Fauriel - PC - Mathématiques TD12 - FONCTIONS VECTORIELLES

TD12 - FONCTIONS VECTORIELLES

1 Généralités
Exercice 1.

1. La fonction f : z + cos(y/z) est-elle dérivable en 07 de classe C! sur R, ?

2. Cette fonction est-elle de classe C*° sur Ry 7

Exercice 2. Soit f et g € C1(I,R?), montrer que ¢ = det(f,g) € C(I,R) et calculer ¢'.

Exercice 3. On considére la fonction vectorielle A : ¢t € R+— A(t) = (a(t) b§t1)> € My (R) avec

1

a(0) =0et a(t) = e cos (1) sit#0 et b(t) =e # sin (1) sit#0etb0)=0.

1. Montrer que A est de classe C' sur R.

2. Montrer que pour tout ¢ € R, A(t) est diagonalisable. On note \(t) et A2(t) ses valeurs propres avec
A1(t) > Aa(t). Montrer que A1 et Ay sont des fonctions de classe C! sur R.

Exercice 4. Soient a < b deux réels. Soit f : [a,b] — R™ (avec R™ muni du produit scalaire usuel), continue
sur [a,b] et dérivable sur |a, b[. En considérant ¢ : ¢ € [a,b] — (f(b) — f(a), f(t)), montrer qu’il existe ¢ € ]a, b] tel
que

1£(0) = f(@)ll < (b= a)[lf'(c)]]

ot || - || est la norme associée au produit scalaire usuel.

2 Systémes différentiels
Exercice 5. Résoudre les systémes linéaires différentiels suivants :

(1+t)z' = tz+y ¥=x—-2y+t
<S){(1+t2)y’ = —x+ty et () v =2r—y+el

Indication : pour le premier systéme, poser z = x + 1y, pour le deuxiéme on peut poser u =x +y et v =x — y.
Exercice 6. Résoudre le probléme de Cauchy suivant :

2 =—-3rx+5y—52 x
Yy = —4x+6y—52 et ¢ y
2= —dx +4y — 32 z

1
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Exercice 7. Soit x, y, z des fonctions dépendant de ¢. Résoudre le probléeme de Cauchy suivant :

¥r=x+y z(0) =1

Yy =3y—=z et y(0)=2

Z=y+z z(0)=1
1 00
Indication : on pourra montrer que la matrice du systéme est semblable a T = [0 2 1
0 0 2

Exercice 8. On considére le systéme différentiel (E) : {
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1. Ecrire ce systéme sous la forme X' = AX + B avec X = <§), A € C(R,M2(R)) et B € C(R,Mz1(R)).

2. Diagonaliser A(t) avec une matrice de passage P qui ne dépend pas de t.

3. En déduire les solutions du systéme différentiel.
Exercice 9. Résoudre I'équation différentielle (E) : ¢ — 4" — 4y’ + 4y = 12+ e L.

2(t) = —tx(t) +y(t) +1

Exercice 10. On considére le systéme différentiel (E) : < 5
y'(t) = (1 —t2)z(t) + ty(t) + t.

_— . . 1 t :

1. Ecrire ce systéme sous forme matricielle et vérifier que X7 : ¢t — ( t> et Xo:t— < 2 1> sont solutions du
systéme homogéne (H) associé a (F).

2. Rechercher une solution particuliére de (F) de la forme X = aXj 4+ bXa, ou a et b sont deux fonctions de
classe C! sur R.

3. En déduire la solution générale de (F) (indication : on utilisera le théoréme de Cauchy).

2/ (t) = 2tx(t) — y(t) + t cos(t)

y'(t) = x(t) + 2ty(t) + tsin(t)

1. Déterminer le plan vectoriel des solutions de I’équation homogeéne (H ) associé a (E) en changeant de fonctions
inconnues pour u(t) = z(t) exp(—t2) et v(t) = y(t) exp(—t?). On notera (X1, X3) une base de ce plan.

2. Rechercher une solution particuliére de (F) de la forme X = aX; 4+ bX2, ot a et b sont deux fonctions de
classe C! sur R.

Exercice 11. On considére le systéme différentiel (F) : {

3. En déduire la solution générale de (F) (indication : on utilisera le théoréme de Cauchy).



Fauriel - PC - Mathématiques TD12 - FONCTIONS VECTORIELLES

Solutions

Exercice 1. 1) La fonction cos est de classe C* sur R et la fonction

T T

est continue sur Ry et de classe C°*° sur R , donc par composition, la fonction f est continue sur Ry et de classe C*°
sur R .
Pour tout x € R* ,

f(x) — f(0) cos(yz)—1 —(‘/25)2 1 N 1

x T z—0+ T 2 z—0t 2’

donc la fonction f est dérivable en 0 et

Pour tout x € R*,

/ _ 1 . \/5 _ 1 1 el
f(@) ——2\/Esm(\/§) o N xj@ B = f(0),

donc la fonction f’ est continue en 0. Donc la fonction f est de classe C! en 0.

Remarque. Et cela, bien que la fonction
x =T

ne soit pas dérivable en 0!

Donc la fonction f est de classe C! sur R.
2) On sait, pour tout réel u € R,

Or, la série entiére

a son rayon R qui vérifie

pour tout x € R , puisque la série numérique

converge pour tout z € R’ . Donc
R = 4o00.

Le cours sur les séries entiéres donne alors que la fonction

€] - R, R| RHf(_l)n "eR
g:x €| —R,R|= T
= (2n)!

est une fonction de classe C* sur | — R, R[= R.
De plus, pour tout x € R* , on a

Et, pour x = 0,
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(car 0¥ = 0'si k € N*, et 0° = 1). Donc

£(0) = 9(0).
Donc la fonction f est la restriction de la fonction g & Ry. Or, la fonction g est de classe C*° sur R, donc la
fonction f est de classe C* sur Ry.

Exercice 2. L’application det(.,.) est bilinéaire, les fonctions f et g sont de classe C! sur I, donc (application
directe du cours) la fonction

t— det (f(2),9(t))

est de classe C! sur I, et : pour tout t € I,

det(f,9)'(t) = det (f'(), g(t)) + det (f(¢),4'(t))

Exercice 3.

1. L’application
t— A(t)

est de classe C! sur R si et seulement si ses fonctions coordonnées (dans la base canonique) sont de classe C!
sur R. On va donc étudier le caractére C' des applications

t— af(t) et t— b(t).

La fonction
t— a(t)

est de classe C! sur R* par composition de fonctions de classe C'. Il reste a étudier en 0.
Pour t € R*, on a :

donc par le théoréme des gendarmes,

Donc la fonction a est continue en 0.

Pour ¢t € R*, on a :
) 1 . /1 _;24_ 2 1y 1
a(t)=5sin|—)e ¢ —cos|—|e 2.
12 t 3 t

Donc pour tout ¢ € R*, par inégalité triangulaire (puis car [cos| < 1 et |sin| < 1), on a

1 1
12 2 12
|a’(t)|§et2t + €’

3
t t—0
. ) . . 1 , .
(par croissance comparée, faire le changement de variable x = 2 pour s’en convaincre).

Donc, par le théoréme des gendarmes,

lima'(t) = 0.
tgr(l)a(t) 0

Donc la fonction a est continue sur R, de classe C! sur R*, avec

. / o
1ltl_rf(l)a (t) = 0.

Le théoréme de la limite de la dérivée s’applique alors, et donne que la fonction a est de classe C! sur R, et

de plus
a’'(0) = 0.

En faisant le méme raisonnement sur b, on obtient que la fonction b est de classe C' sur R (avec, pour
tout t € R*,
1 1 1 2 1 1
V(t)=——=cos|~)e 2+ —sin|=)e 2,

2
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donc on a les mémes majorations pour |b| et |[b'| que pour |a| et |a’| respectivement).

Enfin, les fonctions a et b étant de classe C! sur R, et donc la fonction —a aussi, on en déduit que la fonction A
est de classe C! sur R.

2. Pour tout A € C,

o =| G 0 = (a0 @0 -0 - .

donc
Xaw = (—a(t) + X) (a(t) + X) = b*(t) = X* — a>(t) — b*(t).

Pour ¢t € R*, on a :
Xaw)(X) = X? = (a®(t) + b°(1)) = X* — e = (X - e_t%> (X —I—e_t%> .

Donc, pour tout ¢ € R*, la matrice A(¢) a deux valeurs propres réelles distinctes et est de taille 2, donc la
matrice A(t) est diagonalisable dans Ma(R).

Remarque. Ce n’est pas surprenant : la matrice A(t) est symétrique réelle...

On a
MO = VEB TR = ® et Aa(t) = —/a2(t) +02(1) = —e # = —\(b).
Sit=0,o0na
A(0) = Oniy(w)

donc la matrice A(0) est la matrice nulle, donc diagonalisable. Et on a
A1(0) = 0 = /a?(0) + b2(0) et A2(0) = 0= —X1(0).

Donc Ao = —Aq. Il suffit de montrer que la fonction
A=V a? 4 b2

est de classe C! sur R.
La fonction A; est continue sur R, par composition, car

)\1 =V a2+b2,

avec la fonction a? 4 b% continue (par opérations usuelles) et positive sur R, et la fonction /- continue sur R .
Toujours par composition, on a que la fonction \; est de classe C' sur R*, car la fonction \/- est de classe C 1
sur R* | la fonction a? + b% est de classe C! sur R, et car a®(t) + b%(t) > 0 pour tout t € R*.
Puis, pour ¢t € R*,
1
)\l(t) = e_ﬁv
donc pour tout ¢ € R*,
2 1
Ni(t)= e 2 —0
1) TER Y

(par croissance comparée, pour s’en convaincre, poser u = t—2)
Donc la fonction A; est continue sur R, de classe C! sur R*, avec lin% A1 (t) = 0 : le théoréme de la limite de
t—

la dérivée s’applique et donne bien que la fonction \; est de classe C! en 0, donc sur R (et A} (0) = 0).

Exercice 4. Les fonctions
t— f(t) et t— f(b) — f(a)
sont continues sur [a, b] et dérivables sur a, b (de dérivées respectives t — f(t) et ¢ — 0), donc la fonction

t= (f(b) — f(a), £(1))

aussi.
Puis, la fonction
(z,y) €R" X R" = (z,y)

est bilinéaire, R™ est de dimension finie, donc :
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e 'application
(z,y) = (2,y)
est continue sur R"” x R™, puis par composition, la fonction ¢ est continue sur [a, b],

e par composition, la fonction ¢ est dérivable sur |a, b], et pour tout ¢ € |a, b],

#(0) = (0.50) + (F06) ~ F@), F'(1)) = (F() ~ f(a), f'())
Puis, par linéarité a droite du produit scalaire,

¢(b) — ¢(a) = (f(b) — f(a), F(b) = f(a)) = [If(b) = f(a)|
(donc est positif), et le théoréme des accroissements finis donne qu'il existe ¢ € |a, b[ tel que

¢(b) — d(a) = (b —a)¢'(c).

Puis, I'inégalité de Cauchy-Schwarz donne

@' ()l = | (f(0) = f(a), f'(e)) | < IF (®) = f(@)ll - 1F" (o],
et donc

17 (8) = f(a)[]> = |(b) = d(a)| = (b= a) ¢/ ()| < (b= )| f(b) = f(a)ll - /' ()]|-
Si f(b) — f(a) =0, alors ||f(b) — f(a)|| = 0, et donc
1£ () = f(a)]l < (b—a)|f ()]l

est vraie (car b —a > 0 et qu’une norme est positive).
Et si f(b) — f(a) #0,on a ||f(b) — f(a)|| > 0, et on peut donc diviser 'inégalité obtenue par || f(b) — f(a)]|, ce qui
donne

1£ () = f(@)ll < (b= a)ll £ ().

Dans tous les cas, on a bien I'inégalité voulue.
Exercice 5. 1) Soit x et y dérivables sur R. On pose z = x + iy, c’est a dire
z:t € R z(t) +iy(t).
Comme les fonctions z et y sont dérivables, la fonction z est dérivable, et on a : pour tout réel t € R,
2(t) =2 (t) + iy (t).

Comme deux complexes sont égaux si et seulement s’ils ont mémes parties réelles et mémes parties imaginaires,
en notant Ly et Lo les lignes du systéme (5), on a

(S) & (1) +i(2) & (1+12)2 =t(x+iy)+ (y—iz) =tz —iz=(t—i)z & (t+i)2 =2

(en divisant par t — i, qui est non nul, et car 1+ t2 = (t — i)(t +1)).
Cette derniére équation différentielle se résout directement, ainsi

(S) & INeC, z:teRw— At +1).

Comme = = Re(z) et y = Im(z) et si on note A\ = a + ib, on a alors : les fonctions x et y sont solutions de (S) si
et seulement s’il existe (a,b) € R? avec

z:teR—at—b| et [y:tcR—a+tbt]

2) Soit = et y dérivables sur R. (x,y) est solution du systéme (T') si et seulement si (u,v) vérifie

u=3v+t+e
vV =—u+t—e
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. . e U+ v U—v
(c’est un calcul direct, pour la réciproque on utilise que = = 5 Yy = 5 ).

Analyse : supposons donc que (u,v) vérifie

W =3v+t+el
vV=—u+t—e¢el

Alors ' est dérivable sur R, et
u" =30 +1+e = -3u+3t+1-—2e"

Donc u est solution d’une équation différentielle linéaire d’ordre 2, & coefficients constants. L’équation homogéne
associée a pour équation caractéristique
donc les racines sont +iv/3. Donc les solutions de I’équation homogéne sont les fonctions

teR— «acos (\/gt) + Bsin (\/gt)

avec (o, 8) € R2,
Cherchons une solution particuliére de ’équation différentielle

' = —3u+3t+1
de la forme w : t — at + b : on veut donc, pour tout t € R,
0=—-3at—3b+3t+1=3(1—a)t+1— 30,

ce qui est vrai si

1
a=1 et b=—.
3
Cherchons une solution particuliére de ’équation différentielle
o = —3u — 2
de la forme u : t — ae’ : on veut donc, pour tout t € R,
ae’ = —3ae’ — 2¢’, soit a=—3a—2,
donc
a=—=
2
convient.

Donc par principe de superposition, on obtient que les solutions de I’équation différentielle
u" = —3u+3t+1-2¢

sont les fonctions

teRH—%et+t+%+acos(\/§t)+Bsin(\/§t)

avec (o, B) € R2.
Alors la premiére équation du systéme donne
u —t—é 1, 1 t «

. B
v:f:—ie —i—g—g—%sm(\/gt)%—ﬁcos(\/gt).

Synthése : il faut maintenant vérifier la deuxiéme ligne du systéme pour savoir parmi ces fonctions lesquelles sont
effectivement solutions.

Or,

V= —u+t—el & —%et—é—acos(\/gt)—ﬁsin(\/gt):%et—t—é—acos(\/gt)—Bsin(\/gt)—kt—et,

ce qui est toujours vrai, donc toutes les fonctions trouvées conviennent.
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Conclusion : on en déduit alors que les solutions de (7") sont les fonctions (x,y) avec

1 t 1 1 1
r="T" terwms —et+++<a+5>cos(\/§t)+2<ﬁ—

2 2 3737 2 3 )Sin(\/gt)

V3

et

y:u;U:tGRH 23t+;<a—\%>cos(\/§t)+;<B+5§>Sin(\/§t)

pour (a, B) € R? quelconques.

Exercice 6. e Le probléme est équivalent &

x -3 5 =5
X' =AX ol X=1uv et A=| -4 6 -5 |,
z -4 4 -3

1
avec X (0) = [ 2 |. Or, un calcul donne
3

xa=X-1)(X—-2)(X+3), donc Sp(4) ={1,2,-3}.

Donc A a trois valeurs propres différentes (et simples), est de taille 3, donc est diagonalisable.

0 1 1
Ei(A)=Vect | 1 |, Ey(A) =Vect | 1 et E_3(A)=Vect | 1 |,
1 0 1

donc (puisque la matrice A est diagonalisable et qu’on a trouvé une base de chaque espace propre), la matrice

011
P=1111
1 01
est inversible, et
10 0
pltAap=|0 2 0 |=D.
0 0 -3

e Soit X : R — M;;(R). On pose
Yy = PlX, soit X = PY.

Alors X est dérivable si et seulement si Y l'est (car les applications

Z € Mg’l(R) — PZ € M371(R) et 7 € MgJ(R) — PilZ S MgJ(R)

sont linéaires), et dans ce cas
Yl — (P—IX)/ — P—IX/

car P! est a coefficients constants. Notons, pour tout t € R,
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On obtient ainsi

X'=AX < PY'=PDP'PY

s Y =DY
u 1 0 0 U
& v =102 0 v
w’ 0 0 -3 w
u =u
& v =20
w' = —3w
u(t) = Ne!
& AN\ pu,y) R VEER, ¢ v(t) = pe?
w(t) = ye 3t
01 1 U v 4w
Ainsiavec X =PY =1 1 1 v | =|u+v+w]|, on obtient :
1 0 1 w U+ w

x(t) = pe?t + ye =3t

X'=AX < 3\, p,7) €R3, Vt €R, y(t) = el + pe?t + ye3t
2(t) = Ael 4 ye 3t

On veut z(0) =1, y(0) = 2 et 2(0) = 3, on a donc :

z(0) =p+v=1 (1)
y(0) =A+p+v=2 (2) -
20)=A+7=3 3)
Or, (2) — (1) donne
A=1|

Donc
7:3—1: et ,uzl—fy:.

D’oil le probléme a une unique solution, a savoir

x it —2e2 4 23t
Yyt el — et 4 2e73t
z it et + 23t

Exercice 7. e Le probléme est équivalent &

x 11 0
X' =AX ol X=1uy et A= 0 3 -1 |,
z 01 1
1
avec X (0) = | 2 |. Un calcul donne alors
1
xa= (X -1)(X -2)
donc 2 est valeur propre de multiplicité 2. Or
-1 1 0
dim (Eo(A)) =3—-1g| 0 1 -1 | =1+#2,
0 1 -1
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donc A n’est pas diagonalisable.
e Montrons que A est semblable & T'.
On cherche done (U, V,W) € (M3,1(R))3 tel que la matrice par blocs P = (U ‘ Vv ‘ W ) soit inversible et vérifie

P'AP =T.
Or, avec P sous cette forme,

P lAP=T < AP = PT et P est inversible

& AU | AV | AW )= (U |2V |V +2IW par calcul matriciel par blocs) et P est inversible
(AU AV [ AW ) = (U |2V | ) ( )

AU =U
& AV =2V et P est inversible
AW =V +2W

(A - 13)U = 0M3,1(R)
& (A —213)*W = Om,, (r) €t P est inversible
V=(A-2I3)W
On veut donc
U € Ker(A—I3) = Ey(4), W €Ker((A—2I3)?),

et on posera
V = (A—2I3)W.

On fera attention : comme on veut P = (U ‘ Vv ‘ W ) inversible, il faut V # 031, donc W ¢ Ker(A—2I3) = Ey(A).
Il restera a vérifier que P est bien inversible.

On obtient :
1
Ei(A)=Vect | 0 |,
0
on pose
1
U=10
0
Recherche de W : on a
-1 1 0 -1 1 0 1 0 -1
(A-2L)%*=| 0 1 -1 0 1 -1 ]=[00 0
0 1 -1 0 1 -1 00 O
Donc
0
W=11
convient, et alors
1
V=(A=-2hW=|1
1

Ainsi,

vérifie AP = PT. Et comme
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la matrice P est bien inversible, donc

PlAP =T =

S O =
oSN O
N = O

e Soit X : R — M3 (R). On pose
Y=P'X, soit X=PY.

Alors X est dérivable si et seulement si Y 'est (car les applications
Z € Mg’l(R) — PZ € M371(R) et Z € MgJ(R) — P71Z S MgJ(R)

sont linéaires), et dans ce cas
Y/ — (Ple)/ — P*lX/

car P! est a coefficients constants. Notons, pour tout t € R,

Alors,
X'=AX < PY'=PTPlPY

& Y =TY
! 1 00 U
& v ]l=10 2 1 v
! 0O 0 2
u =u
o v =204+ w
w' = 2w
u(t) = et

& J(a,\) €ER%, VtER, ¢ w(t) = ae?
V' (t) = 20(t) + ae?! (E)

Les solutions de I’équation homogéne associée a (E) sont les fonctions de la forme
t > Be?

avec 8 € R.
La recherche d’une solution particuliére de (F) par la méthode de variation de la constante donne, pour tout ¢ € R,

B(t) = a,
donc la fonction 3 : ¢t — ot convient. Ainsi la fonction
t — ate®

est solution particuliere de (E). Ainsi,

v est solution de FE & il existe B € R tel que v:t € R+ (at + B)e?.

Comme
1 10 U u+v
X=PY=10 11 v]=[v+w],
010 w )
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on a :

u(t) = Ne!
X'=AX & Fa,B,)) €R3 VtER, { w(t) = ae?
v(t) = (at + B)e?
z(t) = Xe! + (at + B)e*
& F(a,B,)) €R3 Vt R, y(t) = (at + B)e? + ae?
2(t) = (at + B)e*
Puis,

1=2(0)=A+0 A=0

2=y(0)=F+a &< =1

1=2(0)=p a=1

Ainsi le probléme a une unique solution, & savoir

it (t+1)e?
Yt (t+2)e?
z:it (t41)e?

Exercice 8. 1) Il est direct que

e+t et —t —t
A.tn—><et_t o 4t et B:t— A

2) On cherche les valeurs propres de A, puis les espaces propres associés. On obtient :
xa = (X —2e") (X —2t), donc Sp(A) = {2t,2¢'}.

Puis, on sait, pour tout ¢t € R,
t<l1+t<eé,

donc 2t # 2e?, donc A a deux valeurs propres différentes, est de taille 2, donc A est diagonalisable. De plus, ses
valeurs propres sont simples, donc ses espaces propres sont de dimension 1.

On obtient
Eor(A) = Vect <<_11>) et Eyu(A) = Vect <G>> :

donc (puisque A est diagonalisable et qu’on a trouvé une base de chaque espace propre), la matrice
1 1
P =
(1)

PAM)P = <2Ot 2&) —. D(t)

est inversible et vérifie

pour tout réel t € R.
3) Soit X : R — My 1(R). Notons
Y = PX, soit X = PY.

Alors X est dérivable si et seulement si Y 'est (car les applications

Z € MQJ(R) — PZ € M2’1(R> et AS Mg,l(R) — P_1Z S MgJ(R)

sont linéaires), et dans ce cas
Y/ — (P—IX)/ — P—le

car P! est a coefficients constants. Notons
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1/1 -1
_1_7
P _2<1 1>'

X'=At)X +B(t) & PY'=PD({t)P'PY + B(t)

et calculons

Alors

/ — —_
& VieR, 2/(t) =2tz(t) — ¢
w'(t) = 2etw(t)
1,
& I eR? vieR, (W=

w(t) = pe?

(en résolvant les deux équations différentielles linéaires d’ordre 1). Puis
X — Py — 1 1 Z\_ [ #tw ’
-1 1/ \w —z+w

1
x:t»—>§+)\et2+u626t

donc

X' = A(t)X + b(t) & I\, 1) € R?, Wt € R,

1
y:t— —5—)\et2+u62€t

Exercice 9. ¥ Cherchons les solutions de ’équation homogéne en passant sous forme matricielle : soit y : R - R
une fonction trois fois dérivable sur R, si on note

X=1|v et A=

alors
" =y — 4y +4y =0 & X' = AX.

Puis,
xa=X3—X? 44X +4=(X-1)(X -2)(X +2), donc Sp(A) = {1,2, —2}.
A a alors 3 valeurs propres deux a deux différentes, est de taille 3, donc A est diagonalisable, et ses sous-espaces

propres sont tous de dimension 1.
On diagonalise A : on a

1 1 1
E1 = Vect 1 , FEs = Vect 2 , E_5 = Vect -2 ,
1 4 4

et comme on sait que A est diagonalisable et qu’on a trouvé une base de chaque espace propre, la matrice

11 1
P={(2 1 -2
4 1 4
est inversible, et
2 0 0
PlAP=(01 0 |=D
0 0 =2

Puis, si on note
Yy = PlX, soit X = PY,

11
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alors X est dérivable si et seulement si Y l'est (car les applications
Z € Mg’l(R) — PZ € M371(R) et Z € M371(R) — P71Z S MgJ(R)
sont linéaires), et dans ce cas
X' = (PY) =PY’

(car P est a coefficients constants). Notons

0
Y = Y2

Y3

)

alors

AX = PDP~'X = PDY,

donc (car P est inversible)

X'=AX & PY' =PDY

& Y =DY
yi 2 0 0 Y1
< vyl =101 0 Y2
Y3 00 -2/ \ys
/o
Y1 = 211
< Yy = Y2
ys = —2y3
y1(t) = ae?
< (o, py) € R3 |Vt € R, < ya(t) = Bet
y3(t) = ve
et alors
11 1 [ 1+ y2 + Y3
X=PY =121 2| |y2]=|2y1+y2—2ys3
4 1 4 Y3 dy1 + y2 + 4ys3
donne

v =y =4y + 4y =0 I, By) €eR?|y:t € R ae® + et +ye 2

(on ne prend que la premiére coordonnée de X, la seule qui nous intéresse, et qui donne y = y1 + y2 + y3).
% Enfin, il faut trouver une solution particuliére. Utilisons le principe de superposition : I’équation différentielle

y/// _ y// _ 4y/ +dy =12

a comme solution particuliére y = 3 (comme le second membre est de la forme P(t)e® avec a = 0 qui n’est pas
racine de 1’équation caractéristique, on cherche une solution de la forme Q(t)e® avec @ polynéme de méme degré
que P, donc de la forme t — constante). Enfin, cherchons une solution particuliére de I’équation différentielle

y/// _ y// _ 4y/ + 4y = et

sous la forme

t— aeit,

ce qui donne : pour tout t € R,
(—1)3ae™ — (=1)%ae™" —4a(-1)e " + daet =7,

it 1
soit a = =.
6

12
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% Donc les solutions de ’équation initiale sont les fonctions

1
teR— ge_t + 3+ ae® + et +ye %

avec (o, 8,7) € R3.

Exercice 10. 1) Ce systéme s’écrit X' = AX + B avec

T -t 1 1
X_<y>, A.teR»—><1_t2 t> et B.teR|—><t>.

Les fonctions X et X sont de classe C! sur R, car leurs fonctions coordonnées dans la base canonique de Ms 1 (R)
(a savoir t — 1 et t +> t pour X1, t > t et t > t2 + 1 pour X») sont polynomiales, donc de classe C'. Puis, pour
tout réel t € R,

xi = (}) —a0x@ @ x50 = () = A0x0,

donc les fonctions X7 et X9 sont bien solutions du systéme homogéne associé.
2) Soit a et b deux fonctions de classe Clsur Ret X =aX; + bXo.
Par produit et somme de fonctions de classe C! sur R, la fonction X est de classe C! sur R. Et :

X' =dX;+bXs+aX] +0bX),
donc
X' =AX +B & a Xy + b0 Xo+aX] +bX,=aAX; +bAXy+ B & dX, +VXy,=B

(car AX) = X/ et AXo = X/). En reportant la définition de X; et Xs, on a alors

/

o+t =1

ta' + (2 + 1) =t

X' =AX +B & Vte R B
’ a =1

b
& VteR,{

donc

X it € R tX(8) + 0Xs(t) = [4X1 (1) |

est une solution particuliére sur R (on a pris a : t =t et b : t — 0, qui sont bien de classe C! sur R).

3) On sait que les solutions générales s’écrivent sous la forme de la somme de la solution particuliére que l'on a
trouvé a la question précédente, et d’une solution quelconque du systéme différentiel homogéne correspondant (car
le systéme est linéaire).

Notons &y I'espace vectoriel des solutions du systéme différentiel homogéne

X' = AX.

On sait
X1 €& et X5 € &.
On a (X1, X2) qui est une famille libre. En effet, pour tout (a,b) € R?, si aX1 + bXs = 0 (ici le 0 est la fonction

teR— <8)), alors pour tout t € R, on a
0
CLXl(t) + bXQ(t) = E
donc pour tout t € R,
a+bt=0
at +b(t>+1)=0
Comme c’est vrai pour tout ¢t € R, c’est en particulier vrai pour t = 0 et ¢ = 1, alors la premiére ligne donne a = 0

et a+b=0, soit
a=b=0.
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Enfin, A est une fonction continue de R dans Ma(R) (car ses fonctions coefficients (& savoir, t = —t, t > t, ¢+ 1—t2
et t — 1), qui sont les fonctions coordonnées dans la base canonique de My (R), sont polynomiales donc continues),
et B est une fonction continue de R dans Mpy ;(R) (car ses fonctions coefficients (& savoir ¢ +— 1 et ¢t — t), qui
sont les fonctions coordonnées dans la base canonique de Mg 1 (R), sont polynomiales donc continues), et R est un
intervalle. Donc le (corollaire du) théoréeme de Cauchy donne que & est un espace vectoriel de dimension 2.
Comme (X7, X2) est une famille libre de deux vecteurs de &, qui est un espace vectoriel de dimension 2, on en
déduit que (X7, X2) est une base de &. Donc les solutions du systéme différentiel homogéne X’ = AX sont les
fonctions aX; 4+ bXs pour (a,b) € R? quelconque.

On en déduit que les solutions générales de X' = AX + B sont les fonctions du type

| X:teRe (t+0a)Xi(t) + BXa(t) |

avec (a, ) € R? quelconque.

Exercice 11. Commencons par remarquer que R est un intervalle, la fonction

2t -1
teR— < 1 9 t>
est continue (car les fonctions coordonnées dans la base canonique de Mz (R) sont les fonctions

t— 2t, t— —1, t—1,

qui sont continues sur R car polynomiales), donc par le théoréme de Cauchy, les solutions du systéme différen-
tiel (H) : X' = A(t)X forment un espace vectoriel H de dimension 2. Done, pour la question 1, on cherche bien
un plan.

1) Les fonctions x et y sont dérivables sur R si et seulement si u et v le sont (par produit avec ¢ — exp(£t?) qui
est dérivable). Si c’est le cas, dérivons comme produit : pour tout ¢ € R,

W) = 2 ()e ™ —2x(t)e™ = (2/(t) — 2x(t) +y(t))e " —y(t)e ™ = (2/(t) — 2tx(t) + y(t))e " —v(t)
et
V() = Y —2ty(t)e™ = (y'(t) — a(t) = 2ty(H) e +a(t)e = (v (t) — x(t) — 2ty(t))e™" +u(t)
Donc
(z,y) est solution de (H) & {u/’ i - ,

ce qui donne (donc la, on ne fait qu’une implication, il faudra faire la réciprogque plus loin)

" /

U = —u puis v =—u,
donc il existe (a,b) € R? avec
u:t— acos(t) + bsin(t), puis vt asin(t) — bcos(t).
Réciproquement, pour un tel u et un tel v, on a bien v = —u (c’est ainsi qu’a été construit v), et on vérifie
directement que v’ = u.
Donc

. o 2 x\ 2 [ cos(t) 2 [ sin(t)
(x,y) est solution de (H) & il existe (a,b) € R* tels que (y) teER—ae (sin(t) +be —cos(t))"

=X; =Xs

On a donc

XiiteR el (:?5((;) > et | Xyt el (_Sicr;(st()t)> :

14
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et (X1, X2) engendrent les solutions de (H). De plus, c’est une famille libre car (par exemple), X1(0) = (1> et

1
On peut sinon utiliser le théoréme de Cauchy pour dire

X2(0) = (_0 ) forment une famille libre de M3 ;(R). Donc (X7, X2) est une base de H.

dim (H) = 2,

et comme la famille (X7, X2) engendre H, on a bien que la famille (X7, X3) est une base de H.
2) Notons
‘ 2t —1 . t cos(t)
A.t»—><1 2t> et B't'_}<tsin(t)>'

Alors le couple de fonctions (z,y) est solution du systéme si et seulement si X' = AX + B, en notant X = (i)

Or, si on prend
X =aX1 +b0X,

avec a et b de classe C! sur R, alors la fonction X est de classe C! sur R comme produit de fonctions de classe C!,
et en dérivant un produit, on a
X' '=d Xy + 0 Xy +aX] +0X),

donc
X'=AX +B & a’X1+b’X2+aX{+bX§:aAX1+bAX2+B & dX, +VXy,=B

(car AX) = X/ et AXo = X/, puisque X; et Xy sont solutions de (H)).
En reportant la définition de X7 et X5, on a alors

V(t)et” =0

/ t?

a'(t) cos(t)et” + ¥ (t) sin(t)e!” = t cos(t)

X' = AX+B & Vit € R,
{a’(t) sin(t)et” — b/(t) cos(t)el” = tsin(t)

& Vi € R, {

donc

1 1
X:teRm —ie*ﬁxl(t) +0Xo(t) = _ie*tle(t)

1
est une solution particuliére sur R (on a pris a : ¢t — —§€_t2 et b:t+ 0, qui sont bien de classe C! sur R).

3) Les solutions générales sont donc du type

1
X:teR— <—26t2 + a> Xl(t) + bXQ(t)

avec (a,b) € R? quelconque.
Une démonstration directe : dérivons comme produit : pour tout réel t € R,

W) = 2/ ()et = 2a(t)e
= (2/(t) — 2t (t) + y(t) — teos(t))e " —y(t)e ™ + tcos(t)e "

= (2(t) — 2tx(t) + y(t) — tcos.(t))e*’f2 — u(t) + tcos(t)e

et
V() = y(B)e " —2y(t)e
= (Y(t) — x(t) — 2ty(t) — tsin(t))e " + z(t)e™" + tsin(t)e "
= (Y(t) — x(t) — 2ty(t) — tsin(t))e " +u(t) + tsin(t)e ™"
Donc
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—v(t) + tcos(t)e "’
V' (t) = u(t) + tsin(t)e

:\
—
~
~
I

(z,y) est solution de (E) <« pour tout réel t € R, {

< pour tout réel t € R, (u+ iv)(t) = i(u+iv)(t) + teit—t*

Notons alors ‘
At €R e (u+iv)(t)e ™

(pour faire la méthode de la variation de la constante). Par produit, la fonction A est dérivable sur R, et pour tout
réel t € R, on a ' ' '
(u +iv)(t) = A(t)e™, puis (u+iv)'(t) = N (t)e" +iA(t)e™.

Alors en reportant dans ’équation,

(z,y) est solution de (E) < pour tout réel t € R, N (t) = te ™t

1
o ilexisteKeCavec)\:teRbﬁ—ie*tz—i—K.

En notant K = o + i3, on a alors

1 . )
(x,7) est solution de (E) <« il existe (o, 8) € R? tels que u +iv:t € R+ —ie”*tQ + Ke't

1
u:teER— —= cos(t)e*t2 + accos(t) — Bsin(t)
& il existe (o, 8) € R? tels que ,
vitER— ) sin(t)e™"" + Bcos(t) + asin(t)

1
z:teR— —=cos(t) + acos(t)e’” — Bsin(t)et”
& il existe (o, 8) € R? tels que

y:teR— D) sin(t) + B cos(t)e!” + asin(t)et”

(par rapport a la formule précédente, on a « = a et § = —b).
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