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Un peu de SQL



Exercice - CCINP 2024 (modifié)

Une base de données contient des informations sur un jeu, sur chaque joueur de ce jeu, ainsi
que les parties effectuées entre les joueurs.

Table Joueur :

idJoueur nom prenom niveau naissance
… … … … …
18571 Martin Jean 2048 23/02/1958
18572 Dupond Marie 2103 03/01/1972
18573 Develion Théo 1857 05/10/2004
… … … … …

Table Partie :

id_Partie id_joueur1 id_joueur2 resultat jour jeu
1 1547 1568 0.5 08/01/2001 'egai...
2 1204 3 0 12/07/1998 'egaj...
3 4 2 1 15/07/2018 'egbi...
… … … … … …
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Exercice - CCINP 2024 (modifié)

Le schéma de la base de donnée est donné par :

Joueur(id_Joueur int, nom text, prenom text, niveau int, naissance date)
Partie(id_Partie int, id_joueur1 int, id_joueur2 int, resultat real, jour
date, jeu text)

Questions :
1. Écrire une requête SQL permettant d’extraire les identifiants des joueurs ayant un

niveau strictement supérieur au score 1900.
2. Écrire une requête SQL permettant d’afficher le nom et le prénom des 3 joueurs ayant

le niveau le plus élevé.
3. Écrire une requête SQL permettant de déterminer les joueurs ayant plus de cent

victoires lorsqu’ils commencent la partie. La requête doit renvoyer le nom, le prénom
et le nombre de victoires de ces joueurs classés par ordre décroissant du nombre de
victoires.
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Exercice - CCINP 2024 (modifié)

1. Écrire une requête SQL permettant d’extraire les identifiants des joueurs ayant un
niveau strictement supérieur au score 1900.

SELECT id_Joueur FROM Joueur WHERE niveau > 1900;

2. Écrire une requête SQL permettant d’afficher le nom et le prénom des 3 joueurs ayant
le niveau le plus élevé.

SELECT nom, prenom FROM Joueur LIMIT 3 ORDER BY niveau DESC;
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Exercice - CCINP 2024 (modifié)

3. Écrire une requête SQL permettant de déterminer les joueurs ayant plus de cent
victoires lorsqu’ils commencent la partie. La requête doit renvoyer le nom, le prénom
et le nombre de victoires de ces joueurs classés par ordre décroissant du nombre de
victoires.

SELECT nom, prenom, COUNT(*) AS nb_victoires
FROM Joueur JOIN Partie ON id_Joueur = id_joueur1
GROUP BY id_Joueur
HAVING nb_victoires >= 100;
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Exercice - CCINP 2024 (modifié) - si le temps le permet

Remarque : l’opérateur LIKE est utilisé pour comparer des chaînes de caractères dans
la clause WHERE des requêtes SQL. Ce mot-clé permet d’effectuer une recherche sur un
modèle particulier. Il est par exemple possible de rechercher les enregistrements dont
la valeur d’une colonne commence par telle ou telle lettre. Le caractère _ (underscore)
représente n’importe quel caractère, mais un seul caractère uniquement alors que le
caractère pourcentage % peut être remplacé par un nombre quelconque (et possiblement
nul) de caractères.

Par exemple parmi une recherche dans les communes de France, nom LIKE ’_ff%f%’
ne revoie que Offendorf alors que remplacer le _ par un % renvoie Pfaffenhoffen et
Staffelfelden en plus de Offendorf.

4. Écrire une requête SQL permettant de déterminer le pourcentage de victoires du
joueur1 pour les parties où la case d’indice 0 a été jouée en premier.
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Exercice - CCINP 2024 (modifié) - si le temps le permet

Remarque : l’opérateur LIKE est utilisé pour comparer des chaînes de caractères dans
la clause WHERE des requêtes SQL. Ce mot-clé permet d’effectuer une recherche sur un
modèle particulier. Il est par exemple possible de rechercher les enregistrements dont
la valeur d’une colonne commence par telle ou telle lettre. Le caractère _ (underscore)
représente n’importe quel caractère, mais un seul caractère uniquement alors que le
caractère pourcentage % peut être remplacé par un nombre quelconque (et possiblement
nul) de caractères.

Par exemple parmi une recherche dans les communes de France, nom LIKE ’_ff%f%’
ne revoie que Offendorf alors que remplacer le _ par un % renvoie Pfaffenhoffen et
Staffelfelden en plus de Offendorf.

4. Écrire une requête SQL permettant de déterminer le pourcentage de victoires du
joueur1 pour les parties où la case d’indice 0 a été jouée en premier.

SELECT COUNT(*) / (SELECT COUNT(*) FROM Partie WHERE jeu LIKE 'a%')
FROM Partie WHERE resultat = 1 AND jeu LIKE 'a%';
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IA, ML…



Intelligence artificielle (IA)

Domaine de recherche, toujours en cours de définition

• « construction de programmes informatiques s’adonnant à des tâches qui […] demandent
des processus mentaux de haut niveau tels que : l’apprentissage perceptuel,
l’organisation de la mémoire et le raisonnement critique » (Marvin Lee Minsky)

• « théorie et développement de systèmes informatiques capables d’accomplir des tâches
requérant normalement l’intelligence humaine, telles que la perception visuelle,
la reconnaissance de la parole, la prise de décision, et la traduction entre langues.
» (Oxford English Dictionary)
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Apprentissage automatique (ML)

Idée :

1. Partir d’un ensemble de données (les données d’entraînement) ;
2. en tirer un modèle permettant d’effectuer des prédictions ou des décisions.

Applications actuelles : Perception artificielle + aide à la décision

• Médecine
• Filtrage d’emails
• Reconnaissance de la parole
• Agriculture
• Vision artificielle
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Apprentissage supervisé / non supervisé

• Supervisé : les données d’entrainement sont étiquetées (input et output)

Exemple : reconnaissance d’images, analyse de sentiments, génération d’images avec
un prompt, détection d’intrusions, etc.

• Non supervisé : notamment data mining, les données ne contiennent que l’input

Exemple : classification automatique, LLM (dans une certaine mesure…), etc.
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Plus précisément

• Données : vecteurs dans ℝ𝑑 (ou [0, 1]𝑑).
• Objectif : structurer les données d’entrainement (par exemple, par clustering) et/ou

prédire ou mimer, en l’automatisant, le comportement humain sur d’autres données
similaires.
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Classification supervisée :
l’algorithme 𝑘-NN



Classification

Le but : prédire la classe d’un échantillon à partir d’exemples connus.

Exemple :

• on a des photos de chats et chiens, chaque photo étant étiquetée « chat » ou « chien » ;
• on veut entrainer l’ordinateur à distinguer la photo d’un chat de celle d’un chien.

L’humain le fait très bien (il l’a appris étant petit), mais on souhaite automatiser la tâche.
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Modélisation

Les données étiquetées sont des éléments de ℝ𝑑 × ⟦1, 𝑟⟧ où 𝑟 est le nombre d’étiquettes
différentes.

Si (𝑋, 𝑌 ) est une donnée étiquetée,

• 𝑋 est la valeur d’entrée,
• 𝑌  est la valeur de sortie : l’étiquette associée à 𝑋.

On souhaite

• en s’appuyant sur 𝑁  données d’entrainement (𝑋𝑛, 𝑌𝑛),
• construire une application 𝑓 : ℝ𝑑 → ⟦1, 𝑟⟧ telle que, si (𝑋𝑛, 𝑌𝑛) est une donnée déjà

étiquetée, alors 𝑓(𝑋𝑛) = 𝑌𝑛.
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L’algorithme 𝑘-NN

Si 𝑋 ∈ ℝ𝑑, pour calculer 𝑓(𝑋) :

1. on fixe un entier strictement positif 𝑘 ;
2. on cherche les 𝑘 plus proches voisins de 𝑋 parmi les données d’entrainement (pour

la distance euclidienne dans ℝ𝑑) ;
3. parmi ces voisins, on cherche une étiquette de fréquence maximale ;
4. on définit 𝑓(𝑋) comme étant cette étiquette.
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Exemple (𝑑 = 2, 𝑟 = 2)

Données d’entrainement
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Exemple (𝑑 = 2, 𝑟 = 2)

Données d’entrainement, et une donnée à classifier
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Exemple (𝑑 = 𝑟 = 2, 𝑘 = 3)
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Exemple (𝑑 = 𝑟 = 2, 𝑘 = 5)
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Exercice

On suppose que les points d’entrées de ℝ𝑑 sont représentés par des listes de 𝑑 flottants.
1. Écrire une fonction dist2(p1: list, p2: list) -> float qui renvoie le carré de la

distance entre p1 et p2.
2. Écrire une fonction dist_min(p: list, data: list) -> int qui renvoie l’indice du

point le plus proche de p dans la liste data.
3. Adapter la fonction précédente pour qu’elle renvoie les deux points les plus proches.
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    tot = 0.
    for i in range(len(p1)):
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        tot += delta*delta
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Exercice

On suppose que les points d’entrées de ℝ𝑑 sont représentés par des listes de 𝑑 flottants.
1. Écrire une fonction dist2(p1: list, p2: list) -> float qui renvoie le carré de la

distance entre p1 et p2.
2. Écrire une fonction dist_min(p: list, data: list) -> int qui renvoie l’indice du

point le plus proche de p dans la liste data.

def dist_min(p: list, data: list) -> int:
    i_min = 0
    d2_min = dist2(p, data[i_min])
    for i in range(1, len(data)):
        d2 = dist2(p, data[i])
        if d2 < d2_min:
            d2_min = d2
            i_min = i
    return i_min

3. Adapter la fonction précédente pour qu’elle renvoie les deux points les plus proches.
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Exercice

def dist_min2(p: list, data: list) -> (int,int):
    i_min1 = 0
    i_min2 = 1
    d2_min1 = dist2(p, data[i_min1])
    d2_min2 = dist2(p, data[i_min2])
    for i in range(1, len(data)):
        d2 = dist2(p, data[i])
        if d2 < d2_min1:
            d2_min2 = d2_min1
            i_min2 = i_min1
            d2_min1 = d2
            i_min1 = i
        elif d2 < d2_min2:
            d2_min2 = d2
            i_min2 = i
    return (i_min1, i_min2)
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Paramétrage et évaluation de la
méthode



Question du choix de 𝑘

Le choix de la valeur de 𝑘 est un problème difficile :

• Pour 𝑘 = 1, on sélectionne la classe du plus proche voisin.
(Diagramme de Voronoï, …)

• Plus 𝑘 est grand,
‣ plus le modèle est robuste,
‣ moins les frontières entre les classes sont nettes,
‣ plus l’algorithme est lent.

• Si 𝑟 = 2 (deux classes), il peut être judicieux de se limiter aux paramètres 𝑘 impairs
pour éviter les ballottages !
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Données-test

Pour déterminer une valeur de 𝑘 correcte, on peut faire ainsi :

1. on coupe les données d’entrainement en deux moitiés aléatoires : moitié A (qui vont
servir à construire l’algorithme) et moitié B (qui vont servir à évaluer sa qualité) ;

2. on conserve les étiquettes de A et on cache celles de B ;
3. pour différentes valeurs de 𝑘, on effectue une mesure de la qualité de l’algorithme 𝑘-

NN, construit à l’aide des données de A, et testé sur les données de B ;
4. on conserve la valeur de 𝑘 qui maximise cette qualité.

Par exemple, la qualité associée à une valeur de 𝑘 peut être mesurée par la proportion
d’étiquettes de B correctement retrouvées par l’algorithme à partir des données de A.
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Exemple

Données d’entrainement : 400 points au hasard dans le carré [−1, 1]2, en rouge ceux qui
sont dans le disque unité, en bleu les autres.

On garde 50% de ces points en données-test, et on calcule le nombre de bonnes étiquettes
pour 𝑘 variant de 1 à 10.

25 / 31



Exemple

En abscisse : 𝑘, en ordonnée : la proportion
d’étiquettes correctement reconnues.
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Matrice de confusion

Pour évaluer plus finement la qualité d’un algorithme 𝑘-NN, on peut construire une
matrice, dite matrice de confusion, dont le coefficient (𝑖, 𝑗) est le nombre de données-
test ayant l’étiquette 𝑖 qui ont été classées par l’algorithme 𝑘-NN sous l’étiquette 𝑗.
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Exemple pour 𝑘 = 4

Avec le même exemple que précédemment (𝑘 = 4, étiquette 1 : bleu, étiquette 2 : rouge),
on obtient par exemple

(28
3

6
163)

ce que l’on interprète comme suit : parmi les données-test,

• 28 points bleus ont bien été détectés comme bleus,
• 6 points bleus ont été perçus comme rouges,
• 3 points rouges ont été perçus comme bleus,
• 163 points rouges ont bien été détectés comme rouges.
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Exemples pour plusieurs valeurs de 𝑘

Voici les différentes matrices de confusion que l’on peut avoir sur l’exemple, en faisant
varier 𝑘 :

(28
4

6
162)(28

4
6

162)(25
2

9
164)(28

3
6

163)(23
1

11
165)

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

(24
3

10
163)(23

4
11
162)(24

3
10
163)(19

2
15
164)(21

3
13
163)

𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10
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Résumé

La matrice de confusion peut aider à choisir la meilleure valeur de 𝑘. Elle est plus précise
que le seul pourcentage de bonnes étiquettes (dans le cas d’une étiquette du type vrai-
faux, elle apporte la distinction vrai-positif, faux-positif, vrai-négatif et faux-négatif).
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Exercice

On suppose qu’on a un ensemble de données test sous la forme de liste data de couples
de la forme (p,label). On suppose que les étiquettes valent 0 ou 1.

On suppose également que l’on dispose d’une fonction eval(p: list) -> int qui associe
à un point p une étiquette selon l’algorithme 𝑘-NN.

Écrire une fonction mat_confusion(data: list) qui renvoie la matrice numpy de confu-
sion associée.
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Exercice

On suppose qu’on a un ensemble de données test sous la forme de liste data de couples
de la forme (p,label). On suppose que les étiquettes valent 0 ou 1.

On suppose également que l’on dispose d’une fonction eval(p: list) -> int qui associe
à un point p une étiquette selon l’algorithme 𝑘-NN.

Écrire une fonction mat_confusion(data: list) qui renvoie la matrice numpy de confu-
sion associée.

import numpy as np
def mat_confusion(data: list):
    mat = np.zeros((2,2))
    for (p, label) in data:
        mat[(label, eval(p))] += 1
    return mat
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