation différen-
tielle.

1 2n
Exercice 17. Pour tout n € N, on pose a,, = (2n1_)1 < >
n

1. Montrer que, pour tout n € N, (n+ 1)ap4+1 = —2(2n — 1)ay,.
oo

2. Donner le rayon de convergence R de la série entiére f(x) = Zan:c", puis montrer que f est solution
n=0

sur |—R, R d’une équation différentielle linéaire du premier ordre que 'on explicitera.
3. En déduire f.

Exercice 18.
P) ,

1. Soit le polynéme P(X) = (1 + X)3. Déterminer le rayon de convergence de la série entiére Z '
n!

2. Déterminer des réels a, b, ¢, d tels que : P(X) =aX(X — 1)(X —2)4+bX(X — 1)+ cX +d.
P(n)

n!

3. En déduire que la somme de la série entiére Z 2" est de la forme Q(z)e?, ou @ est un polyndéme que
I’on déterminera.

4. Plus généralement, P désignant un polyndéme complexe quelconque, prouver que la somme de la série entiére

P(n
Z (‘ )z" est de la forme Q(z)e* ot @ est un certain polynome.
n!

7]_2

1 oo
In(1+¢ 1
Exercice 19. Calculer /0 n(t_‘_)dt (on admettra E 7= E)

n=1
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Exercice 20 (CCP 2011 Officiel de la Taupe). Soit (ap)nen définie par ag = —4, a1 = 2, ag = 4, et pour
tout n € N, apq3 = anga + apy1 — an. On pose by, = ant1 — an.

n—1
1. (a) Montrer que pour tout n € N, b,,12 — b, = 0, puis que pour tout n € N*, a, = —4 + Z by
k=0

(b) Déterminer la suite (b, )nen, puis la suite (an)nen.
2. On souhaite retrouver ce résultat grace aux séries entiéres.
(a) Montrer que pour tout n € N, |a,| < 2772,
(b) Montrer que le rayon de convergence R de Z anx™ est non nul.

n>0

o0
(c) Soit p=min (1, R) et x €] — p, p[. On pose S(z) = Zak:ck. Montrer que S(z) = % et qu’il
k=0
existe trois réels a, b, c tels que S(z) = %47 + ﬁ + 25

(d) Déterminer la suite (ap)nen.

Exercice 21 (CCP 2012 Officiel de la Taupe - exo 2). Donner le domaine de définition de f : z — fox ln(?t) dt.
Montrer que f est développable en série entiére et donner son rayon de convergence.

Exercice 22 (CCP PC 2019 (RMS 130 exo 1370) - 2014 (ODLT)).

1. Donner le développement limité a l'ordre 3 au voisinage de 0 de f(t) = ¢’ 1 (en 2019, il était donné :
f(t)=1+t+t*+ 23+ o(t?)). En déduire F*)(0) pour 0 < k < 3.

n
n
2. On pose pg =1 et = .
b Po Pn+1 k;ZO (k)]?k
Calculer p1, p2, p3 puis montrer que pour tout n € N, p,, < nl.
pixn

72" est non nul. On note F' sa somme quand elle est définie.
n!

3. Montrer que le rayon de convergence R de Z
n>0

4. Montrer que Vz € |—R, R[, F'(x) = e*F(z) et en déduire que f(0) = p,.
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Solutions

Exercice 1. On notera pour chaque série entiére étudiée R son rayon de convergence.

1. On va utiliser le critére de D’ Alembert. Comme la suite numérique (a,)nen converge vers £ # 0, il existe N € N
tel que pour tout n > N, a, # 0. Puis, pour tout = € R avec = # 0,

lim — x| = |z|.
n—+00

1

anx™

antpra”™t! ' _ 14

Ainsi, d’aprés le critére de D’Alembert, la série numérique Z anx"”
neN
e converge absolument si || < 1, donc R > 1,

e et diverge grossiérement si |z| > 1, donc R < 1.

[R=1}

2. Pour tout n € N, a,, # 0. Puis, pour tout z € R avec = # 0,

Donc

+1 e—(n+1)?

= ————|z|= e 2 g - 0<1.
e n 00

An412"

anpx™

Ainsi, d’aprés le critére de D’Alembert, la série numérique E anz™ converge pour tout x € R*. Donc R > |z
neN

=]

3. Pour tout n € N, a,, # 0. Puis, pour tout = € R avec = # 0,

_ ("Z 1>n 2] = (1 4 711)” 2] = exp (nln <1 + ;)) 2|
exp (n <i + 0 (;))) 2| = exp (1 + n_)oﬂ(j(l)) ||

oo exp(l)lz] = efz]

pour tout z € R*, soit

an+1xn+1

anx™

(n+ 1)Higntl  pl
(n+1)! nran

(par continuité de la fonction exponentielle en 1).

Ainsi, d’aprés le critére de D’Alembert, la série numérique g anT"”

neN
e converge absolument si |z| < 2, donc R > 1,
e et diverge grossiérement si |z| > é, donc R < %
Donc
1
R=—|
e
4. Pour tout n € N,
lan| < 1.
Donc a,, = O+ (1), donc R est supérieur ou égal au rayon de la série entiére Z 12", qui vaut 1 (rayon
—
" > neN
de la série géométrique). Donc
R>1.

D’autre part, la suite numérique (ay)nen est 65537-périodique et donc pour tout k € N,

ag5537k = 1.



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

Donc la suite numérique (a,)nen ne tend pas vers 0, donc la série numérique g an diverge grossiérement,
neN
donc la série numérique E a,1" diverge, donc

neN
R<I1=1.
Ainsi
R=1\|
5. Pour tout entier n € N, on a a, > 0. Puis, pour tout € R avec x # 0,
a anrl
anT n—+00

donc la série numérique Z anx™ diverge grossiérement d’aprés le critére de D’Alembert. On a donc R < |z

neN
pour tout z € R*, soit
R=0]|
6. Notons R le rayon de convergence de la série entiére Z anz". Etudions le rayon de convergence des séries
neN
entiéres Z "z et Z B2t Notons R, et Rp leur rayon de convergence respectifs.
neN neN
% Calcul de R,. Pour tout « € R avec x # 0, comme « > 0, pour tout n € N,
anxQn ?é 0,
puis
Q1242
T jarf[a%].
a”r n%+<>o

Ainsi, par le critére de D’Alembert, la série numérique g amz?n
neN

1
e converge absolument si |a||2?| < 1, c’est-a-dire si |z| < donc R, > f’

f

e ct diverge grossiérement si |a||z?| > 1, c’est-a-dire si |z| > 7 donc R, < ﬁ
Donc
Ro= ——.
a \/a

Remarque. On peut aussi remarquer que la série numérique E az®™ est une série géométrique de rai-
neN

son ax?, donc converge si et seulement si |ax?| < 1, donc si et seulement si |x| < et on retrouve

f)
1
R, =—
a \/a
(c’est bien une égalité, car on a une équivalence).

% En procédant de la méme fagon,
1

75

% Comme la série entiére E a,z" est la somme des deux séries entiéres précédentes :

Zanxnzzan 2n+ZIBn 2n+1

neN neN neN

Ry =

neN

alors la série entiére g anz™ a un rayon de convergence R > min(R,, Rp) avec égalité si R, # R} ce qui est

neN
le cas ici, puisque Rp < R4. D’ou

R=Ry=

8-
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1

2n
(1+ n)"m

7. Etudions le rayon de convergence R, de la série entiére E et celui Ry de la série entiére

1 2n+1
— L .

neN*

— 0<1
(2_|_n) (1_|_ 11 >n n—+o00 ne n—-+oo
+n

neN*
. 1
% Etude de la série entiére Z mxzn. Pour tout € R avec z # 0, pour tout n € N*, (n+11)n 2" # 0.
neN*
Puis,
$2(n+1) (1_|_n)n _ ‘$|2 1 N ﬁ

X
(14+n+ 1)+t z2n

Remarque. En effet,

1 " 1 1 1
<1+1—|—n> - (nln <1+ 1+n>> - <n<1+n +n—>0+oo<1—|—n>>> = &P <1+n—>0+oo(1)> n—>_+>oo€

par continuité de la fonction exponentielle en 1, c’est une limite archi-classique (elle et ses variantes...).

1 2

Donc, par le critére de D’ Alembert, la série numérique Z ﬁw ™ converge pour tout x € R* ainsi R, >
S (n+1)
|z| pour tout x € R*, soit
R, = +o0.

. 1
% Etude de la série entiére Z ﬁxznﬂ. Pour tout x € R avec x # 0, pour tout n € N*
(1+3)
neN* n
—L a2+l o£ 0. Puis, comme pour la limite de la remarque,

(1+3)
et
e+l 2 — (]2
e P A
n

1
Donc, par le critére de D’Alembert, la série numérique Z —T7 n+l
neN* (1 + E)
e converge absolument si |z|? < 1, c’est-a-dire si |z| < 1, donc Ry > 1,

e ct diverge grossiérement si |z|? > 1, c’est-a-dire si || > 1, donc Ry < 1.

D’ou
Ry =1.
Comme la série entiére E an,x" est la somme des deux séries entiéres précédentes :
neN*
1 1
2w = ) Gt L
neN* nEN* nEN* ( + ﬁ)

la série entiére Z apz” a un rayon de convergence R > min(R,, Rp) avec égalité si R, # Ry ce qui est le

neN*
cas ici, puisque R, > R,. D’ou
=Ry =1]
8. Pour tout entier n € N, on a a, # 0. Puis, pour tout x € R avec x # 0,
n+1 (n_|_ 1)n+1n!

= — >1
(2n+3)(2n+2) 2 noreo (07

An+4+1T
anx™

donc, d’apreés le critére de D’Alembert, la série numérique Z apx"” diverge grossiérement. On a donc R < |x|

neN
pour tout z € R*, soit

R=0]
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Exercice 2. On notera pour chaque série entiére étudiée R son rayon de convergence.

1. Pour tout x € R avec x # 0, pour tout n € N,

(2n)!

— Zn
=l 7 0.
Puis,
Upt1 (2n + 2)lz?F2pnp) | @2n+2)(2n + 1)a? 2(2n + 1)2? 4]x|?
Un, (n+ )" (n+1)12n)122" | | (n+41)2 (1+4)" (n+1)(1+2)" | notoo e
(car

<1+;>n — exp <nln <1+ i)) — exp <n (iﬁnﬁm <;>)> ~ exp <1+Wo+oo(1)> e

par continuité de la fonction exponentielle en 1).
)' xQn

D’ou, par le critére de D’Alembert, la série numérique Z "
n"n!

neN

\%

e converge absolument si |z|> < Z c’est-a-dire si |z| < \2[ donc R >

. AN . € NIET . €
e et diverge grossiérement si |z|? > 7 c’est-a-dire si |z| > \2[, donc R < i.

Ainsi
R= ﬁ
5 |
2. Pour tout € R avec x # 0, pour tout n € N,
2n
TL 3n
= 0.
Puis,
| 2n+2,.3n+3 2 1\2n 3 1y2n 3 20,13
Unt1| | (2n)(n+1) x (n+1)2(1+3H)™ 2 _(n+1) 1+ ez
up || n2(2n + 2)la3n (2n+2)2n+1) | 2(2n + 1) n—stoo 4
(car

1\ 1 1 1
(1 + ) = exp <2nln (1 + )) = exp <2n ( + o ())) = exp (2 + o (1)) — 2
n n n n—+oco \ n n——4o00 n——+o0o

par continuité de la fonction exponentielle en 2).
2n
n

D’ou, par le critére de D’Alembert, la série numérique E 3n

x
!
p (2n)!

2|$’3

ol

e converge absolument si

4\3
< 1, c’est-a-dire si |z| < <2> , donc R > (;%) ,
e

20,13 4
e’lzl® > 1, c’est-a-dire |z| > <2> , donc R < (%)
e

A\ 3

3. Pour tout = € R avec x # 0, pour tout n € N, a”z™ # 0 (car a > 0). Puis, comme a > 0,

wl=

e ct diverge grossiérement si

Ainsi

0 si |z <1

an—&-lx(n—i—l)! \
——— | =alz|™ .
n—+oo | +00 si|z| > 1

!
anxn.

Dongc, par le critére de D’Alembert, la série numérique E a”x"
neN
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e converge absolument si || < 1, donc R > 1,

e ct diverge grossiérement si |z| > 1, donc R < 1.

On a donc
R=1|

Exercice 3. Notons R; et Rs les rayons de convergence des séries entiéres Z an 2" et Z n“a,z".
neN* neN*
% Soit p € R avec p > 0 tel que la suite numérique (a,p™)nen+ soit bornée. Soit p’ €]0, p[. Alors, pour tout n € N*,

IN T
ann®p™ = (anp"™) n® <p> — 0
~—— p n—+00

— 0
n—-+o0o

bornée

(la limite provenant d’une croissance comparée, car

< R

‘ < 1). Donc la suite numérique (a,n“p™),en+ est bornée.

Donc (par définition méme du rayon de convergence),

R2 > 10/7
et cela étant vrai pour tout p’ €]0, pl,

Ry > p.

Or, cela est vrai pour tout p € R% tel que la suite (a,p")nen+ soit bornée, donc pour tout p €]0, R1[. Donc
Ry > Ry.

% Soit p € R avec p > 0 tel que la suite numérique (a,n®p")en+ soit bornée. Soit p’ €]0, p[. Alors, pour

tout n € N*,
1 /p\"
o - oarr) 1 (2
——"N p
bornée  \— —

— 0
n—-+o0o

(idem qu’avant). Donc la suite numérique (a,p™)pen+ est bornée. On a donc (idem qu’avant)
Ry > Rs.

% Ainsi
R1 = Rs.

Exercice 4.

1. 3 Rayon de convergence : Pour tout n € N*, = 0. Pour tout € R avec z # 0,

1
(n—1)!

(n — 1)lzntt

1
= lim —|z|] — 0<L1.
nlx™

n—+o0o N n——+o00

lim
n——+o00

Z.TL

(n—1)!

Donc, d’apreés le critére de D’Alembert, la série numérique Z converge absolument pour tout x €

neN*
R*, donc R > |z| pour tout z € R*, soit

R = +o0|
% Calcul de la somme : pour tout réel z € R,

Pl k

o0 o0 _ oo
2 T2 T g
=X X
(n—1)! -1
n:l

n:l k=0

K
I
8
g

|

&=
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2. % Rayon de convergence : Pour tout n € N*, on a n? # 0. Pour tout « € R avec x # 0,

(n +1)2zn+!
—V2a | |z,
n<x n—+o00

donc, d’aprés le critére de D’Alembert, la série numérique Z n2g"
neN*
e converge absolument si || < 1, donc R > 1,
e et diverge grossiérement si |z| > 1, donc R < 1.

Donc
R=1|

% Calcul de la somme : la série entiére E z™ a pour rayon 1, donc la somme de cette série entiére est de

neN
classe C* sur |—1, 1], et sur cet intervalle on peut dériver terme & terme. Comme cette somme est la fonction

o0
T g " =
n=0

, en dérivant, pour z €] — 1,1] :

1 2
-1 —2
(l—x)2_0+§ nx" ", (1—x)3_0+0+§ n(n —1)z"
n=1

n=2

D’ow, pour z €] — 1, 1],

n?z" 2 = 7+ nx" " *,
Z 1—1,‘ nzz

puis
o0 o0
g nz" = 22 E n2x" 2% = s+ E nx"
1 — ac
n=1 n=1 n=1

(des deux coOtés, pour n = 1, on a z a ajouter), ce qui donne

2

Z” 1—;5) o=

puis
0 2
Zn21‘" R )
n=1 (1 _ x)3
3. Y Calcul du rayon de convergence : Pour tout n € N, Ty 2 0. Puis, pour z € R avec = # 0,
2n+1
x n—1)! x
ol Y
n! r2n—1 n n—+oo
2n—1
Ainsi, par le critére de D’Alembert, la série numérique Z ; converge pour tout z € R*, donc R > |z
= (n—1)!
pour tout z € R*, soit
R =+4o00|
% Calcul de la somme : pour tout réel z € R,
0 2n—1 L .2k+1 0 ( 2)k
x x x 22
=X = | xe .
POy D Dy vk By
n:l k=0 k=0

4. Y Rayon de convergence, trouvé a un exercice précédent (en cours) que

R:

1
71
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Cependant, il est direct que la série diverge grossiérement en z = i (car les termes d’indices pairs valent 1,

ne tendent pas vers 0), donc le rayon est au plus %. Et ce qui suit permet de calculer la somme pour |z| < %,
donc le rayon est au moins %.
% Calcul de la somme : pour tout z € C vérifiant |z| < 1,

= n\n n_,oo n > n o 1 2z
T;O(S-I- (—1) ) z —;(4@2 —1—;(%)2 o 1= (1) + =222 |

les séries convergeant bien, car on a des séries géométriques de raison (42)2 et (22)2, avec |(42)?| < 1
et [(22)?] < 1 puisque |2| < 1.
5. % Ona

[R=1]

En effet, pour tout n € N, |cos(nf)| < 1, donc R est supérieur ou égal au rayon de la série entiére Z 1-z",

neN
qui est de rayon 1 (série géométrique), donc
R>1.
Puis, la suite numérique (cos(nH)) ne tend pas vers 0 (car sinon, cos(2nf) = 2cos?(nf) —1 — -1,
neN n——400

absurde, puisqu’en tant que suite extraite, on devrait avoir cos(2nf) T 0) , donc la série numérique
n—-—+0oo

Z cos(nf)x" diverge pour x = 1, donc

neN
R<I1=1.
% Calcul de la somme : pour tout z €] — 1, 1], la série numérique Z (ewx)n converge (série géométrique
‘ ' neN
de raison ez, avec }ewx‘ = |z| < 1), donc en prenant sa partie réelle, :

i}cos(n@) " = i}Re ((eww)n)

- Re (fj (ez‘%)”)

n=0

1

1
= Re ((1 — cos(0)z) — isin(@)x)

1 — cos(f)x
(1- 005(9)50)2 + 22 sin%(9)

Donc, pour z €] — 1,1],

Z cos(nf) " = ! g z cos(6) :
= 1+ a2 — 2x cos()

6. Y Calcul du rayon de convergence : pour tout n € N*,

d<mw@w>:mwwﬂ47

dz n

. N cos(nf)x" . L. N n—1
donc par le cours, la série entiére g —————— améme rayon de convergence que la série entiére g cos(nf)x" ",
n
neN neN
donc (multiplier par x ne change pas le rayon) que la série entiére g cos(nf)x", qui vaut 1 (vu a la question

neN
précédente). Donc

R=1\|
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% Calcul de la somme : Pour tout z €] — 1, 1], notons

S(z) = Z COS(ZQ)Z‘”I
n=1

Comme c’est la somme d’une série entiére de rayon 1, sur |—1,1[ la fonction S est de classe C* et on peut
la dériver terme a terme. Donc, pour tout = €] — 1, 1],

S'(x) = cos(nf) 2",
n=1

puis, grace a la question précédente (en faisant attention qu’il manque le terme n = 0...),

)

b > n_  l—wmcos(d) 1 —xcos(f) — % — 1+ 2z cos(f)
5 (z) = nz_:l cos(nf) 2" = 1+ 22 — 2z cos(h) L= 1+ 22 — 2z cos(h)

donc (en divisant par x), pour z €] — 1,0[U]0, 1[ (pour ne pas diviser par 0...),

;o\ —x+cos(h)
(@) = 1+ 22 — 2w cos()

Pour éviter les problémes, on remarque que cette formule reste vrai pour z = 0, puisque
o
S'(0) = Zcos(n@) 0" ! = cos(0)
n=1
(0° =1, puis 0"~ ! =0 pour n > 2...), et

—x + cos(6)
14 22 — 2z cos(6)

= cos(h).
=0
L’égalité étant valable sur ’intervalle |—1,1[, en intégrant (c’est de la forme % a constante pres), : il
existe K € R tel que, pour tout = €] — 1, 1],

1
S(z) = —gln (1+2% —2zcos(h)) + K

(on n’oublie pas la constante d’intégration, puisqu’on est sur un intervalle). Or S(0) = 0, d’ou K = 0.
Ainsi, pour tout z €] — 1, 1],

S(z) = —%ln (14 2% — 2z cos(9)) |

Exercice 5.
Soit z € R.
Pour tout réel t € R,

¢ "
o
n=0
(cf. cours, c’est le DSE de exp en 0, il est valable sur R), donc
. o tn+1
te” = Z o
n=0

Cette série entiére converge donc pour tout réel ¢t € R, donc est de rayon infini.
Or, on sait que la somme d’une série entiére de rayon R converge normalement sur tout segment inclus dans
|—R, R[, donc ici sur tout segment inclus dans | — oo, +00[= R, donc sur [0, z].

On pose, pour n € N|
tn+1

fnit— .
n!
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% Pour tout n € N, la fonction f;, est continue sur [0, z] (car polynomiale).

% La série de fonctions Z fn converge normalement sur [0,z] (on vient de le justifier & I'aide du rayon de

neN
convergence).

D’apreés le théoréme d’intégration terme & terme sur un segment, alors :

T . r tn+1 tn—l—l OO n+2
te'dt = dt = dt = —_—
/0 ‘ /0 nz: Z / (n +2)n!

o n

t
Autre méthode : pour tout réel t € R, e = Z 5 (cf. cours, c’est le DSE de exp en 0, il est valable sur R), donc
= n!
o0
tn+1
t_

te = Z o

n=0

Cette série entiére converge donc pour tout réel ¢ € R, donc est de rayon infini.
Donc la fonction
p:teR—te

est DSE sur R. Or, comme la fonction ¢ est continue sur l'intervalle R, et 0 € R, le théoréme fondamental de

I’analyse donne que
@:xGRH/ tetdt:/ B(t)dt
0 0

est une primitive de ¢ sur R. Donc, en tant que primitive d’une fonction DSE sur R, ® est DSE sur R, et son DSE
s’obtient, a constante prés, en primitivant terme a terme celui de ¢ (cf. cours). Ainsi, il existe K € R avec, pour

tout z € R,
n+2

<I>(:U)ZK+Z%(TL$+2)”!.

Puis, en évaluant en z = 0, comme ®(0) = 0, on obtient K = 0 (car 0"*2 = 0 pour tout n € N), et donc on a bien,

pour tout z € R,
o n+2

/0 te dtz@(m)z%mw.

Exercice 6.

2
% Calcul du rayon de convergence : Notons, pour n € N, a,, = (2711)' Pour tout n € N* on a a, # 0. Pour
n !
tout x € R avec = # 0,
a1zt _ 2(n+1) (2n+ 1)! o] = 1 5 — 0<1
apx" (2n + 3) (2n)(2n +3) n—+oo '

Ainsi, d’aprés le critére de D’Alembert, la série numérique Zanx" converge absolument pour tout z € R*.

neN
Donc R > |x| pour tout z € R*, soit

R=+c0|
% Calcul de la somme : pour tout réel z € R,
n n

i 2na™ _i(Qn—i—l—l)x”_i x i x
vt (2n+1)! = (2n+1)! = (2n)! vt (2n+1)!

(sous réserve de convergence des deux séries de droite, mais la encore, le critére de D’Alembert permet de conclure
que ce sont des séries entiéres de rayon infini, donc convergentes en x).
Six>0,:

> - ° (\/.%)QH B i 1 2n+1 Slnh(f)
Z(%)! =2 (2n)! = cosh(vr) et nz(mﬂ xz 2n—|—1 Jr

n:0
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Siz<0,:

oo z X 1\n —1)2n o0 " X (_1\n — )2+l sin —r
Z :Z(D (V—x) — cos (vV_2) ot Z( _ 1 Z(l) (V—x) _ (F)

— (2n+ n' =z = (2n+1)! =z

Ainsi, pour tout x € R,

sinh(y/x

cosh(y/z) — sinh(v'z) six >0
= 2na™ VT .
Z e 0 siz=0
n:O( n+1)! (\/7) sin (\/—x)

cos (V—2) — ———

V-

Remarque. Et comme la fonction de droite est égale a la somme d’une série entiére, elle est de classe C*° en 0,
ce qui n’était pas du tout évident a priori!

sizx <0

Autre méthode pour le calcul de la somme : notons

2nz™

f: I’GRI—)Z Gn+ 1]

puis
o o
2nx2n+1 Qn(_1>nl.2n+1
creR— zf(z?) = —_— et h:zeRw— xf(—2%) = _—
g f(a?) ;](Qnﬂ)! f(==?) gﬁ G D)

Les fonctions g et h sont DSE sur R (une fois que 1'on sait que f lest), donc on peut les dériver terme a terme :
pour tout z € R,

o oo o
2n(2n + 1)z?" 2 x2k+2
’ _ -0 I —— = gsinh
9(@) Z 2n+1)! +nzl (27 — 1)! ken—1 kz_% orray - Csinh()
ot 2 00 2 2 (—1)kH1 g 2k+2

2 1 —1)np2n n n + +

E nt )’z g E = —zsin(z).

4 2n—|—1) Z 2n—1 1 2k:+1

Puis, en intégrant par parties,

/x tsinh(t)dz = [t cosh(t)]* — /I cosh(t)dt = x cosh(z) — sinh(z)

et

/w —tsin(t)dt = [t cos(t)]* — /3C cos(t)dt = x cos(x) — sin(x).

Comme les fonctions g et 2 — x cosh(z) — sinh(x) ont méme dérivée sur R et que R est un intervalle, on en
déduit qu’il existe K € R avec, pour tout = € R,

g(x) = x cosh(x) — sinh(z) + K.
Or,
K =g(0) = 0£(0%) =0,

donc pour tout x € R,
zf(x?) = g(x) = z cosh(z) — sinh(z),

soit pour tout x € R*,
sinh(z)
et

f(2?) = cosh(z) —

De méme, comme les fonctions h et x — z cos(z) — sin(x) ont méme dérivée sur R et que R est un intervalle,
on en déduit qu’il existe C' € R avec, pour tout =z € R,

h(z) = z cos(z) — sin(z) + C.

10
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Or,

donc pour tout z € R,

soit pour tout x € R*,

On en déduit, pour tout z € R* |

et pour tout x € R* |

f ER Z 2nx™ i 2nx™
€T =
(2n + 1)! ot (2n + 1)V
puis
2 o0 2n—1 2 o0 n,.2n—1
2 - 2n(—1
g:meR*Hf(x): e et h::):ERHLx): —n( )"z
x (2n+1)! x (2n+1)!
n=1 n=1

Les fonctions g et h sont les restrictions a R* de fonctions DSE sur R (une fois que 'on sait que f 'est), donc on
peut les intégrer terme & terme : les fonctions

2" sinh(z) — = )'a?t sin(z) —

o0 oo
(-1
G: R* — = t h: R +— =
ve ;(2n+1)! x ¢ re nz::l (2n + 1)! x

sont des primitives de g et h respectivement.
Par conséquent, pour tout z € R*,

o) = x cosh(x) — sinh(x) ot W) =

x cos(x) — sin(z)
x2 ’

Donc, pour tout x € R*,

_ sinh(z)

f(a®) = zg(z) = cosh(x) . .

On en déduit, pour tout z € R},

et pour tout x € R* ,

= - —162 = COS —X —M

Exercice 7. 1) La fonction z + cos(z) est DSE en 0 donc par produit, la fonction x + cos®(z) est DSE en 0.

Comme cos a comme rayon de convergence R = -+00, le rayon de convergence de cos® vaut aussi +oo (par produit

11



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

de Cauchy, on sait que c’est au moins +00, mais il n’y a pas plus grand...). Puis, pour tout réel z € R,

T —iz\ 3

ei3z+€7i31+3 (eiz+67i1)
- 8

— Cosf"'”) + %cos(x)

o0

L= (—D)"(B) | 3= (—1)na
- 4;) (2n)! +4nzo (2n)!

_ Sy

|
= 4(2n)!

(en utilisant le DSE usuel de cos, valable sur R).
2) On a, pour tout réel z € R,
2?4+ 3x+2=(x+1)(z+2).

Donc pour = « proche de 0 » (pour que 1 +x > 0et 2+ x > 0),
In(2+ 3z +2%) = In(1 + z) + In(2 + )

(dans le cas général, il faut écrire In(2+3z+22) = In |1+x|+1n |2+, valable pour tout € R tel que 2+3z+z2 > 0,
donc si x < —2 ou z > —1).
Or les fonctions

z+— In(1+x) et x+—1n(2+ )

sont DSE (en 0) et donc la fonction = + In(2? 4 32 4 2) est DSE en 0 par combinaison linéaire.
Et pour tout z €] — 1, 1],
[e.e]
n(l+x) Z

n=1

nln

puis pour tout x €] — 2, 2],

In(2 + ) = 1()+1n( ) +Z 2nn

Donc, pour tout = €] — 1,1],

2 _ - (_l)n_l 1 n
In(z? + 3z +1) = 1n(2)+nz::ln<1+2n "

NB : on a R =1, car on additionne deux séries entiéres de rayon différentes, I'une de rayon 1, 'autre de rayon 2
(et le rayon de la somme vaut alors min(1,2) = 1).

3) Les fonctions x +— e* et x — sin(z) sont DSE en 0, les deux sont de rayon infini. Comme on a le produit de deux
fonctions développables en série entiére de rayon de convergence infinie, par produit de Cauchy, que la fonction

x — e”sin(x)

est DSE en 0, de rayon au moins infini, donc infini.

Pour tout réel x € R,
e’ sin(z) = Im (e(l'ﬂ)“") =1Im (Z ( j;!l) x")
n=0

12
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[e.e] n

z
(car on sait que e* = Z o pour tout complexe z € C). Or 1 4+i = V2¢'Z. On a donc en réinjectant :

n=0
We "eing > \/in T
e’ sin(z) = Im Im " | = sin (n—) " |.
=t (X VB ) < S (V) |55 (0]
n=0 n=0
oo un
4) e Pour tout réel u € R, on sait e* = Z e Donc, pour tout réel t € R, comme 2t? est encore réel, on peut
n!
n=0
remplacer u par 2t2, et donc
OO 2\n n
2t2 o (2t ) 2
D D > it
n=0 n=0

C’est la somme d’une série entiére, de rayon infini puisque cette somme existe pour tout réel ¢. Donc la fonction
2
¢t et

admet un DSE en 0 de rayon infini.
Puis, la fonction ¢ est continue sur U'intervalle R, et 0 € R, donc le théoréme fondamental de ’analyse donne que

la fonction .
d:x— / 2 4t
0
est une primitive de la fonction ¢ sur R.
Or, la fonction ¢ est DSE en 0 de rayon infini, donc la fonction ® aussi (en tant que primitive, cf. cours).

De méme que pour ¢, la fonction

_ 2
T e 2

est DSE en 0 de rayon infini.
Donc par produit de Cauchy, la fonction f admet un DSE en 0 de rayon (au moins) infini.
e En particulier, la fonction f est dérivable sur R, et pour tout x € R,

x
f(z) = 74x6_2x2<1)($) + e_2x2<1>'(x) = —dge 2 /0 2 dt + 1.

On a donc, pour tout z € R,
f(@) = —daf(zx) +1

Comme la fonction f est développable en série entiére de rayon infini, il existe (a,) € RY tel que, pour tout

réel x € R,
(o]
= E anx™.
n=0

Or, la somme d’une série entiére de rayon R est de classe C*° sur |—R, R|, et sur cet intervalle on peut dériver
terme a terme. Ici, R = +o00, donc pour tout réel z € R,

oo
"() =0+ Znanac"*
n=1

(le 0 est la dérivée du terme n = 0...). En réinjectant dans 1’équation différentielle trouvée, : pour tout réel z € R,

o0 oo
g na,z" ' +4 E ap,x"t =
n=1 n=0

soit en posant k=n—1letp=n-+1,

o
Z (k+ Dag1z +4Zap 1P =1,
k=0 p=1

13
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puis
> o
a1+ Y ((n+ Dapsr +4an 1)z =1=1+) 0.a"
n=1

L’égalité est vrai pour tout z € R (et R est un intervalle non trivial contenant 0), donc par unicité des coefficients,
pour tout n € N*, :
(n+ 1)apt1 +4an—1 =0

et ap = 1.
On a donc pour n € N* :

an4+1 =

On a aussi ap = f(0) = 0.

Montrons alors par récurrence, que pour tout p € N, ag, = 0.

Initialisation : pour p = 0, a2.9 = ag = 0, d’out l'initialisation.

Hérédité : soit p € N, supposons ag, = 0. En prenant n = 2p + 1 dans la relation (1), alors

—4
A2(p+1) = 2p+2 = m@p =

D’ou I'hérédité.

Conclusion : pour tout p € N, ag, = 0.

Remarque. On aurait aussi pu remarquer que f était impaire pour dire que tous les ag, étaient nuls.
Puis, pour p € N,

—4 _ (—4)? o (—4)”
1T oy (2P T T 2pr D)(2p—1)...5.3

a2p+1 = al

(au dénominateur, le produit des impairs). On multiplie au numérateur et au dénominateur par les termes pairs :

(apep  (app
e+ DI epr

Montrons donc cette formule par récurrence sur p.
Initialisation : pour p =0, a29+1 = a1 =1, et

Q2p+1 =

(— 4)0200' _ 111
20+ 1)1 1

1=1,

d’ou l'initialisation.

_4yp—lop—1(p_
Heérédité : soit p € N*, supposons agp_1 = (z)r— 20 (p—1)!

ay. En prenant n = 2p dans la relation (1), alors

(2p—1)!
—4 —4 (—4)ptor=l(p—1)! —4(2p) (—4rtrl(p—1)!  (—4)r2rp!
a = —QAaA9p—_1 = = e R
T o 1T T o (2p —1)! (2p)(2p + 1) (2p — 1)! (2p + 1)!
d’otl I'hérédite.
—4)P2Pp!

Conclusion : pour tout p € N, ag,11 =

(
2p+1)! -
On a donc, pour tout z € R,

i p2pp' 2p+1
=0 (2p+ 1)!

Exercice 8.

1. Soit

f:tHZant”

n>0

14
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la somme d’une série entiére de rayon de convergence R > 0. La fonction f est alors de classe C* sur | — R, R,
et on peut dériver terme & terme sur cet intervalle. Pour tout ¢ €] — R, R],

400 ~+o0 +00
') = Zn ant™ tf'(t) = Zn ant™ et () = Zn(n — Da,t" 2.
n=1 n=1 n=2
Alors
f solution de (E) sur | — R, R| < Vte€]— R, R[, (1—t3)f"(t) —2tf'(t)+2f(t) =0
—+o0 —+o00 400
& Vte]—R,R[, (1—1t%) Zn(n — Da,t™ 2 -2 Zn ant™ + 2 Zantn =0
oo n=2 too n=1 n:E]FOO
& Vte]l—R,R|, Z(n +2)(n+ 1)ap4ot™ — Z n(n —1)apt" — 2 Z n apt’™ +
n=0 n=2 oo n=1
&Vt €] — R, R, 2as + 6agt — 2a1t + 2a9 + 2a1t + Z [(n +2)(n+ Dap+o — (
n=2

Ceci étant valable sur | — R, R[ avec R > 0 (donc intervalle non trivial contenant 0), par unicité du dévelop-
pement en série entiére, alors

2a9 + 2a9 =0
f solution de (E) sur | — R,R[ < (6a3=0
Yn>2, (n+2)(n+ 1apie — (n—1)(n+ 2)a,

as2 = —ag
= (1320
n—1
Vn>2, a = a
= 4, Un+42 n+1n

Vp>1, agpy1 =0

< Vp >0, ag = 2p_11a0
En effet, en distinguant les indices pairs et impairs, la condition « pour tout n > 2, apyo = L_ian »
devient : "
a =a _ - 1a
pour tout p € N, 2 e 2p+1 221;

A2(p+1)+1 = A(2p4+1)+2 = ma2p+l

avec comme condition initiale : ag = 0 (donc a; et ag quelconques...).
Donc, pour tout t €] — R, R],

+00 -1
t) = ait E—-2
ft) = a +aopZ%2p_1

Déterminons le rayon de convergence R de f si ag # 0.

-1
Si ag # 0, alors pour tout p € N, ag, = 5 1a0 % 0, et donc pour t € R*,
p J—
azp2t*?|  [2p—1 2 42
agthP 2p+ 1 potoo

Donc, d’aprés le critére de D’Alembert, la série numérique Z agpt2p
peN
e converge si t? < 1, c’est-a-dire si |t| < 1. Donc

R>1,

15
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e diverge si t? > 1, c’est-a-dire si [t| > 1. Donc
R <1
Donc
R=1.

Donc ce qui précéde assure que, pour tout a; € R et ag € R*, la fonction

est la somme d’une série entiére de rayon 1, donc est définie et de classe C* sur |—1, 1], et est solution de
(E) sur |—1,1[.
Et, si ag = 0, alors la fonction

t— a

est solution sur R, pour tout a; € R.
On a donc bien trouvé des solutions développables en série entiére sur |—1, 1[. Elles sont toutes de la forme :

~+00 1
]—1 1[»—>a1t+aoz —— %

2p—1

pour (ag,a1) € R%. Leur rayon de convergence est 1 si ag # 0 (et I'infini si ag = 0, car alors on a un polynome).

$2p
2. Soit t € |—1,1[. Exprimons Z a l'aide des fonctions usuelles.
2p —
+oo (—l)n +oo
In(l+t)=—) ~——t" et —In(1—¢) Z—
n
n=1

donc en distinguant les indices pairs et impairs,

In(l14+¢) —In(1—-¢t) = f ﬂt”

neN* neN*
n=2k pair n=2p+1 impair

n:;-i-l 2n —1
n=1

On a donc, pour tout ¢t €] — 1, 1],

*i‘f ety (1)
02n—1_2 1—t

n=

t
(en multipliant par 3 et en tenant compte du premier terme qui manquait dans la formule précédente).

Donc les solutions de (F) sont les fonctions

t 1+t
tE]—l,l[H alt—a021n<1_t> + ap

pour (ag, a1) € R2.

16
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3. La fonction
+oo t2'rl

f1:t+—>§Z:2n__1

n=0

est solution de (F) sur |—1, 1[. De plus, elle est linéairement indépendante avec la fonction
fé:tk+t

car l'une est paire et l'autre est impaire (la seule fonction qui est a la fois paire et impaire est la fonction
nulle).

On sait de plus que 'espace des solutions de (E) sur |—1, 1] est un R-espace vectoriel de dimension deux (car
on a une équation différentielle linéaire d’ordre 2 a coefficients continus, et le coefficient de y” ne s’annule
pas sur |—1,1[; le théoréme de Cauchy linéaire s’applique donc).

La famille (f1, f2) est donc une famille libre d’un espace vectoriel de dimension 2, ¢’en est donc une base.

Les solutions sur |—1, 1[ sont donc les fonctions de la forme

t (14t
2 () -1
at+5<2n<1_t> )

avec (a, 3) € R? : on les a toutes trouvées, et elles sont toutes DSE.

€]

Exercice 9.

1. Soit
—+o00
fit=) ant”
n=0

une fonction DSE sur | — R, R[ avec R > 0. Alors la fonction f est de classe C* sur | — R, R|, et on peut
dériver terme a terme sur | — R, R[. On a donc, pour tout ¢t €] — R, R|,

+00 oo
'(t) = Znantnfl et (@) = Zn(n — 1)ant" 2.
n=1 n=2
En réinjectant dans (E), :
+00 +oo +o00
f est solution de (F) sur | — R,R| < Vt€]— R,R|, Zn(n — Dat" ' +2 Znantnfl - Z ant™™t =0
n=2 n 1 n=0
+o00
& Vte]—R.R[ > n(n+ appt" +22 n+ 1)angt" Zan "
n=1 n=0
+00
& Vte|l—R,R[, 2a1 + Z (n+1)(n+2)ans1 — an—1)t" =0
n=1

Ceci étant valable sur | — R, R[ avec R > 0 (donc intervalle non trivial contenant 0), par unicité du dévelop-
pement en série entiére, alors

2a1 =0
f solution de (E) sur | — R, R[] < “

Yn>1, (n+1)(n+2)ap+1 —ap—1 =0
Vp >0, agzpy1 =0

< VPZ()» a?p:

_ %
(2p +1)!

En effet, (n + 1)(n 4+ 2)ap+1 — ap—1 = 0 se réécrit

Gn—1

AR CESCE

Gn—1

————— » devient :
T n+2) » devien

et donc en distinguant les indices pairs et impairs, « pour tout n € N*, a1 =

17
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1
a2(p+1) = a(2p+1)+1 = (2p+ 2)<2p+ 3) G/Qp
1

« pour tout p € N|

@2(p+1)+1 = A(2p+2)+1 = (2p_|_ 3)(2p+ 4) A2p+1

avec comme condition initiale : a; = 0 (donc ag quelconque...).

Ainsi on a : -
o2 gy 12 LI OB

F0=2 G =y, °
p—0 \7P ) ao sit=0

et on a R = +oo (faire le critére de D’Alembert, ou tout simplement car on sait que sinh est DSE sur R,
donc que 'égalité

~+00 2
. ap teP
sinh(t) = E —
|
= (2p+ 1)

est valable pour tout ¢ € R*, ce qui assure la convergence de la série pour tout t € R*).
Comme le rayon de cette série entiére est bien strictement positif, on en déduit que la fonction f est bien
une solution DSE de (F), et c’est sur R car R = +o0.
Donc la fonction

+o00 42 sinh(t)

teR— —_— =
vo pz:(:J(Zp—l—l)!

sit#0
1 sit=0
répond a la question.

Remarque. Notons S I'ensemble des solutions de (E) sur R% . On vient de prouver que
Vect(yo) C S.

On pourrait se poser la question : a-t-on trouvé toutes les solutions de (E) sur R , autrement dit, les solutions
de (E) sur R¥ sont-elles toutes DSE en 07
Or, on verra plus loin que le théoréme de Cauchy s’applique, et donne

dim(S) = 2.

Comme yg n’est pas la fonction nulle,

dim (Vect(yo)) = 1,

donc on peut affirmer
Vect(yo) C S.

Donc il y a des solutions de (E) sur R* qui ne sont pas DSE en 0, et que l'on a pas encore trouvé.

2. Soit y une fonction deux fois dérivable sur RY . Pour tout ¢ € R,

sinh(¢
yo(t) = t( )
(avec yp(0) = 1), puis si on note
=2
Yo

(qui est une fonction bien définie, car la fonction yy ne s’annule jamais), alors la fonction z est deux fois
dérivable par quotient de fonctions qui le sont, dont celle du dénominateur qui ne s’annule pas.

Donc,
y=wz ¥ =v7 +ypz et Y =yo2" + 2yp7" + g2,

ce qui donne
Yo , 1
ty" +2y —ty=0 & tye" + 2yy +2y0)2 =0 & '=-2 <0 + t> 2
Yo

(car yo ne s’annule pas) sur RY .

18
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Comme la fonction
Azt In|yo(t)] + In(t)

est une primitive de la fonction continue

attes 202 4
Yo(t)

sur R* , et que la derniére équivalence traduit une équation différentielle d’ordre 1 dont 2’ est solution, :

yolt) | 1
t

] * * —21n —21In A A
y est solution de (F) sur Ry < 3INER, 2/ :t € RY = Ae 2nlno®)=2In() = 0 (D)2 = Snb2(0)

cosh(t)
=0 R? it € RY - A
(Ap) ERY, 2t €RL = sinh(t)

inh(t h(t
& I\ p) R, y:teRiHusmt()—)\COSt()

Autre rédaction possible : La rédaction ici est importante, pour qu’on puisse affirmer avoir trouvé toutes
les solutions, et pas seulement celles d’une forme particuliére. Certains de mes éléves commencent la rédaction
de cette question ainsi :

Soit z : R% — R une fonction deux fois dérivable sur R , et posons
y:teRL = yo(t)z(1).
Alors, comme produit, la fonction y est deux fois dérivable sur R, et (par le méme calcul que précédemment),

inh(t h(t
y est solution de (E) sur R} < J(\, p) € R% y:te R — Msmt( ) _ )\COSt( )

Le probléeme, a cette étape, est que l'on ne sait pas si l'on a trouvé toutes les solutions. On a trouvé les
solutions qui se mettaient sous la forme y = yoz avec z deuz fois dérivables sur R, mais c’est tout. Alors,
soit on vérifie que toute solution est sous cette forme (ce qui provient de ce que yo ne s’annule pas sur R,
et c’est ce que j’ai fait par la premiére méthode), soit on utilise une idée plus générale (et qu’il est utile de
connaitre et comprendre), faite & partir du théoréme de Cauchy, comme dans ce qui suit :

Notons f et g les fonctions

sinh(t)
t

cosh(t)

f:teR] — et g:teR} —

Notons S I'ensemble des solutions de (E) sur R* . Comme (E) est une équation différentielle linéaire homo-
géne, on sait que S est un espace vectoriel.

Comme

e R’ est un intervalle,
e les coefficients de (E) sont les fonctions

t—t, t— 2 et t— —t,

donc sont des fonctions continues sur R,
e le coefficient devant 3" ne s’annule pas sur R* | donc (E) est d’ordre 2,

alors le théoréme de Cauchy s’applique, et donne
dim(S) = 2.

Enfin, la famille (f, g) est libre, puisque, pour (a,b) € R?, si af + bg = 0, alors pour tout t € R?,

sinh(t) n bcosh(t)

0=af(t)+bg(t) =a , .

donc 0 = asinh(t) + bcosh(t).

19
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On a envie de prendre ¢ = 0, mais on ne peut pas car t est dans R . Pour garder cette idée, faisons tendre ¢ vers 0" :
par continuité de sinh et cosh en 0, alors
0= lim 0= lim (asinh(t) + bcosh(t)) = asinh(0) + bcosh(0) = b.
t—0t t—0t

En reportant, alors asinh(t) = 0 pour tout ¢t € R, donc a = 0 (car sinh n’est pas la fonction nulle sur R?).
Donc la famille (a,b) est bien libre.

Donc la famille (a,b) est une famille libre de deux vecteurs de S, et dim(S) = 2, donc (a,b) est une base de

S.

Conclusion : on a bien trouvé toutes les solutions de (E) sur R*.

Remarque. On a le méme résultat sur R* , par le méme calcul. Les seules solutions qui se prolongent par
continuité en 0 sont alors celles avec A = 0 et le méme p sur R et R* (il coincide avec f(0)), et on sait alors
(grace a la question 1) qu’elles sont DSE sur R.

Exercice 10. 1) F est la somme d’une série entiére de rayon R, donc la fonction F' est de classe C*™ sur |- R, R|,
et sur cet intervalle on peut dériver terme a terme, soit pour x € |—R, R],

o0 [e.e]
F'(z) = Z(n + Dapi12™ = a1 + Z(n + Dapti2™.
n=0 n=1

Puis, pour = € |—R, R|,
oo
rF(x)+1=1+ Z ap—1z"
n=1

(aprés un changement d’indice), donc (comme |—R, R] est un intervalle non trivial puisque R > 0, et contenant 0),
par unicité des coefficients,

F est solution sur |—R, R[ de I’équation différentielle ' = zy + 1 avec y(0) =0 < F(0)=0et Vo €|-R,R[, F'(z

ag — F(O) =0
= ap =1
Yn € N*, (n+4 1)apt1 = an—1

Remarque.

1. Iénoncé ne demandait qu’'une implication (on supposait que F' était solution). On a fait mieux ici : on a
rédigé pour avoir 1’équivalence (ce sont les méme calculs, pourquoi s’en priver 7).

2. Remarquons que ce systéme définit de maniére unique une suite (ap)neN-

2) En distinguant les indices pairs et impairs, soit n = 2p (avec p > 1 pour avoir n € N*) et n = 2p+1 (avec p > 0
pour avoir n € N*),

_ az
_— Vp € N, A2p+2 = 2p—&1-)2
<Vn e N api1 = 7:1) &
n
Vp € N*, a2pt+1 = 0;2;_;11

Montrons alors par récurrence que ag, = 0 pour tout entier p € N.
Initialisation : pour p =0, ap = 0 car ag = F(0) = 0.
Heérédité : soit p € N, supposons ag, = 0, alors

1 1

42T 9y 12

agpy2 = x 0 =0,

d’ou I’hérédité.

Conclusion : pour tout p € N, ag, = 0.
Donc pour tout = € |—R, R|,

00
F(x) = Z a2p+1:c2p+1,
p=0
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avec a1 = 1 et, pour tout p € N*,
a2p—1

2p+1

Montrons alors par récurrence que as,+1 > 0 pour tout entier p € N (pour pouvoir utiliser le critére de D’Alembert).
Initialisation : pour p=0,a; =1 > 0.

Heérédité : soit p € N*, supposons ag,—1 > 0, alors

a2p+l ==

agpt2 = agp—1 >0

2p+1
comme produit de deux réels strictement positifs, d’ott I'hérédité.

Conclusion : pour tout p € N, ag,1 > 0.

Donc, pour tout z € R avec x # 0, pour tout entier p € N, a2p+11:2p+1 #0. Or,

1112

= —
2p 4+ 1 p—+oo

2p+1
agpy 127t

agp— 1:1;210—1

0<1,

2p+1

donc par le critéere de D’Alembert, la série numérique Zagp+1x converge pour tout x € R* donc R > |z

peEN

EEE=

Remarque. Et grace aux équivalences de la question 1, la fonction F' définie ainsi est alors solution de ’équation
différentielle sur R.

pour tout z € R*, donc

3) Pour tout p € N*, en itérant la relation,

1 2p(2p —2)...4.2 2Pp!

T ) (2p-1)...53 1 (2p+ D! (2p+1)

(en multipliant /divisant par les pairs). Montrons-le par récurrence sur p.
Initialisation : pour p =0, a; = 1 et

290! 1.1
_—_———— = 17
(2.0 +1)!
on a bien égalité.
srédité : soi * _ 2=t _ 2P (p-)!
Heérédité : soit p € N*, supposons agp—1 = (2(p_1)+1)! = "o Alors
1 1 2 l(p—-1) 2p 2r=1(p —1)! 2Pp!
A2p+1 = 7 02p—1 = = = B
2p+1 2p+1 (2p—1)! 2p)2p+1) (2p—1)! (2p+1)!
d’ot1 'hérédité.
Conclusion : pour tout p € N,
2Pp!

Et donc, la fonction
= 27p! 91
From 3 20 o
p:(] ( )'
est solution sur R du probléme de Cauchy considéré.

Exercice 11.

1. % On sait que la fonction

=

ur (14u)”
est DSE sur |—1, 1[. Ainsi, il existe (ap)nen avec, pour tout v €] — 1, 1],

oo

=(1+ u)_% = Zanu”.

n=0

1
1+u
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Remarque. On sait calculer les coefficients a,, pour n € N, mais on n’en a pas besoin ici.

2

Or, pour tout = €] — 1,1, —2? €] — 1,1, donc « on peut poser u = —z2 », et donc pour tout = €] — 1, 1|,

1 - 2\n - n,.2n
Vima T 2 mm 2e
n= n=
Donc la fonction )
V1 — 22
admet un DSE au voisinage de 0 de rayon au moins 1 (en fait, exactement 1).
% On en déduit : comme arcsin est une primitive de la fonction

X —

1
V1—2?
la fonction arcsin admet un DSE au voisinage de 0, de rayon au moins 1 (la encore, exactement 1, puisque le

précédent vaut exactement 1).
Donc par produit de Cauchy, la fonction

X —

est DSE en 0, de rayon R au moins égal 4 1 : R > 1. De plus

™

flx) ~ —2 5 400,

1= /1 — 12 31—

donc la série entiére de somme f sur |—1, 1[ a une limite infinie en 17, donc ne peut pas avoir R > 1 (sinon,
comme la somme d’une série entiére de rayon R est continue sur |—R, R|, elle serait continue en 1 € |—R, R],
donc aurait une limite finie en 1). Donc R < 1. Donc

[R=1]

2. La fonction f étant DSE sur |—1, 1], elle est de classe C* sur cet intervalle. Et, pour tout = €] — 1, 1],

1 1 —2x arcsin(z) 1
Cl-a? 2 (g2 1-a?

f'(@) + 1 j:lizf(x)

Ainsi la fonction f est solution sur |—1, 1] de I’équation différentielle

(1-a2?)y —ay=1 (B).

3. Je vais rédiger cette question comme si on ne savait pas que f était DSE sur |—1, 1].
Soit

o
frx— g anz"
n=0

la somme d’une série entiére de rayon de convergence R > 0. La fonction f est donc de classe C* sur |— R, R]
et sur cet intervalle on peut dériver terme a terme. On a donc : pour tout = € |—R, R],

o0 oo o0 o0
f'(z) = Znana:”_l = Z(n + Dapti2™, puis 22 f!(x) = Znanxm‘l = Z(n — Dap_12".
n=1 n=0 n=1 n=2

Or, pour tout x € |-R, R[, f(z) = Zanaﬁn, et donc
n=0

:L‘f(l‘) = Zanfll'n
n=1
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(aprés changement d’indice).

En réinjectant dans (E), :

f est solution de (E) sur |-R,R[ & Vz €|-R,R|, f'(z)—2%f'(z) —zf(x) =1

[e.e] [e.e] o0

< Vxe|-R,R|, Z(n + Dapyi2"™ — Z(n —Dap—12" — Zan,lx” =1
n=0 n=2 n=1
o

& Vz €]-R,R], Z ((n+1)an41 — nan—1)z" + a1 + 2a0z —apr =1 =1-
n=2

Ainsi, (comme |—R, R[ est un intervalle non trivial, puisque R > 0, contenant 0), par unicité des coefficients,

al = 1
f est solution de (E) sur |-R,R[ < {2as—ay=0
Yn>2, (n+1)ap+1 —nap—1 =0

CL1:1

1
A== az2 = 500

Vn > 2, apy1 = 1t
a)p = 1
= n

Vn>1, a = Qp—

= 1, Un41 n+ 1 n—1
. . 2p 2ag o
Si n est pair, n = 2p (avec p > 1 pour que n > 1) : on a Aopt1 = 274-1@21)_1 et a3 = ——. Donc en itérant,
P
(2p)(2p—2)...2  (2Pp!)?

a = a1 =
2t (2p+1)...3 ' (2p+1)
(en multipliant/divisant par les pairs). Montrons-le par récurrence sur p € N.
Initialisation : pour p =0, a1 =1 et

(2%1% (1.1)? )
o+1)! 1 7

il y a égalité.

(21’—1(1971)!)2 (21’—1(;;71)!)2

Heérédité : soit p € N*, supposons ag,—1 = (2( 1)+1)' = = alors
p— ! :
_ 2 _ 2
" _ 2 " _ % (2Pt (p— 1)) _ 2 2 (2Pt (p—1)1) _ (2Pp!)?
P T op 17T T 1 (2p— 1) 2p+12p (2p—1)! (2p+ 1)
d’ott 'hérédité.
Conclusion : on a bien, pour tout p € N,
_(@rph)?
T oy )|

D’autre part, pour n impair, n = 2p + 1 (avec p > 0 pour avoir n > 1), agp2 = %agp. Donc, si ag = 0,
alors
agp =0

pour tout p € N (récurrence directe).
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Donc, montré que f fonction DSE sur |- R, R| est solution de (E) sur |—R, R[ avec la condition initiale f(0) =

0 (qui donne ag = 0) si et seulement si

= 2p + 1
pour tout z € |—R, R|[.
Comme la fonction
arcsin(x)
T —

V1—2x2

est DSE sur |—1, 1], solution de (E) sur |—1, 1] et nulle en zéro, c’est donc la fonction précédente.

Remarque. D’aprés le critére d’Alembert (...), on retrouve R = 1 a partir des formules ci-dessus.

4. La fonction arcsin est dérivable sur |—1, 1], donc par produit, la fonction arcsin

(arcsin2 ), =2f

sur |—1, 1]

Or la fonction f est DSE sur |—1, 1], donc par primitivation, la fonction arcsin

terme a terme : pour tout z €] — 1, 1],

o0

217 2p+2
arcsin?(x) = arcsin®(0) + 2 Z P

2p+1)2p+2

Exercice 12. On a pour tout z € |—1,1],

> (_l)nx2n+1

arctan(z) = Z —_—
e 2n+1

Donc pour tout = €] — 1, 1[\{0},

x

arctan(x L (=1)a2n

o 2n+1

Notons

e n2n

gz =11l Z2n+1

2 aussi, et on a

2 aussi, et on peut primitiver

o0

-S|
= 2p + 2

Pour tout = €] — 1,1], g(x) est la somme d’une série convergente (qui vaut f(x) si  # 0, 1 si z = 0), donc la
fonction g est la somme d’une série entiére de rayon au moins 1. Donc la fonction g est de classe C* sur |—1, 1].

De plus,
f =g sur ]=1,1[\ {O}.

Ainsi, la fonction g est un prolongement de la fonction f en 0, et il est de classe C*° sur |—1, 1], ce qui répond a la

question.
Autre fagon de le présenter : pour z €] — 1, 1[\{0},

arctan(x x
arctan(z) T _y Ly
x z—0 T x—0

flz) =

donc la fonction f se prolonge par continuité en 0. Notons f ce prolongement, il est donc défini par : pour

tout « €] — 1, 1],

(x) _ {f(.%’) _ arctin(x) siz#0
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Puis, pour tout x €] — 1, 1[\{0},

f(2) = f() arctan(z) 1 i )2t i( 1)ng?n
€Tr) = €T :7 —_ =
o 2n+1 = 2n+1
Et, en x =0,
B i (_1)710271
fO)=1=) ~———r,
o 2n+1
car e nn2n 0n0 > n 2N &
> G - G - 0
2n+1 1 2n+1
n=0 n=1 n=0
(car 0° = 1, et pour n € N*, 02" = 0).
Donc, pour tout z €] — 1,1,
(o.]
_ _ (_1)711.271
f@) = nZO 2n + 1

La fonction f est donc sur ]—1,1[ la somme d’une série entiére, et cette série entiére est au moins de rayon 1
puisqu’elle converge sur ]—1,1[ (en fait, son rayon est exactement 1, on I’a facilement par le critére de D’ Alembert),

donc sa somme, soit f, est de classe C*° sur |—1,1].
Donc on a bien prolongé f en une fonction de classe C* sur |—1, 1].

Exercice 13.

1. Soit

oo
fix— E anT"
n=0

la somme d’une série entiére de rayon de convergence R > 0. Alors sur |—R, R[, la fonction f est de classe

C®, et on peut dériver terme a terme. Donc, pour tout x € |[—R, R|,

(0]
= g na,z" !
n=1

Donc, pour tout x € |—-R, R|,

g na an_,_E na,x"

et

Z(n—l)an_lm"+§: na,x"

n=2 n=1

x(z+1)f

En réinjectant dans (E), :

f est solution sur |-R, R| < Vx € ]—R,R]|,

& Vre]-

i (n —1Dapa" —I—Z
n=2

& Ve e]|-R,R[, ajx —ap — a1z + Z (n(

n=2
Par unicité des coefficients (comme |—R, R[ est un intervalle non trivial,

apg =0

f est solution sur |-R, R| < a1 —a; =0

22 f"(x) +x(x +1)f(x) —

[e.e]
= Zn(n — Dapz™ 2
n=2

>

n=2

et 22 f(z)

n(n—1)a,z".

flz) =0

o0
n
n—1)a,_12" —I—E nanpx" g anx’ =
n=1 n=0

n— Da, + (n—1)ap—1 + na, — an)x

puisque R > 0), alors

Vn > 2, n(n—1a, + (n — 1ay_1 +na, —a, =0

apg —

n



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

(on peut bien diviser par n?> — 1, carn > 2...).

Donc
GQZZO
est solution sur |- R, R| < —1)n12
/ ] [ Vn € N*, anzi( ) ai
(n+1)!
(on fait attention que, la premiére relation est ag = %al). Donc
1)n+1 "
st solution sur |—-R, R| < —R,R[+— 2 -—
f est solution sur |-R,R[ & x € |- alz_: e
1)n+1
oll R est le rayon de la série entiére 733” sia 0).

Or, pour tout n € N*| ((_nT)' #* O, et donc pour tout x € R avec x # 0,

(_1)n+1xn+1 n! 1
lim . = lzr] — 0< 1.
n——+o0 (n+1)! (—=1)nzn n+1 n-too
= (1!
Donc, d’aprés le critére d’Alembert, la série numérique Z mx" converge pour tout réel x € R*.
n !
=1
Donc R > |z| pour tout x € R*, c’est-a-dire
R = +o0.
Donc les solutions DSE sur R de (F) sont les fonctions
)n+1
n
€|-R,R[— 2a; Z 7)'35
pour a; € R quelconque.
2. Pour x € R, :
B STt e R Ve
| | — |
ot (n+1)! ot (n+ 1) k=nt+1 = k!
(série exponentielle, dont il manque les deux premiers termes). D’oul
o n+1 "
Z =—1l4+z+e ™.
(n + 1)!
=1
Donc
e —14=z
flz) = 2a1f

pour tout z € R* (et f(0) =0).
Exercice 14. Soit

o0
y:xHZanaz”
n=0

la somme d’une série entiére de rayon R > 0. La fonction y est alors de classe C* sur |—R, R[, et sur cet intervalle,
on peut dériver terme a terme : pour tout x € |—R, R|,

oo o o0
Y (x) = Z(n + Dapy12" et Z k(k —1)aga® o Z n+ Dnap12"”
n=0 k=2 n=1
1) Pour tout = € |—-R, R|,
o0 (o] o0
Y (z) — 2%y(x) = Z(n + Dapyiz"™ — Z 22" = a1 + 2097 + Z ((n + Dapy1 — an,g)m”,
n=0 n=2 n=2

26



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

donc (comme |—R, R] est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,

o) (
Vx € |-R, R|, y’(x)—ny(az):0:0+O+ZO.x” @ =0
n—2 ag = 0
=
Vn>2, (n+ 1)aps1 = an—2

Vn € N, a3n+1 = 0
= Vn € N, asnt+2 =0

VHGN, asy, = 1

= 3npl

(3n)(3573)...3 ao

(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices de la forme 3n +
1, 3n + 2 et 3n, puisque : pour tout n € N,

_ _ 1 _ 1
a3(n+1) = @3n+3 = 3, 13%3n = 30, 11)%3n
_ _ 1
A3(n4+1)+1 = @3n+4 = 357733n+1
1
A3(n4+1)+2 = A3n+5 = 35,15 d3n+2

ag — 1
avec les conditions initiales { a1 =0 ...).
as = 0
Comme, pour tout réel z € R,
3|n 3|n
x x
03‘&3711'3”‘:‘ | S‘ |
3nn! n!
et que la série numérique

neN

converge pour tout x € R (série exponentielle de somme el ‘), par critére de comparaison des séries a termes

E a3n$3n

converge absolument (donc converge) pour tout z € R, donc R > |z| pour tout = € R, soit

positifs, on en déduit que la série numérique

R = +o0.

Donc ce qui précéde donne que la fonction

3n 3

> X
n=0 ’

a un rayon de convergence infini, et est solution du probléme de Cauchy considéré sur R, et c’est la seule solution
DSE.

Remarque. Le théoréme de Cauchy (qui s’applique car 1’équation différentielle est homogeéne d’ordre 1, sous
forme normalisée, et 2 — —z2 est continue sur 'intervalle R, avec 0 € R) nous permet d’affirmer que c’est la seule
solution sur R (sans ajouter la condition DSE).

2) Pour tout = € |—R, R|,

o) 00 00
2y (@) + 2/ (@) +zy(@) = S+ Dnaniaa® +23 (04 Dangaa® + 3 anra”
n=1 n=0 n=1

(o 0]
= 2a; + Z ((n + Dnaps1 +2(n+ Daps1 + an_l)x"

n=1
o

= 2a1 + Z ((n + 1) (n+2)ans1 + an,l):zt”
n=1
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donc (comme|—R, R[ est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,

> 2@1:0
Vr € |-R,R[, zy/"(x) + 2y () + zy(z) =0=0+ ) 0.2"
| oy (@) 29/ (z) + oy(a) 2 Vn € N, (n+1)(n + 2)ans1 + an_1 =0
y(0) =1 ap =y(0) =1
y'(0)=0 a1 =y'(0)=0

{vn €N, asgni1 =0

Vn €N, ag, = ) (="

(gnJrl)!a’O = @n+ti)

(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices pairs et impairs,
puisque : pour tout n € N,

_ _ 1
{QQ(HH) = A2n+1)+1 = T @nr2)(@2nt3) Y21
-1
@2(n+1)+1 = ~ @nt1)(2nt1) Y2n+1
T ap =1
avec les conditions initiales 0 ).
CL1 =

(=D"

2n+1 T 75 0, donc pour tout € R avec x # 0,

Puis, pour tout n € N, i
(—=1)ntt 22(n+1)
(2(n+1)+1)! x

= —
((2;131")!33271 (2n +2)(2n + 3) n—+oo

2

0<1,

—_1)" 2n
donc le critére de D’Alembert donne que la série numérique g &
= (2n+1)!

rayon R de la série entiére associée vérifie R > |z| pour tout = € R*, donc

converge pour tout x € R* donc le

R = 4o00.
Donc la fonction
1)n 2n
Ty
v Z 2n+1)!
a un rayon de convergence infini, et est solution du probléme de Cauchy considéré sur R, et c’est la seule solution

DSE.

Remarque. Le théoréme de Cauchy ne s’applique pas ici, car I'équation différentielle est d’ordre 2 sur R* et R*,
mais le coefficient de y” s’annule en x = 0, et c’est justement en x = 0 que I'on prend les conditions initiales!

Puis, on reconnait un DSE usuel : pour tout x € R*,

(et y(0) = 1)
3) Pour tout z €] — 1, 1],

n=2
(série géométrique de raison z). Et pour tout x € |[-R R[
o0 o0 [e.e]
xy (z) —y(x) = Z napx" — Z anz" = —ag + Z(n — 1Dayz",
n=1 n=0 n=1

28



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

donc, en notant S = min(1, R) > 0, (comme]—S, S| est un intervalle non trivial puisque S > 0, contenant 0), par
unicité des coefficients,

Ve e] - 8,8[, zy(z) —ylx) =~ & Vo€l -85 —ap+ Z(n — Daya" = Za:”
n=2

—x
n=1

& Veel—S,S[ —ap+ (1 —1)ajx+ Z(n — Dayz" = O—i-O..I‘—I—an

n=2 n=2

apg =0
= (1—1)@120
Yn>2, (n—1)a, =1

apg =0
Vn > 2, an:ﬁ

Donc

= (LlfL‘Jrl’g ?:‘alexln(lf@‘
k=1

y est solution sur |-S,S[ < Vo € |-R, R[, y(z) = a1z + Z naj— Ly
n=2 =T

(en reconnaissant un DSE usuel). Or, on sait que la fonction = — In(1 — x) est DSE sur |—1, 1], donc on en déduit
que R =1 (mais on peut le retrouver par le critére de D’Alembert, par exemple...) et donc S = 1, et donc ce qui
précéde donne que les solutions DSE sont les fonctions

x+— ajx —xIn(l — x),

et elles sont solutions et DSE sur |—1, 1].
4) Pour tout z € |-R, R,

o0 oo o
2y (z) + 2y (z) + zy(x) = Z(n + Dnaps12™ + 2 Z(n + 1Dapt12"™ — Z ap—12"
n=1 n=0 n=1

o0
= 2a1 + Z ((n + Dnans1 +2(n+ Vap41 — an,l)x"

n=1

= 2a;+ Z ((n +1)(n+2)ap+1 — an_l)x"

n=1

donc (comme |—R, R] est un intervalle non trivial puisque R > 0, contenant 0), par unicité des coefficients,

Vo € =R, R], xy"(z) + 2y (x) + 2y(z) =0=0+ ) _0.2" 241 = 0
n=l L J¥nEN, (n+1)(n +2)ant1 — an_y =0
ap =y(0) =1
y(0) =1 or — f(0) — 0
y'(0) =0 !

a; = 0
Vn € N*, apq1 = Wl(n_’_z)an—l

{Vn eN, a1 =0

1 1
Vn €N, azn = 559 = @y
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(les expressions des suites s’obtenant facilement par récurrence sur n, en distinguant les indices pairs et impairs,
puisque : pour tout n € N,

{%(nﬂ) = A@nt1)+1 = @rra)EnTs) @2

a =1 a
2(n+1)+1 = ([2n+3)(2n+4) “2n+1

=1
avec les conditions initiales { ).
a) = 0
Puis, pour tout n € N, m # 0, donc pour tout = € R avec = # 0,
1 22(n+1)
(2(n+1)+1)! B x? . 0<1
=y (20 +2)2n +3) noteo
.7?2"

donc le critére de D’Alembert donne que la série numérique P —
E a n% (2n + 1)

rayon R de la série entiére associée vérifie R > |z| pour tout z € R*, donc

converge pour tout z € R* donc le

R = +4o0.

Donc la fonction
2n

oo
X
LT = P SEE—
yize ) 2n+1)!
n=0

a un rayon de convergence infini, et est solution du probléme de Cauchy considéré sur R, et c’est la seule solution

DSE.

Remarque. Le théoréme de Cauchy ne s’applique pas ici, car I'’équation différentielle est d’ordre 2 sur R* et R*,
mais le coefficient de y” s’annule en x = 0, et c’est justement en z = 0 que I'on prend les conditions initiales!

Puis, on reconnait un DSE usuel : pour tout = € R*,

(et y(0) =1).

Exercice 15. 1) On se place pour x proche de 0, donc 1+ 2 > 0 et 1 —x > 0 (concrétement, pour z €] — 1, 1[).
Donc en séparant les termes pairs et impairs,

1—=x

flx) = ln( 1+x>:;ln(1+x)—;ln(1—x)

k=1 k=1
B f: (—1)F1+1
o 2%
k=1

2k 2k
E>1 E>1
k = 2n pair k = 2n + 1 impair
S xQn—&-l
‘ 2n+1

pour z €] — 1, 1] (DSE usuels).

30



Fauriel - PC - Mathématiques TDS8 - SERIES ENTIERES

Remarque. Le rayon de convergence vaut 1 par le critére de D’Alembert pour les séries numériques.

2
f :x — arctan (;Uf > ,

— 2

2) Notons

la fonction arctan est dérivable sur R, la fonction x — f_‘g est dérivable sur R\ {—1,1}, donc sur |—1, 1], donc la
fonction f aussi par composition.
Pour z €] — 1,1],

, . 1— 22 —( 21’) 1 _ 1—|—x
file) =2 (1—a2)? 1_{_(1{\/52) =V

Or, pour tout u € C, si |u| < 1, alors

oo
1+u g

(série géométrique de raison —u avec | —u| < 1). Et, pour # €] —1,1[, on a |2%| < 1, donc « on peut poser u = x
ce qui donne, pour z €] — 1,1],

4>>,

f,(CL‘) :\/5(1+$2)§:( n 4n fz n 4n+\/§§:(71)n$4n+2
n=0 n=0

C’est I’écriture d’une somme d’une série entiére, ¢’est valable pour z €] — 1, 1, donc la fonction f” est DSE sur (au
moins) |—1,1[ (en fait, c’est exactement sur |—1,1[, car en 1, la série diverge).

Comme la fonction f est une primitive de f’, et que la fonction f’ est DSE sur |—1, 1], on sait que la fonction f
est DSE sur |—1, 1], et on peut primitiver terme a terme : comme f(0) = 0, pour tout = €] — 1,1,

SCIEIRIUREE) F Fe TN E) WY mes
n=0 n=0

NG — (=" 41 NG — (D)™ s
;:04n+1x + 7;]4n+3x

3) Pour tout = €] — 1,1] (ainsi |z| < 1 et !%! < 1, pour utiliser ’expression d’une série géométrique de raison x et

3 x
de raison %),

f@) = ot
_ 2
= GD@-3)
_ 1 1
= Tz 1 Tas3
- 1 _ 1.1
= Tz 31-2
n=0 3n—03
o
51)
R
+1
n—0< 3

Remarque. Le rayon de convergence vaut 1, comme addition d’une série entiére de rayon 1 et une autre de
rayon 3.
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2im
4) Notons j = 3 . Alors pour z €] — 1, 1] (ainsi | 7| = [z| <1 et % = |z| < 1, pour utiliser I'expression d’une
série géométrique de raison 7 et %) :
1
@) =
_ 1
(z—4)(z—7)
1111

car%:ert.

Sl
I
<

Donc

e Sin =3k (avec k € N),

e Sin=3k+1 (avec k € N),

e Sin=23k+2 (avec k € N),

D’ou finalement, pour z €] — 1, 1],

00 00
f(x) _ Zx?)k _ Zx3k+1 i
k=0 k=0

Autre fagon : de ’écriture
1 1 1 1

— _l’_ — s
W3jl1=5 iV/3jl—%
on sait que la fonction f est DSE en 0 (comme somme de deux sommes de séries entiéres, qui s’écrivent comme

des séries géométriques qui convergent pour z €] — 1, 1]).
Par conséquent, il existe (a,)nen € CN avec, pour tout z €] — 1, 1],

fz) =

Or, pour tout z €] — 1, 1],

donc
o0 [e.e] oo oo
1= Z anx" + Z ap—12" + Z an—22" = ag + (ap +a1)z + Z(an + apn—1 + apn—2)x"™.
n=0 n=1 n=2 n=2
Par unicité des coefficients (comme |—1, 1] est un intervalle non trivial), on a ag = 1, a; = —ag = —1, et pour tout
entier n > 2,
ap = —0p—1 — Gp—2.
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On vérifie alors que az = 0, a3 = 1, a4 = —1, az = 0,... (on montre par récurrence sur k € N que « agp = 1,
asg+1 = —1, agg+2 = 0 » pour tout k € N).
Exercice 16. La fonction f est dérivable sur | — 1, +00[ par opérations usuelles.
Pour tout z €] — 1, +o0],

In(1 + z) 1—In(1+4+2)

/ -9 7 -9
donc
2
1 !
(1+2) (@) + ) = 7

Comme la fonction x — In(1 4 z) est DSE en 0 (de rayon 1), par produit de Cauchy la fonction f est DSE en 0
(de rayon au moins 1). Il existe donc (a,)neny € RY avec, pour tout x €] — 1, 1],

[o@)
= E anx”.
n=0

De plus, la fonction f étant la somme d’une série entiére sur |—1, 1[ (donc de rayon au moins 1), elle est de classe
C™ sur |—1, 1], et sur cet intervalle on peut dériver terme a terme. Alors, pour z €] — 1, 1],

f(z) = Z(n + Dagpyi12" et f(z) = Z(n + 1)(n + 2)an422™.
n=0 n=0

Donc pour tout = €] — 1, 1], en utilisant le DSE de la série géométrique (valable car | — z| < 1),

o0

Y21 = e = () @)+ )
n=0
= Z(n + 1) (n+2)api0x" + Z nn+ Dapyi12"™ + Z(n + Dapy1z"
n=0 n=1 n=0

oo
= 2a2+a1+ Z(n +1)((n + 2)ant2 + (n + 1)ags1)z”

n=1

Donc par unicité des coefficients (car 1’égalité est vraie sur un intervalle non réduit & un point, a savoir |—1, 1], qui
contient 0),

{2@2—1—&1 =2

Vn e N*, (n+2)apnt2 + (n+ 1)aps1 = 2(;131"
et on a a; = f/(0) =0, donc ag = 1.
(=n~

Notons, pour n € N, u, = na, et v, = upi2 + Upt1 =2

alors pour tout n > 3,

n+1 7
n—2 n—2
Z(_ = Z ((_1)kuk+2 - (_1)kiluk+1) = (—1)"7211,” — Uy
k=1 k=1 \:,2-/

car on a une somme télescopique. Par conséquent, pour n > 3,

n—2 (_1)k n—ll
—1)"uy, =2 —1)F2 =2y -
(1" =2+ Y (12— 3
k=1 k=1
soit )
— n N”
an:Q( D 1
n k
k=1

l—i—x
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Exercice 17. 1) Pour tout n € N,

2n+2
1
(4 Do =~ g (21 7)

- _<_1) 2n—:-1 (n—i(—l)!(nzi-l)!

L (Cq)rztl r)eni <2n>
- 2n+1 (n+1)2 n

_ +1 (2n+2)(2n+1)
= —oniT n(n—i—l)?; (2n —1)an

= —2(2n—1)a,

2) Pour tout entier n € N, a,, # 0, et pour tout x € R avec = # 0,

+1 2(2n — 1
Gl IR
n+1 n—-+o0o

12"

anx™

Donc, par le critére de D’Alembert, la série numérique E anx”
neN

: o 1
e converge absolument si 4|z| < 1, ¢’est-a-dire si |z| < T donc R > i

. . : o 1
e ct diverge grossiérement si 4|z| > 1, c’est-a-dire si |z| > 7 donc R < 1.

Donc

1
R=-|
4

Puis, la fonction f est la somme d’une série entiére de rayon R, donc est de classe C*° sur |—R, R, et sur cet
intervalle on peut dériver terme a terme. Donc pour tout « € R avec |z| < R = % on a

fl(x) = i(n + Dapp12"™ = i —2(2n — Dayz™ = 2f(x) — 4i na,x" = 2f(x) — da f' ().
n=0 n=0 n=0

Donc la fonction f est solution de 1’équation différentielle

(1+42)y =2y

sur |—R, R].
3) Les solutions de cette équation différentielle sur ]—%, %[ (intervalle sur lequel 1 + 4z ne s’annule pas) sont les
fonctions

1
y:x+— Aexp <21n(1 +4x)> = AV1+4x
pour A € R. Comme f(0) = ap = —1, on en déduit que

flx)=—=V1+4x

9

[

Exercice 18. 1) Soit z € C*.

=
=

pour tout x € ]—

3
P(n) n——+00 o
donc pour n € N grand on a P(n) # 0, et
P(n+1)znt!
| (k1) 2~ Ss — 0<1
P(n)z" n—s+o00 (n + 1)n3 n—+oco N, = n—+oo ’

n!
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P
Donc, par le critére de D’Alembert, la série numérique Z @z” converge pour tout z € C*, donc le rayon R
n!
neN

cherché vérifie R > |z| pour tout z € C*, donc

R =+4o00|
2) On a

I+ X)P=XX-1)(X—-2)+6X(X —-1)+7X +1,

donc

‘azl, b=06, c:7etd:1‘

(on résout le systéme obtenu en développant a X (X —1)(X —2)+bX (X —1)+cX +d et en identifiant les coefficients
avec ceux de P).
3) Pour tout z € C,

iP(n)Zn in(n—1)(n—2)—|—6n(n—1)—|—7n—|—12n

n! n!
n=0 n=0

= 0+0+0+Z )z +6<O+O+Z i >+7<0+Z >—|—Zz

(sous réserve de convergence de ces séries)

s Z q+1 X _n
_ Z = +62 . : +nz;)';,

k=n—3
p=n—2 p=0
q=n—1

q=0

(23 +622 4+ 72+ 1)ez

car on reconnait des séries exponentielles (aprés changement d’indice), donc convergentes.
4) Pour tout k& € N*, posons
Ne=X(X-1)...( X —k+1),

et No = 1.

Soit p € N tel que P € Cp[X]. Comme pour tout k € N, deg(Ny) = k, la famille (Ng)ie[op) est une base de Cp,[X]
(famille échelonnée en degré, donc libre, et de cardinal p+ 1 = dim (C,[X])), donc il existe (ao, ..., ap) € CPT! tel
que

p
P = Zaka.
k=0

Or, pour tout k£ € N, pour tout n € N,

Ni(n) B {(n—lk)' sin>k

. b
n! 0 sin<k
donc
0o p 00 p o] p o] itk p
_ 1 n _ Z]+ _ k _z
i ax A=Y k) 2= > m )y =D ade
n! n! (n—Fk)!" j=n—k J!
n=0 k=0  n=0 k=0 n=k k=0  j=0 k=0

et la série initiale converge, comme combinaison linéaire de séries convergentes (séries exponentielles). Donc en

posant
P
CQ:: zz:ak}(ka
k=0

on a bien le résultat, et de plus deg(Q) = p = deg(P) (car a, # 0, car N, est le seul polynoéme de degré au moins p
parmi les Ny pour k € [0, p], et que P est de degré p).
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Exercice 19. e Remarquons que la fonction

In(1+1¢)
t

t+—

se prolonge en une fonction f continue sur le segment [0, 1] (en posant f(0) = 1), donc l'intégrale a du sens (elle
converge).
e Pour t €]0, 1], le DSE de In donne

et cette formule reste valable pour ¢ = 0 (avec le prolongement).

Or, la série entiére
e
(=1)
= kE+1
converge pour tout ¢ € [0,1[, donc est de rayon au moins 1, donc par le cours, converge normalement (donc

uniformément) sur [0, a] pour tout a € [0, 1].

Remarque. On le retrouve rapidement, car si ¢ € [0, a], pour tout k € N,

<a",

L th § ok
k+1|~ k+1

-1

et que la série numérique E a® converge (série géométrique de raison a avec a €] — 1, 1]).
keN

e Comme de plus, pour tout k € N, la fonction

poth
k+1

t— (—1)

est continue sur [0, 1], donc sur [0, a] pour tout a € [0, 1], le théoréme d’intégration terme & terme sur un segment
s’applique, et donne : pour tout a € [0, 1],

“In(l1+¢t),  [° _ RS AR o VN
/0 tdt_/o f(t)dt_kz/o( D=2 1)k(l<:+1)2'

=0 k=0

e Puis, pour tout k& € N, pour tout a € [0, 1],

ak+1 1
(—1)* < :
(k+1)2 (k+1)2
donc si on note 1
a
ca€l0,1] - (—=1)f——,
on a
Filloo < 7
Moo = (3 1)2
Or, la série numérique
1 1
% (k +1)2 p=k+1 ; p?

converge (Riemann, 2 > 1), donc par critére de comparaison des séries & termes positifs, la série numérique
S fille converge.

keN

Donc la série de fonctions Z fr converge normalement sur [0, 1].

keN
De plus, pour tout k € N, la fonction fj est continue sur [0, 1] (car polynomiale).
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Donc le théoréme de continuité des séries de fonctions s’applique, et donne que la fonction

o
>
k=0
est continue sur [0, 1]. En particulier,
0 +1 e e’ 0 ) 1 2
a) — 1) = -1 =
S WITIE S WATE Dl s
e En effet,
2N N N-1 N N-1
1 1 1 1 1 1 1 1
22 = 2 omt X at Rt @i i T @
n=1 1<n<2N 1<n<2N k=1 k=0 k=1 k=0
\/—/2 n=2k pair n=2k+1 impair \r—;
N~>—+)oo7r6 N:{»}oo%
donc
| szl 1 2 1 y 2 2
im — ==X — = —
N—+o0 (2k+1) 6 4 6 8
Puis
2N (_1)n+1 B (_1)n+1 (_1)n+1 - N 1 N-1 1 - 1 N 1 N-1 1
D D AL Dl i) DY s A Dy A W DR D oy
n=1 1<n<2N 1<n<2N k=1 k=0 k=1 k=0
n=2k pair n=2k-+1 impair S——
) <2
N—H—ooT N:goo?
donc
i B i (_l)nJrl _ 1 y 71_2 N 7T2 B 7r2
P k+1 w14~ om0 476 8 12

e Or, la fonction f est continue sur [0, 1], donc

'In(1 +¢ ! a aln(l+¢ o k1 2
/ D(Jr)dt:/ f(t)dt = lim/ f(t)dt = lim 1+ 4~ i [ L
0 t 0 a—1 Jo a—1 Jq t a—1 P (k + 1)2 12

Remarque. On a fait ainsi car on n’a pas convergence normale de la série de fonctions

t
> (-1
— E+1
sur [0,1] (car (_1)kktTIf1 ‘OO 0] = k%_l est le terme d’une série divergente).

Cependant, grace au critére des séries alternées, on peut montrer la convergence uniforme sur [0, 1], ce qui nous
autorise directement & intervertir intégrale sur [0, 1] et série et évite de passer par l'intégrale sur [0, a]. Mais je
trouve cette démonstration intéressante (plein d’idées utiles 1a dedans...).

Exercice 20. 1a) Pour tout entier n € N,

bn+2 —bp = apy3 — (py2 — Qi1+ ap =0

d’aprés la relation vérifiée par (a,).
Montrons ensuite la relation demandée par récurrence sur n € N*.

Initialisation : pour n =1,
1-1

—4+Zbk:—4—|—b0:—4+a1—a0:a1
k=0

car ag = —4, donc l'initialisation est vraie.
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n—1
Hérédité : soit n € N*, supposons a, = —4 + Z br. Alors
k=0
(n+1)-1 n—1
—4+ Z bk:_4+bn+zbk:an+bn:an+la
k=0 k=0

d’ou 'hérédité.
Conclusion : on a bien, pour tout n € N*,

n—1
ap = —4+ Z bg.
k=0

Remarque. [’égalité reste vraie pour n = 0, si on prend comme convention qu'une somme vide vaut 0.
1b) Par récurrence directe (ou en remarquant que (bap)nen €t (ban+1)nen sont des suites géométriques de raison 1),
bzn:bozal—a0:6 et b2n+1:b1:a2—a1:2

pour tout entier n € N.
Par conséquent, pour tout entier n € N, en distinguant les indices pairs et impairs dans la somme,

n—1 n—1 n—1

n
Qo = =4+ bop+ ) bops1 = —4+6n+2n = et a1 = —4+Y bopt ) bapr = —4+6(n+1)+2n -

k=0 k=0 k=0 k=0

2a) On le montre par récurrence triple sur n € N.
Initialisation : D’aprés les valeurs données pour ag, a1, ag, c’est vrai aurang n =0, 1 et 2 :

lag| < 2% = 4, a1 <22 =8 et lag| < 2% = 16.
érédité : puis, soit n € N. 51 |ay,| < , an+1] < et |apg2| < , alors par imégalité triangulaire,
H, ,d.t, . . N S <27’l+2 + <2n+3 + <27’L+4 1 . 2 1 2~ . 1 .
|ant3] = |anso + ang1 — an| < |ango| + |ani1] +lan| < 27 42043 4 ont2 — gnt2(4 4 9 1) < onF2 g = o2

d’ou I’hérédite.
Conclusion : par récurrence triple, que, pour tout n € N,

’ an| S 2n+2.
2b) Grace a la question précédente, la suite numérique (@

o )n cn est bornée (en valeur absolue est majorée par 4),
donc le rayon R vérifie

R >

| =

Autre rédaction possible : comme |a,| < 2""2 pour tout entier n € N, le rayon R de la série entiére Z anz"”

neN
est supérieur ou égal a celui de

D ot =4y (22)",

neN neN

or cette derniére série converge si (et seulement si) |2z| < 1, donc son rayon est au moins (en fait égal a) 1, donc

R >

N =

2c) Pour tout réel z € R,
(z+D(z—-1)2=23—2® —z+1,
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donc pour tout z €] — p, pl,

(x+1)(x—1)28(x) = (m3—az2—x+1)§:akxk
k=0

(e} [ee] o [e.e]
= Z akmk+3 — Z akmk+2 - Z akka + Z akmk
k=0 k=0 k=0 k=0

o o D D
T g ap—gxP — g Ap_ox" — g ag—1x7 + E apx”
Pz =3 n—2 =1 k=0

n=k+2
q=k+1
o0
= ao+ (a1 —ag)z + (a2 — a1 — ag)z® + Z(ak_g — ag—o — ap_1 + ag)z*
k=3

o
= ao+ (a1 —apz) + (ag — a1 —ag)a? + Y 0

k=3
=  —4+ 6z + 622
En réduisant au méme dénominateur, on obtient (pour z # 1 et x # —1) :
o b 4 _(a+ 2?4+ (b—20)z+ (b—a+c)
r—1 (z—-12 x+1 (x+1)(z—1)2
a+c=6
en identifiant, on veut < b — 2c =6 , Soit
b—a+c=-4
la=7b=4, c=—1|
2d) On utilise ensuite que, pour tout = €] — 1, 1],
1 o0 o [e.e]
_ n _ n i
—=->_" (33—1 Z”f” P=D (D" et => (-
n=0 n=0 n=0

(en reconnaissant des séries géométriques de raison = et —z, et géométrique dérivée de raison x, qui convergent
pour z €] — 1, 1]).
On a alors, pour tout = €] — p, p|,

(e 9]

:—7Zx +4Zn+1 Z Z — T4+ 4(n+1) - (~=1)")a™

n=0 =

Ceci étant valable sur |—p, p[ au moins (intervalle non trivial, puisque p > 0, contenant 0), par unicité des coeffi-
cients, alors pour tout entier n € N,

lan = -T+4(n+1) - (-1)"}

Exercice 21. Soit
In(1+1)

t )
la fonction g est définie et continue sur | — 1, +00[\{0} par quotient de fonctions continues, dont celle du déno-
minateur qui ne s’annule pas sur cet ensemble, la fonction g se prolonge par continuité en 0 en posant g(0) = 1

g:t—

car

In(1+1t) Kol t, donc g(t) P L.
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La fonction g est alors continue sur U'intervalle | — 1, +o0[, et 0 €] — 1, +o0[, donc le théoréeme fondamental de
P’analyse donne que la fonction

1
frxm /0 g(t)dt,

est I'unique primitive de g sur | — 1, +o0[ qui s’annule en 0.
Donc la fonction f est définie et dérivable (au moins) sur | — 1, +00].

Remarque. On peut se demander si la fonction f existe en —1, autrement dit si 'intégrale

-1
I / In(1+1¢) dat
0 t

converge. Or, par le théoréme de changement de variable, avec le changement affine u = 1 + ¢, I'intégrale I a la
méme nature (et si convergence, méme valeur) que l'intégrale

0
1
/ n(u>du.
1 14w

Or, la fonction

est continue sur ]0, 1] et
In(u)
14+ u u—0

In(u),

et on sait que la fonction In est intégrable sur |0, 1], donc il y a convergence de l'intégrale, donc en fait la fonction f
est définie sur [—1, 4+oo[!

In(1+4¢)
t

Par contre, pour z < —1, f(z) n’existe pas, car la fonction ¢ — n’est pas définie sur |z, —1!

Puis, on peut développer la fonction ¢ — In(1 + ¢) en série entiére sur |—1,1[ (cours), ce qui donne, pour tout

t €] —1,1[\{0}, 1 (1)t — (=1 p
g(t)zt;nt " 1;p+1t '

p=n—

Cette égalité reste vraie en ¢ = 0 (avec le prolongement de g que l'on a fait avant), et donc la fonction g est
développable en série entiére sur |—1, 1[ (puisque c’est la somme d’une série entiére sur |—1, 1[).

Donc la fonction f aussi, en tant que primitive d’une fonction DSE sur |—1,1[, et la fonction f a méme rayon
que f' = g, donc 1 (application directe du critére de D’Alembert).

Remarque. De plus, on peut primitiver terme a terme : pour tout = €] — 1, 1],
oo oo
D" pn (=DP o
x) = f(0)+ Pt = Pt
F) = {0+ e = 2

2
~~ =+l

On peut méme montrer (mais 1a, c’est une application des théorémes de continuité des séries de fonctions) que
I’égalité reste vraie si x = +£1...

Exercice 22. 1) On sait (par le cours)

2 3

t

¢ 3
—1=t+—-—4+—=+ .
c t 2 6 tfio(t )

Puis, ef — 1 ﬁ 0, donc par composition de DL,
ﬁ

P =14 (=) 4 g1 G ) o (1)),

Puis,
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Enfin, ; )
t_l — 3 3 t—l — 2 3 3
(" =1)" =t + 0. (%) et (" =1)" =¢>+1 + 0 (%),
donc
f(t)—1+t+ﬁ+ﬁ+1(t2+t3)+1t3+ o (t3) = L +t4+2428 4 o (%)
- 2 6 2 6 10 6 10

Or, la fonction f est de classe C*° sur R (par composition de fonctions de classe C* sur R), donc par la formule

de Taylor-Young, £7(0) #1(0)
b+ 2 + G

f(t) = f(0) + f'(0)

Par unicité du DL, on en déduit

3 +3).
9

fO =1 fOo=1 fO=2 f"0)=5|

0
2) p1 = <0)P0 =po=|1]

1 1
p2 = <O>p0 + <1>p1 =po+p1 =-

2 2 2
p3 = <0>p0 + <1>p1 + <2>p2 = po + 2p1 + p2 :-

Montrons par récurrence forte sur n € N que p, < nl.
Initialisation : pour n = 0,
pp=1<1=0,

donc la proposition est vraie si n = 0.
Heérédité : soit n € N, supposons que pi < k! pour tout k € [0,n]. Alors

k=0 k=0 k=0 k=0
Or, pour tout k € [0,n], (n — k)! > 1, donc ﬁ <1, et donc
n 1 n
kz% Y < kzzo l=n+1,

ce qui donne
Pny1 <nlx (n+1)=(n+1)L
D’ou I’hérédité.
Conclusion : on a bien montré par récurrence sur n que p, < n! pour tout n € N.
3) De la question précédente, alors, pour tout n € N,

o< <

n:

(la positivité est immédiate par récurrence forte aussi), donc la suite numérique

()00 (57)
n!/ nen n! neN

est bornée. Or, par définition,

R =sup {a: € R| la suite (&x”> est bornée} ,
n! neN
donc R > 1, ce qui assure bien R > 0.
4) La fonction F est la somme d’une série entiére de rayon R, donc est de classe C* sur |—R, R], et sur cet intervalle
on peut dériver terme a terme. Donc pour tout = € |—R, R|,

[e.9]

oo
/ . Pn  n_1 Pn n—1 _ Pn+1 p
F'(z) = —nz" = E -1 1)!33 = e

n=0
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o n

Puis, e* = Z — pour tout réel x € R, donc par produit de Cauchy de séries numériques absolument convergentes
n!
n=0
(les séries entiéres convergent absolument en tout point de lintervalle ouvert de convergence), pour tout =z €
]_Rv R[>

w3 (3 )= 3 (53 (D) -
n=0 \k=0 n=0 k=0
En utilisant la définition de p,4+1 pour n € N, on en déduit

o0

x _ Pn+1 n __ /
e*F(x) = T = F'(x)

n=0

pour tout = € |-R, R|.

La fonction F' est donc solution sur |—R, R[ de I’équation différentielle linéaire
y' =e"y.

Comme la fonction = — e est continue sur l'intervalle | — R, R[ et admet x — e® comme primitive sur cet intervalle,
on sait résoudre directement cette équation différentielle, et donc il existe A € R tel que

F:x€]—R,R[— X .
Puis, en évaluant en 0,
Ae = F(0) =pg =1, donc A=e1,

et donc
F:x€]-R,R[— ¢ ! = f(x).
Donc, pour tout entier n € N,

FO(0) = f(0)

(ici on utilise que R > 0). Or, comme la fonction F est la somme d’une série entiére, on sait calculer les coefficients
de la série entiére en fonction des dérivées successives de F' en 0 (une fonction DSE en 0 est la somme de sa série
de Taylor) : pour tout entier n € N,

pn _ FM(0)

n - onl
Ceci donne bien

DPn = f(n) (0)

pour tout entier n € N.
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