Fauriel - PC - Mathématiques

CHAPITRE 12 - DERIVABILITE DES FONCTIONS VECTORIELLES

CHAPITRE 12 - DERIVABILITE DES FONCTIONS
VECTORIELLES

1 Fonctions vectorielles

1.1 Généralités
Définition
Soit f : I — R™ une fonction. Soit a € I et soit £ € R™.
e On dit que f tend vers £ en a et on note f(¢) = Csi||f(t) — 2| =0
e On dit que f est continue en a si f(t) - f(a).

e On note o(1) toute quantité qui tend vers 0.
e Soit g : I — R™. On dit que f = o(g) si f est de la forme ||g|lo(1).

Remarque : comme R” est de dimension finie, le choix de la norme n’a pas d’impor-
tance. De plus, on a vu que la convergence pour || - ||oo équivaut (en dimension finie) a la

convergence composante a composante.

1.2 Dérivabilité
Définition
Soit f : I — R™ une fonction. Soit a € I.
On dit que f est dérivable en a si le taux d’accroissement

limite lorsque h — 0.
Dans ce cas, on appelle vecteur dérivé de f en a et on note f'(a) la quantité limite :

fla+h) = f(a)
. :

W admet une

f'(a) = lim

h—0

Remarque : Si f : I — R™ représente la trajectoire d’un mobile dans 'espace, alors f’(a)

est la vitesse instantanée du mobile & ¢t = a.

Proposition

f est dérivable en a si et suelement f admet un développement limité & 'ordre 1
en a autrement dit s’il existe A € R"™ tel que :

f(@) = f(a) + (z = a) A+ 05 0(z — a).

Dans ce cas f'(a) = A.

Corollaire

Si f est dérivable en a alors f est continue en a.

Remarque : la réciproque est fausse pour les fonctions de R — R. Elle est encore fausse
pour les fonctions de R — R”.

Définition

Soit f : I — R™ une fonction.
On dit que f est dérivable sur I si f est dérivable en tout a € I.
Dans ce cas, la fonction f':t+— f/(t) est appelée la fonction dérivée de f.

Proposition

Soit f : I — R™. On pose f(t) = (f1(t),..., fn(t)). f1, -, frn sont donc les applica-
tions coordonnées de f relativement & la base canonique.

f est dérivable en a si et seulement si toutes les applications fi, ..., f, sont déri-
vables en a. Dans ce cas, on a :

ou les e; sont les vecteurs de la base canonique.

Remarque : ce théoréme justifie beaucoup des calculs faits en physique en mécanique.
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1.3 Opérations sur les dérivées
Proposition : Combinaisons linéaires

Soient f et g de I dans R™. Si f et g sont dérivables en a alors Af + g l'est et :

(Af +9)'(a) = Af'(a) + g'(a).

Remarque : cela prouve que ’ensemble des fonctions dérivables de I dans R™ forment

un sous-espace vectoriel de ’ensemble des fonctions de I dans R™.
Proposition : Composition a droite

Soient f: I - R™et g:J — I. Soit a € J. Si f est dérivable en g(a) et si g est
dérivable en a alors f o g est dérivable en a et :

(fog)(a)=g'(a)f og(a).

Proposition : Composition 4 gauche avec une fonction linéaire

Soit f: I — R™ et soit L : R™ — RP avec L linéaire. Si f est dérivable en a € I
alors L o f est dérivable en a et :

(Lo f)(a) = (Lo f)(a).

Proposition : Composition avec une fonction bilinéaire

Soient f: I — R™et g: I — RP. Soit B : R™ x R? — R? avec B bilinéaire. Si f et
g sont dérivables en a € I alors t — B(f(t), g(t)) est dérivable en a.
Notons B(f,g) la fonction composée. On a alors :

(B(f,9))(a) = B(f'(a), 9(a)) + B(f(a), ' (a)).

Remarque : C’est une généralisation de la formule de dérivation du produit dans R.
Exemple : Calculer la dérivée de t — || f(t)]|.

Proposition : Composition avec une fonction p-linéaire

Soient f; : I — R™ avec i € [1,p]. Soit M : (R™)? — RY avec B p-linéaire. Si les f;
sont dérivables en a € I alors t — M(f1(t),..., fp(t)) est dérivable en a.
Notons M(f1,..., fp) la fonction composée. On a alors :

p

L) (@) =Y M(fi(a),. ..

=1

(M(f1,.. s fie1(a), fi(a), fira(a), . .., fp(a)).

Exemple : dérivée du déterminant.

1.4 Dérivées d’ordre supérieur
Définition
Soit f : I — R™ une fonction.
On dit que f est de classe C° sur I si elle est continue sur I.
On dit que f est de classe C**! sur I si f est dérivable sur I et f’ est de classe C*

sur I.
On dit que f est de classe C*> si f est de classe C* sur I pour tout k € N.

Remarque : deux résultats s’étendent naturellement aux applications de classe C*.
e f est de classe C si et seulement si toutes ses fonctions composantes sont de classe
ck.

e Lo f est de méme classe que f si L est linéaire.

2 Systémes différentielles

2.1 Généralités
Définition

Un systéme différentiel est un ensemble d’équations différentielles reliant entre elles
les dérivées de plusieurs fonctions d’une variable.

Tout systéme différentiel peut étre mis sous la forme X' = &(¢t,X) ou X : I — R"
et ®: I xR” - R X = (z1,...,2,) et les z; sont les fonctions sus-mentionnées.
Le systéme est dit autonome si la fonction ® est indépendante de ¢, c’est-a-dire si
le systéme peut étre mis sous la forme X’ = F(X) ou F est une fonction de R"
dans R™.
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Exemple : Systéme de Lorenz :
= o(y—x)
y = pr—y—uzxz
Z = xy-— Pz

C’est un systéme autonome.

La plupart des exemples en physique sont autonomes car les lois de la physique ne dé-
pendent pas du temps. On peut cependant avoir des dépendances explicites si I’environ-
nement évolue (champs magnétique tournant, etc).

Définition
Un systéme différentiel est dit linéaire si on peut le mettre sous la forme X’ =

L(t,X) + C(t) ou L est une fonction linéaire de sa deuxiéme variable et ou C' est

une application dans R™.
Dans ce cas, on dit que le systéme est homogéne si C = 0. Et on dit qu’il est &

coefficients constants s’il est autonome.

2.2 Meéthode de résolution

Meéthode

\

On consideére le systéme X' = A(t)X + B(t).

e On commence par chercher a diagonaliser A(t) = PD(t)P
constant.

—1 avec un P

e On pose Y = P~ 1X et on montrer que :
Y'=D(t)Y +C(t)
ot C(t) = P~1B(t).

e Le systéme obtenu est diagonal, on peut donc résoudre les équations séparé-
ment.

Remarques :

e On a supposé que A(t) est diagonalisable pour tout ¢ mais surtout que la base de
diagonalisation ne dépend pas du temps! C’est une hypothése forte.

e En particulier, cela implique la condition nécessaire suivante : A(¢t)A(t') = A(t') A(t)
pour tout (¢,t').
e Si cette condition de commutativité n’est pas remplie, le probléme est trés difficile.

e En revanche, c’est trivialement le cas si ¢’est un systéme a coeflicients constants.

e On peut adapter la méthode avec de la trigonalisation mais évidemment les calculs
sont plus lourds.

Exemples :
2 = 2x4+y+3z
ey = 2
2 =

2-tx+(t—-1y
2—-2t)z+ (-1+2t)y -

2.3 Equation linéaire d’ordre supérieur a 1

Meéthode

\.

On considére une équation différentielle ordinaire de la forme :
y" +a(t)y'(t) + b(@)y(t) = f ).

/
e On pose Y(t) = (y (t)> On montre que Y satisfait le systéme :

y(t)
Y'(t) = A(t)Y (t) + B(t)

on A(t) = (“;(t) ‘%(t)) ot B(t) = (f 8”).

e On résout le systéme avec la méthode précédente.

e On conclut en prenant la deuxiéme ligne de Y'(¢).

Remarques :

e Si les coefficients sont constants, on arrivera toujours a s’en sortir. En revanche, si
les coefficients varient, on peut tout a fait avoir A(t) et A(t') qui ne commutent pas.
C’est une des raisons pour les lesquels les équations différentiels d’ordre supérieur
sont beaucoup plus compliqués que les équations d’ordre 1 (pour lesquelles on a une
solution générale avec la variation de la constante).

e On peut bien sir généraliser la méthode a 'ordre 3, 4, etc.

Exemple : y®) +2y” — ¢/ 4+ 2y = 0.



