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Un peu de Python



Exercice - Mines Ponts 2024

1. Écrire une fonction nommée nbCaracteres(c:str, s:str) -> int qui prend comme arguments un
caractère c, une chaîne s et qui renvoie le nombre d’occurences (c’est-à-dire le nombre d’apparitions) de c
dans s. La fonction doit avoir une complexité linéaire en n, la longueur de la chaîne s.

2. Pour déterminer la liste des caractères utilisés à l’intérieur d’une chaîne s on utilise la fonction définie ci-
dessous :

def listeCaracteres(s: str):
    listeCar = []
    n = len(s)
    for i in range(n):
        c = s[i]
        if not(c in listeCar):
            listeCar.append(c)
    return listeCar

Que renvoie cette fonction lorsque s='abaabaca' ? Expliquer succinctement le principe de fonctionnement
de cette fonction.

3. En fonction de la longueur n de la chaîne et du nombre k de caractères distincts dans celle-ci, déterminer la
complexité asymptotique dans le pire des cas de la fonction de la question précédente. Par exemple pour s
= 'abaabaca', on a 𝑛 = 8 et 𝑘 = 3.
On négligera la complexité des append mais pas celle des tests d’appertenance de la forme i in L.
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Présentation du problème



Introduction

Une équipe scientifique s’est rendue en zone 51 pour étudier les restes de 25 martiens
retrouvés dans l’épave d’un ovni. La question se pose de savoir s’il y a plusieurs sous-
espèces de martiens.
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Introduction

Une équipe scientifique s’est rendue en zone 51 pour étudier les restes de 25 martiens
retrouvés dans l’épave d’un ovni. La question se pose de savoir s’il y a plusieurs sous-
espèces de martiens.

L’équipe n’a pu faire que deux mesures morphologiques communes à chaque spécimen :
la longueur 𝑥 de l’antenne droite et la longueur 𝑦 du fémur gauche.
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Ainsi, à chaque spécimen on peut associer un point (𝑥, 𝑦) du plan :
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On a ainsi des données brutes : on ne dispose plus de données d’entrainement.

→ De quel type d’apprentissage s’agit-il ?
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Objectif

On cherche à partitionner les données : on veut regrouper les données proches entre
elles. On parle de clustering.

Il s’agit donc d’attribuer une classe (ou cluster) à chaque donnée, puis d’interpréter…
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Modélisation ; partitionnement

• entrées :
‣ des données 𝑥1,…, 𝑥𝑛 dans ℝ𝑑, et
‣ le nombre 𝑘 de clusters (c’est un paramètre que l’on choisit) ;

• sortie :
‣ une partition 𝐶1,…,𝐶𝑘 de ⟦1, 𝑛⟧ en classes, 𝐶𝑗 étant la liste des indices du 𝑗-ième

cluster.
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Exemple pour différentes valeurs de 𝑘
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La condition d’optimisation

Qu’est-ce qu’une bonne partition ?

On veut que la partition (𝐶1,…,𝐶𝑘) de ⟦1, 𝑛⟧ minimise la somme des moments
d’inertie

∑
𝑘

𝑗=1
∑
𝑖∈𝐶𝑗

‖𝑥𝑖 − 𝜇𝑗‖
2,

où 𝜇𝑗 est l’isobarycentre du cluster numéro 𝑗 :

𝜇𝑗 =
1

|𝐶𝑗|
∑
𝑖∈𝐶𝑗

𝑥𝑖.

10 / 26



Remarques

• La recherche de la partition optimale est un problème NP-difficile dans le cas général.
• Ici 𝑘 est fixé. Si 𝑘 est quelconque, la partition optimale est la partition triviale avec

autant de clusters que de points, ce qui est idiot.
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Illustration
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Illustration
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Algorithme des 𝑘-moyennes



Généralités

Il s’agit d’un algorithme

• itératif,
• basé sur une stratégie gloutonne,
• donnant une solution approchée.
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Description de l’algorithme

1. Initialisation : on choisit 𝑘 points 𝑀1,…,𝑀𝑘 aléatoirement parmi les données. C’est
une première approximation des centres des clusters.

2. Itération : tant que les centres 𝑀𝑗 varient :
1. on crée les clusters : chaque donnée est affectée au centre 𝑀𝑗 le plus proche ;
2. on met à jour les 𝑀𝑗 : chaque 𝑀𝑗 devient l’isobarycentre (= moyenne) du cluster

que l’on vient de créer.
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Illustration
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Illustration
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Illustration
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Exercice

1. Écrire une fonction barycentre(C: list) -> list qui calcule le barycentre de la
liste des points passés en paramètre.

2. On suppose qu’il existe une fonction classification(p: list, M: list) -> int
renvoie le numéro du cluster pour p à partir des centres M.

Construire une fonction clusters(data: list, M: list) -> list qui prend en
paramètre la liste de points de données, la liste des centres de clusters et renvoient la
liste des clusters associés sous forme de liste de listes de points.
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Commentaires : terminaison et correction

• On peut montrer que chaque itération fait diminuer la somme des moments d’inertie.
• Il se peut qu’un cluster devienne vide. Auquel cas le comportement de l’algorithme est

indéfini et il faut réfléchir…
• Comme il n’y a qu’un nombre fini de partitions possibles, l’algorithme termine néces-

sairement.
• La solution obtenue dépend du tirage au sort fait à l’initialisation ! (Minimum local pas

nécessairement global…)
→ On peut envisager de le lancer sur plusieurs points de départ aléatoires et de
conserver la meilleure partition ainsi obtenue.
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Commentaires : temps de calcul

• Si on attend que les centres soient vraiment immobiles, le temps de calcul risque d’être
exponentiel en le nombre de points.
→ On peut envisager de s’arrêter quand les centres sont « suffisamment immobiles »
pour un sens à choisir.
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Commentaires : dépendance à la géométrie des données

• La méthode est satisfaisante si les données sont regroupées en paquets « ronds », mais
elle l’est moins si, par exemple, les données sont groupées en paquets alignés.

• Les clusters obtenus ont tendance à être convexes, ce qui n’est pas forcément souhai-
table.
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Paramétrage de la méthode



Idées

Choisir 𝑘 est un problème difficile. On peut envisager de tracer la somme des moments
d’inertie en fonction de 𝑘 et de conserver la plus grande valeur de 𝑘 qui a apporté une
diminution significative.
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Exercice

Écrire une fonction moment_tot(clusters: list) -> float qui prend en paramètre
une liste de clusters et renvoie la somme des moments d’inertie.

On pourra utiliser la fonction barycentre.
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