Apprentissage non-superviseé
ITC PC

M. Charles



Un peu de Python



Exercice - Mines Ponts 2024

1. Ecrire une fonction nommée nbCaracteres(c:str, s:str) -> int qui prend comme arguments un
caractere c, une chaine s et qui renvoie le nombre d’occurences (c’est-a-dire le nombre d’apparitions) de c
dans s. La fonction doit avoir une complexité linéaire en n, la longueur de la chaine s.

2. Pour déterminer la liste des caractéres utilisés a 'intérieur d’une chaine s on utilise la fonction définie ci-
dessous :

def listeCaracteres(s: str):
listeCar = []

n = len(s)
for i in range(n):
c = s[i]

if not(c in listeCar):
listeCar.append(c)
return listeCar

Que renvoie cette fonction lorsque s='abaabaca' ? Expliquer succinctement le principe de fonctionnement
de cette fonction.

3. En fonction de la longueur n de la chaine et du nombre k de caracteres distincts dans celle-ci, déterminer la
complexité asymptotique dans le pire des cas de la fonction de la question précédente. Par exemple pour s
= 'abaabaca',onan =8et k = 3.
On négligera la complexité des append mais pas celle des tests d’appertenance de la forme i in L.

2/26



Présentation du probleme



Introduction

Une équipe scientifique s’est rendue en zone 51 pour étudier les restes de 25 martiens
retrouvés dans 1'épave d'un ovni. La question se pose de savoir s’il y a plusieurs sous-
especes de martiens.

4/ 26



Introduction

Une équipe scientifique s’est rendue en zone 51 pour étudier les restes de 25 martiens
retrouvés dans 1'épave d'un ovni. La question se pose de savoir s’il y a plusieurs sous-
especes de martiens.

L’équipe n’a pu faire que deux mesures morphologiques communes a chaque spécimen :
la longueur x de 'antenne droite et la longueur y du fémur gauche.

4/ 26



Ainsi, a chaque spécimen on peut associer un point (z,y) du plan :

5/26



On a ainsi des données brutes : on ne dispose plus de données d’entrainement.

— De quel type d’apprentissage s’agit-il ?

6/26



Objectif

On cherche a partitionner les données : on veut regrouper les données proches entre
elles. On parle de clustering.

Il s’agit donc d’attribuer une classe (ou cluster) a chaque donnée, puis d’interpréter...

7/ 26



Mod¢élisation ; partitionnement

- entrées :
» des données x, ..., z, dans R%, et
» le nombre £ de clusters (c’est un paramétre que ’on choisit) ;
e sortie :
> une partition C, ..., Gy, de [1,n] en classes, C; étant la liste des indices du j-ieme
cluster.

8/26



Exemple pour différentes valeurs de k£

9/26



La condition d’optimisation

Qu’est-ce qu’une bonne partition ?

On veut que la partition (C},...,C;) de [1,n] minimise la somme des moments
d’inertie

k
D> Nl =l

j=1i€eC,

ou y; est 'isobarycentre du cluster numéro j :

10/ 26



Remarques

« La recherche de la partition optimale est un probleme NP-difficile dans le cas général.
o Ici k est fixé. Si k est quelconque, la partition optimale est la partition triviale avec
autant de clusters que de points, ce qui est idiot.

11/ 26



[llustration

l ©

12/ 26



[llustration

¥
¥

13/ 26



Algorithme des k-moyennes



Généralités

Il s’agit d’un algorithme

o itératif,
« basé sur une stratégie gloutonne,
 donnant une solution approchée.

15/ 26



Description de I'algorithme

1. Initialisation : on choisit k points M, ..., M, aléatoirement parmi les données. C’est
une premiere approximation des centres des clusters.

2. Itération : tant que les centres M varient :
1. on crée les clusters : chaque donnée est affectée au centre M, le plus proche ;

2. on met a jour les M : chaque M devient I'isobarycentre (= moyenne) du cluster
que 'on vient de créer.

16 / 26



[llustration

l ®

17/ 26



[llustration

18/ 26



[llustration

19/ 26



Exercice

1. Ecrire une fonction barycentre(C: list) -> list qui calcule le barycentre de la
liste des points passés en parametre.

2. On suppose qu’il existe une fonction classification(p: list, M: list) -> int
renvoie le numéro du cluster pour p a partir des centres M.

Construire une fonction clusters(data: list, M: 1list) -> list qui prend en
parametre la liste de points de données, la liste des centres de clusters et renvoient la
liste des clusters associés sous forme de liste de listes de points.

20/ 26



Commentaires : terminaison et correction

« On peut montrer que chaque itération fait diminuer la somme des moments d’inertie.

o Il se peut qu’un cluster devienne vide. Auquel cas le comportement de I’algorithme est
indéfini et il faut réfléchir...

« Comme il n'y a qu'un nombre fini de partitions possibles, I’algorithme termine néces-
sairement.

« La solution obtenue dépend du tirage au sort fait a I'initialisation ! (Minimum local pas
nécessairement global...)
— On peut envisager de le lancer sur plusieurs points de départ aléatoires et de
conserver la meilleure partition ainsi obtenue.

21/ 26



Commentaires : temps de calcul

- Sion attend que les centres soient vraiment immobiles, le temps de calcul risque d’étre
exponentiel en le nombre de points.

— On peut envisager de s’arréter quand les centres sont « suffisamment immobiles »
pour un sens a choisir.

22/ 26



Commentaires : dépendance a la géométrie des données

- La méthode est satisfaisante si les données sont regroupées en paquets « ronds », mais
elle ’est moins si, par exemple, les données sont groupées en paquets alignés.

o Les clusters obtenus ont tendance a étre convexes, ce qui n’est pas forcément souhai-
table.

23/ 26



Paramétrage de la méthode



Choisir k£ est un probleme difficile. On peut envisager de tracer la somme des moments

d’inertie en fonction de k£ et de conserver la plus grande valeur de £ qui a apporté une
diminution significative.

25/ 26



Exercice

Ecrire une fonction moment_tot(clusters: list) -> float qui prend en paramétre
une liste de clusters et renvoie la somme des moments d’inertie.

On pourra utiliser la fonction barycentre.

26/ 26



