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Chapitre 12 - Dérivabilité des fonctions
vectorielles

1 Fonctions vectorielles

1.1 Généralités

Définition

Soit f : I → Rn une fonction. Soit a ∈ I et soit ℓ ∈ Rn.
• On dit que f tend vers ℓ en a et on note f(t) −−−→

t→a
ℓ si ∥f(t)− ℓ∥ −−−→

t→a
0.

• On dit que f est continue en a si f(t) −−−→
t→a

f(a).

• On note o(1) toute quantité qui tend vers 0.
• Soit g : I → Rn. On dit que f = o(g) si f est de la forme ∥g∥o(1).

Remarque : comme Rn est de dimension finie, le choix de la norme n’a pas d’impor-
tance. De plus, on a vu que la convergence pour ∥ · ∥∞ équivaut (en dimension finie) à la
convergence composante à composante.

1.2 Dérivabilité

Définition

Soit f : I → Rn une fonction. Soit a ∈ I.
On dit que f est dérivable en a si le taux d’accroissement f(a+h)−f(a)

h admet une
limite lorsque h → 0.
Dans ce cas, on appelle vecteur dérivé de f en a et on note f ′(a) la quantité limite :

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Remarque : Si f : I → Rn représente la trajectoire d’un mobile dans l’espace, alors f ′(a)
est la vitesse instantanée du mobile à t = a.

Proposition

f est dérivable en a si et suelement f admet un développement limité à l’ordre 1
en a autrement dit s’il existe A ∈ Rn tel que :

f(x) = f(a) + (x− a)A+ ox→a(x− a).

Dans ce cas f ′(a) = A.

Corollaire

Si f est dérivable en a alors f est continue en a.

Remarque : la réciproque est fausse pour les fonctions de R → R. Elle est encore fausse
pour les fonctions de R → Rn.

Définition

Soit f : I → Rn une fonction.
On dit que f est dérivable sur I si f est dérivable en tout a ∈ I.
Dans ce cas, la fonction f ′ : t 7→ f ′(t) est appelée la fonction dérivée de f .

Proposition

Soit f : I → Rn. On pose f(t) = (f1(t), . . . , fn(t)). f1, ..., fn sont donc les applica-
tions coordonnées de f relativement à la base canonique.
f est dérivable en a si et seulement si toutes les applications f1, ..., fn sont déri-
vables en a. Dans ce cas, on a :

f ′(a) =

n∑
i=1

f ′
i(a)ei

où les ei sont les vecteurs de la base canonique.

Remarque : ce théorème justifie beaucoup des calculs faits en physique en mécanique.
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1.3 Opérations sur les dérivées

Proposition : Combinaisons linéaires

Soient f et g de I dans Rn. Si f et g sont dérivables en a alors λf + g l’est et :

(λf + g)′(a) = λf ′(a) + g′(a).

Remarque : cela prouve que l’ensemble des fonctions dérivables de I dans Rn forment
un sous-espace vectoriel de l’ensemble des fonctions de I dans Rn.

Proposition : Composition à droite

Soient f : I → Rn et g : J → I. Soit a ∈ J . Si f est dérivable en g(a) et si g est
dérivable en a alors f ◦ g est dérivable en a et :

(f ◦ g)′(a) = g′(a)f ′ ◦ g(a).

Proposition : Composition à gauche avec une fonction linéaire

Soit f : I → Rn et soit L : Rn → Rp avec L linéaire. Si f est dérivable en a ∈ I
alors L ◦ f est dérivable en a et :

(L ◦ f)′(a) = (L ◦ f ′)(a).

Proposition : Composition avec une fonction bilinéaire

Soient f : I → Rn et g : I → Rp. Soit B : Rn × Rp → Rq avec B bilinéaire. Si f et
g sont dérivables en a ∈ I alors t 7→ B(f(t), g(t)) est dérivable en a.
Notons B(f, g) la fonction composée. On a alors :

(B(f, g))′(a) = B(f ′(a), g(a)) +B(f(a), g′(a)).

Remarque : C’est une généralisation de la formule de dérivation du produit dans R.
Exemple : Calculer la dérivée de t 7→ ∥f(t)∥2.

Proposition : Composition avec une fonction p-linéaire

Soient fi : I → Rn avec i ∈ [[1, p]]. Soit M : (Rn)p → Rq avec B p-linéaire. Si les fi
sont dérivables en a ∈ I alors t 7→ M(f1(t), . . . , fp(t)) est dérivable en a.
Notons M(f1, . . . , fp) la fonction composée. On a alors :

(M(f1, . . . , fp))
′(a) =

p∑
i=1

M(f1(a), . . . , fi−1(a), f
′
i(a), fi+1(a), . . . , fp(a)).

Exemple : dérivée du déterminant.

1.4 Dérivées d’ordre supérieur

Définition

Soit f : I → Rn une fonction.
On dit que f est de classe C0 sur I si elle est continue sur I.
On dit que f est de classe Ck+1 sur I si f est dérivable sur I et f ′ est de classe Ck

sur I.
On dit que f est de classe C+∞ si f est de classe Ck sur I pour tout k ∈ N.

Remarque : deux résultats s’étendent naturellement aux applications de classe Ck.
• f est de classe Ck si et seulement si toutes ses fonctions composantes sont de classe
Ck.

• L ◦ f est de même classe que f si L est linéaire.

2 Systèmes différentielles

2.1 Généralités

Définition

Un système différentiel est un ensemble d’équations différentielles reliant entre elles
les dérivées de plusieurs fonctions d’une variable.
Tout système différentiel peut être mis sous la forme X ′ = Φ(t,X) où X : I → Rn

et Φ : I ×Rn → Rn. X = (x1, . . . , xn) et les xi sont les fonctions sus-mentionnées.
Le système est dit autonome si la fonction Φ est indépendante de t, c’est-à-dire si
le système peut être mis sous la forme X ′ = F (X) où F est une fonction de Rn

dans Rn.
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Exemple : Système de Lorenz : x′ = σ(y − x)
y′ = ρx− y − xz
z′ = xy − βz

C’est un système autonome.
La plupart des exemples en physique sont autonomes car les lois de la physique ne dé-
pendent pas du temps. On peut cependant avoir des dépendances explicites si l’environ-
nement évolue (champs magnétique tournant, etc).

Définition

Un système différentiel est dit linéaire si on peut le mettre sous la forme X ′ =
L(t,X) + C(t) où L est une fonction linéaire de sa deuxième variable et où C est
une application dans Rn.
Dans ce cas, on dit que le système est homogène si C = 0. Et on dit qu’il est à
coefficients constants s’il est autonome.

2.2 Méthode de résolution

Méthode

On considère le système X ′ = A(t)X +B(t).

• On commence par chercher à diagonaliser A(t) = PD(t)P−1 avec un P
constant.

• On pose Y = P−1X et on montrer que :

Y ′ = D(t)Y + C(t)

où C(t) = P−1B(t).
• Le système obtenu est diagonal, on peut donc résoudre les équations séparé-

ment.

Remarques :
• On a supposé que A(t) est diagonalisable pour tout t mais surtout que la base de

diagonalisation ne dépend pas du temps ! C’est une hypothèse forte.
• En particulier, cela implique la condition nécessaire suivante : A(t)A(t′) = A(t′)A(t)

pour tout (t, t′).
• Si cette condition de commutativité n’est pas remplie, le problème est très difficile.
• En revanche, c’est trivialement le cas si c’est un système à coefficients constants.

• On peut adapter la méthode avec de la trigonalisation mais évidemment les calculs
sont plus lourds.

Exemples :

•

 x′ = 2x+ y + 3z
y′ = 2y
z′ = x

.

•
{

x′ = (2− t)x+ (t− 1)y
y′ = (2− 2t)x+ (−1 + 2t)y

.

2.3 Équation linéaire d’ordre supérieur à 1

Méthode

On considère une équation différentielle ordinaire de la forme :

y′′ + a(t)y′(t) + b(t)y(t) = f(t).

• On pose Y (t) =

(
y′(t)
y(t)

)
. On montre que Y satisfait le système :

Y ′(t) = A(t)Y (t) +B(t) (1)

où A(t) =

(
−a(t) −b(t)
1 0

)
et B(t) =

(
f(t)
0

)
.

• On résout le système avec la méthode précédente.
• On conclut en prenant la deuxième ligne de Y (t).

Remarques :
• Si les coefficients sont constants, on arrivera toujours à s’en sortir. En revanche, si

les coefficients varient, on peut tout à fait avoir A(t) et A(t′) qui ne commutent pas.
C’est une des raisons pour les lesquels les équations différentiels d’ordre supérieur
sont beaucoup plus compliqués que les équations d’ordre 1 (pour lesquelles on a une
solution générale avec la variation de la constante).

• On peut bien sûr généraliser la méthode à l’ordre 3, 4, etc.
Exemple : y(3) + 2y′′ − y′ + 2y = 0.
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