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TD12 - Fonctions vectorielles

1 Généralités

Exercice 1.

1. La fonction f : x 7→ cos(
√
x) est-elle dérivable en 0 ? de classe C1 sur R+ ?

2. Cette fonction est-elle de classe C∞ sur R+ ?

Exercice 2. Soit f et g ∈ C1(I,R2), montrer que φ = det(f, g) ∈ C1(I,R) et calculer φ′.

Exercice 3. On considère la fonction vectorielle A : t ∈ R 7→ A(t) =

(
a(t) b(t)
b(t) −a(t)

)
∈ M2(R) avec

a(0) = 0 et a(t) = e−
1
t2 cos

(
1

t

)
si t ̸= 0 et b(t) = e−

1
t2 sin

(
1

t

)
si t ̸= 0 et b(0) = 0.

1. Montrer que A est de classe C1 sur R.

2. Montrer que pour tout t ∈ R, A(t) est diagonalisable. On note λ1(t) et λ2(t) ses valeurs propres avec
λ1(t) ≥ λ2(t). Montrer que λ1 et λ2 sont des fonctions de classe C1 sur R.

Exercice 4. Soient a < b deux réels. Soit f : [a, b] → Rn (avec Rn muni du produit scalaire usuel), continue
sur [a, b] et dérivable sur ]a, b[. En considérant ϕ : t ∈ [a, b] 7→ (f(b)− f(a), f(t)), montrer qu’il existe c ∈ ]a, b[ tel
que

∥f(b)− f(a)∥ ≤ (b− a)∥f ′(c)∥

où ∥ · ∥ est la norme associée au produit scalaire usuel.

2 Systèmes différentiels

Exercice 5. Résoudre les systèmes linéaires différentiels suivants :

(S)

{
(1 + t2)x′ = tx+ y
(1 + t2)y′ = −x+ ty

et (T )

{
x′ = x− 2y + t
y′ = 2x− y + et

Indication : pour le premier système, poser z = x+ iy, pour le deuxième on peut poser u = x+ y et v = x− y.

Exercice 6. Résoudre le problème de Cauchy suivant :
x′ = −3x+ 5y − 5z
y′ = −4x+ 6y − 5z
z′ = −4x+ 4y − 3z

et


x(0) = 1
y(0) = 2
z(0) = 3

Exercice 7. Soit x, y, z des fonctions dépendant de t. Résoudre le problème de Cauchy suivant :
x′ = x+ y
y′ = 3y − z
z′ = y + z

et


x(0) = 1
y(0) = 2
z(0) = 1

Indication : on pourra montrer que la matrice du système est semblable à T =

1 0 0
0 2 1
0 0 2

.

Exercice 8. On considère le système différentiel (E) :

{
x′ = (et + t)x+ (et − t)y − t

y′ = (et − t)x+ (et + t)y + t
.
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1. Écrire ce système sous la forme X ′ = AX +B avec X =

(
x
y

)
, A ∈ C

(
R,M2(R)

)
et B ∈ C

(
R,M2,1(R)

)
.

2. Diagonaliser A(t) avec une matrice de passage P qui ne dépend pas de t.

3. En déduire les solutions du système différentiel.

Exercice 9. Résoudre l’équation différentielle (E) : y′′′ − y′′ − 4y′ + 4y = 12 + e−t.

Exercice 10. On considère le système différentiel (E) :

{
x′(t) = −tx(t) + y(t) + 1

y′(t) = (1− t2)x(t) + ty(t) + t.

1. Écrire ce système sous forme matricielle et vérifier que X1 : t 7→
(
1
t

)
et X2 : t 7→

(
t

t2 + 1

)
sont solutions du

système homogène (H) associé à (E).

2. Rechercher une solution particulière de (E) de la forme X = aX1 + bX2, où a et b sont deux fonctions de
classe C1 sur R.

3. En déduire la solution générale de (E) (indication : on utilisera le théorème de Cauchy).

Exercice 11. On considère le système différentiel (E) :

{
x′(t) = 2tx(t)− y(t) + t cos(t)

y′(t) = x(t) + 2ty(t) + t sin(t)
.

1. Déterminer le plan vectoriel des solutions de l’équation homogène (H) associé à (E) en changeant de fonctions
inconnues pour u(t) = x(t) exp(−t2) et v(t) = y(t) exp(−t2). On notera (X1, X2) une base de ce plan.

2. Rechercher une solution particulière de (E) de la forme X = aX1 + bX2, où a et b sont deux fonctions de
classe C1 sur R.

3. En déduire la solution générale de (E) (indication : on utilisera le théorème de Cauchy).

2



Fauriel - PC - Mathématiques TD12 - Fonctions vectorielles

Solutions

Exercice 1. 1) La fonction cos est de classe C∞ sur R et la fonction

x 7→
√
x

est continue sur R+ et de classe C∞ sur R∗
+, donc par composition, la fonction f est continue sur R+ et de classe C∞

sur R∗
+.

Pour tout x ∈ R∗
+,

f(x)− f(0)

x
=

cos
(√

x
)
− 1

x
∼

x→0+

− (
√
x)2

2

x
= −1

2
−→
x→0+

−1

2
,

donc la fonction f est dérivable en 0 et

f ′(0) = −1

2
.

Pour tout x ∈ R∗
+,

f ′(x) = − 1

2
√
x
sin(

√
x) ∼

x→0
−

√
x

2
√
x
= −1

2
−→
x→0+

−1

2
= f ′(0),

donc la fonction f ′ est continue en 0. Donc la fonction f est de classe C1 en 0.

Remarque. Et cela, bien que la fonction
x 7→

√
x

ne soit pas dérivable en 0 !

Donc la fonction f est de classe C1 sur R+.
2) On sait, pour tout réel u ∈ R,

cos(u) =
+∞∑
n=0

(−1)n

(2n)!
u2n.

Donc, pour tout réel x ∈ R∗
+, en prenant u =

√
x (qui est bien un réel),

f(x) =

+∞∑
n=0

(−1)n

(2n)!

(√
x
)2n

=

+∞∑
n=0

(−1)n

(2n)!
xn.

Or, la série entière ∑
n∈N

(−1)n

(2n)!
xn

a son rayon R qui vérifie
R ≥ x

pour tout x ∈ R∗
+, puisque la série numérique ∑

n∈N

(−1)n

(2n)!
xn

converge pour tout x ∈ R∗
+. Donc

R = +∞.

Le cours sur les séries entières donne alors que la fonction

g : x ∈]−R,R[= R 7→
+∞∑
n=0

(−1)n

(2n)!
xn ∈ R

est une fonction de classe C∞ sur ]−R,R[= R.
De plus, pour tout x ∈ R∗

+, on a
f(x) = g(x).

Et, pour x = 0,

f(0) = 1 et g(0) =
+∞∑
n=0

(−1)n

(2n)!
0n =

(−1)0

(2 · 0)!
+

+∞∑
n=1

(−1)n

(2n)!
· 0 = 1

1
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(car 0k = 0 si k ∈ N∗, et 00 = 1). Donc
f(0) = g(0).

Donc la fonction f est la restriction de la fonction g à R+. Or, la fonction g est de classe C∞ sur R, donc la
fonction f est de classe C∞ sur R+.

Exercice 2. L’application det(., .) est bilinéaire, les fonctions f et g sont de classe C1 sur I, donc (application
directe du cours) la fonction

t 7→ det
(
f(t), g(t)

)
est de classe C1 sur I, et : pour tout t ∈ I,

det(f, g)′(t) = det
(
f ′(t), g(t)

)
+ det

(
f(t), g′(t)

)
Exercice 3.

1. L’application
t 7→ A(t)

est de classe C1 sur R si et seulement si ses fonctions coordonnées (dans la base canonique) sont de classe C1

sur R. On va donc étudier le caractère C1 des applications

t 7→ a(t) et t 7→ b(t).

La fonction
t 7→ a(t)

est de classe C1 sur R∗ par composition de fonctions de classe C1. Il reste à étudier en 0.
Pour t ∈ R∗, on a :

|a(t)| ≤ e−
1
t2 −→

t→0
0,

donc par le théorème des gendarmes,
a(t) −→

t→0
0 = a(0).

Donc la fonction a est continue en 0.
Pour t ∈ R∗, on a :

a′(t) =
1

t2
sin

(
1

t

)
e−

1
t2 +

2

t3
cos

(
1

t

)
e−

1
t2 .

Donc pour tout t ∈ R∗, par inégalité triangulaire (puis car | cos | ≤ 1 et | sin | ≤ 1), on a

|a′(t)| ≤ e−
1
t2

t2
+

2e−
1
t2

t3
−→
t→0

0

(par croissance comparée, faire le changement de variable x =
1

t2
pour s’en convaincre).

Donc, par le théorème des gendarmes,
lim
t→0

a′(t) = 0.

Donc la fonction a est continue sur R, de classe C1 sur R∗, avec

lim
t→0

a′(t) = 0.

Le théorème de la limite de la dérivée s’applique alors, et donne que la fonction a est de classe C1 sur R, et
de plus

a′(0) = 0.

En faisant le même raisonnement sur b, on obtient que la fonction b est de classe C1 sur R (avec, pour
tout t ∈ R∗,

b′(t) = − 1

t2
cos

(
1

t

)
e−

1
t2 +

2

t3
sin

(
1

t

)
e−

1
t2 ,

2



Fauriel - PC - Mathématiques TD12 - Fonctions vectorielles

donc on a les mêmes majorations pour |b| et |b′| que pour |a| et |a′| respectivement).
Enfin, les fonctions a et b étant de classe C1 sur R, et donc la fonction −a aussi, on en déduit que la fonction A
est de classe C1 sur R.

2. Pour tout λ ∈ C,

χA(t)(λ) =

∣∣∣∣ −a(t) + λ −b(t)
−b(t) λ+ a(t)

∣∣∣∣ = (
− a(t) + λ

)(
a(t) + λ

)
− b2(t),

donc
χA(t) =

(
− a(t) +X

)(
a(t) +X

)
− b2(t) = X2 − a2(t)− b2(t).

Pour t ∈ R∗, on a :

χA(t)(X) = X2 − (a2(t) + b2(t)) = X2 − e−
2
t2 =

(
X − e−

1
t2

)(
X + e−

1
t2

)
.

Donc, pour tout t ∈ R∗, la matrice A(t) a deux valeurs propres réelles distinctes et est de taille 2, donc la
matrice A(t) est diagonalisable dans M2(R).

Remarque. Ce n’est pas surprenant : la matrice A(t) est symétrique réelle...

On a
λ1(t) =

√
a2(t) + b2(t) = e−

1
t2 et λ2(t) = −

√
a2(t) + b2(t) = −e−

1
t2 = −λ1(t).

Si t = 0, on a
A(0) = 0M2(R),

donc la matrice A(0) est la matrice nulle, donc diagonalisable. Et on a

λ1(0) = 0 =
√
a2(0) + b2(0) et λ2(0) = 0 = −λ1(0).

Donc λ2 = −λ1. Il suffit de montrer que la fonction

λ1 =
√
a2 + b2

est de classe C1 sur R.
La fonction λ1 est continue sur R, par composition, car

λ1 =
√
a2 + b2,

avec la fonction a2+b2 continue (par opérations usuelles) et positive sur R, et la fonction √
. continue sur R+.

Toujours par composition, on a que la fonction λ1 est de classe C1 sur R∗, car la fonction √
. est de classe C1

sur R∗
+, la fonction a2 + b2 est de classe C1 sur R∗, et car a2(t) + b2(t) > 0 pour tout t ∈ R∗.

Puis, pour t ∈ R∗,
λ1(t) = e−

1
t2 ,

donc pour tout t ∈ R∗,

λ′
1(t) =

2

t3
e−

1
t2 −→

t→0
0

(par croissance comparée, pour s’en convaincre, poser u =
1

t2
).

Donc la fonction λ1 est continue sur R, de classe C1 sur R∗, avec lim
t→0

λ′
1(t) = 0 : le théorème de la limite de

la dérivée s’applique et donne bien que la fonction λ1 est de classe C1 en 0, donc sur R (et λ′
1(0) = 0).

Exercice 4. Les fonctions
t 7→ f(t) et t 7→ f(b)− f(a)

sont continues sur [a, b] et dérivables sur ]a, b[ (de dérivées respectives t 7→ f ′(t) et t 7→ 0⃗), donc la fonction

t 7→
(
f(b)− f(a), f(t)

)
aussi.
Puis, la fonction

(x, y) ∈ Rn × Rn 7→ (x, y)

est bilinéaire, Rn est de dimension finie, donc :
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• l’application
(x, y) 7→ (x, y)

est continue sur Rn × Rn, puis par composition, la fonction ϕ est continue sur [a, b],

• par composition, la fonction ϕ est dérivable sur ]a, b[, et pour tout t ∈ ]a, b[,

ϕ′(t) =
(
0⃗, f(t)

)
+

(
f(b)− f(a), f ′(t)

)
=

(
f(b)− f(a), f ′(t)

)
.

Puis, par linéarité à droite du produit scalaire,

ϕ(b)− ϕ(a) = (f(b)− f(a), f(b)− f(a)) = ∥f(b)− f(a)∥2

(donc est positif), et le théorème des accroissements finis donne qu’il existe c ∈ ]a, b[ tel que

ϕ(b)− ϕ(a) = (b− a)ϕ′(c).

Puis, l’inégalité de Cauchy-Schwarz donne

|ϕ′(c)| =
∣∣ (f(b)− f(a), f ′(c)

) ∣∣ ≤ ∥f(b)− f(a)∥ · ∥f ′(c)∥,

et donc
∥f(b)− f(a)∥2 = |ϕ(b)− ϕ(a)| = (b− a)∥ϕ′(c)∥ ≤ (b− a)∥f(b)− f(a)∥ · ∥f ′(c)∥.

Si f(b)− f(a) = 0⃗, alors ∥f(b)− f(a)∥ = 0, et donc

∥f(b)− f(a)∥ ≤ (b− a)∥f ′(c)∥

est vraie (car b− a ≥ 0 et qu’une norme est positive).
Et si f(b)− f(a) ̸= 0⃗, on a ∥f(b)− f(a)∥ > 0, et on peut donc diviser l’inégalité obtenue par ∥f(b)− f(a)∥, ce qui
donne

∥f(b)− f(a)∥ ≤ (b− a)∥f ′(c)∥.

Dans tous les cas, on a bien l’inégalité voulue.

Exercice 5. 1) Soit x et y dérivables sur R. On pose z = x+ iy, c’est à dire

z : t ∈ R 7→ x(t) + iy(t).

Comme les fonctions x et y sont dérivables, la fonction z est dérivable, et on a : pour tout réel t ∈ R,

z′(t) = x′(t) + iy′(t).

Comme deux complexes sont égaux si et seulement s’ils ont mêmes parties réelles et mêmes parties imaginaires,
en notant L1 et L2 les lignes du système (S), on a

(S) ⇔ (1)+ i(2) ⇔ (1+ t2)z′ = t(x+ iy)+ (y− ix) = tz− iz = (t− i)z ⇔ (t+ i)z′ = z

(en divisant par t− i, qui est non nul, et car 1 + t2 = (t− i)(t+ i)).
Cette dernière équation différentielle se résout directement, ainsi

(S) ⇔ ∃λ ∈ C, z : t ∈ R 7→ λ(t+ i).

Comme x = Re(z) et y = Im(z) et si on note λ = a+ ib, on a alors : les fonctions x et y sont solutions de (S) si
et seulement s’il existe (a, b) ∈ R2 avec

x : t ∈ R 7→ at− b et y : t ∈ R 7→ a+ bt .

2) Soit x et y dérivables sur R. (x, y) est solution du système (T ) si et seulement si (u, v) vérifie{
u′ = 3v + t+ et

v′ = −u+ t− et

4
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(c’est un calcul direct, pour la réciproque on utilise que x =
u+ v

2
, y =

u− v

2
).

Analyse : supposons donc que (u, v) vérifie {
u′ = 3v + t+ et

v′ = −u+ t− et
.

Alors u′ est dérivable sur R, et
u′′ = 3v′ + 1 + et = −3u+ 3t+ 1− 2et.

Donc u est solution d’une équation différentielle linéaire d’ordre 2, à coefficients constants. L’équation homogène
associée a pour équation caractéristique

r2 = −3,

donc les racines sont ±i
√
3. Donc les solutions de l’équation homogène sont les fonctions

t ∈ R 7→ α cos
(√

3t
)
+ β sin

(√
3t
)

avec (α, β) ∈ R2.
Cherchons une solution particulière de l’équation différentielle

u′′ = −3u+ 3t+ 1

de la forme u : t 7→ at+ b : on veut donc, pour tout t ∈ R,

0 = −3at− 3b+ 3t+ 1 = 3(1− a)t+ 1− 3b,

ce qui est vrai si

a = 1 et b =
1

3
.

Cherchons une solution particulière de l’équation différentielle

u′′ = −3u− 2et

de la forme u : t 7→ aet : on veut donc, pour tout t ∈ R,

aet = −3aet − 2et, soit a = −3a− 2,

donc
a = −1

2

convient.
Donc par principe de superposition, on obtient que les solutions de l’équation différentielle

u′′ = −3u+ 3t+ 1− 2et

sont les fonctions
t ∈ R 7→ −1

2
et + t+

1

3
+ α cos

(√
3t
)
+ β sin

(√
3t
)

avec (α, β) ∈ R2.
Alors la première équation du système donne

v =
u′ − t− et

3
= −1

2
et +

1

3
− t

3
− α√

3
sin

(√
3t
)
+

β√
3
cos

(√
3t
)
.

Synthèse : il faut maintenant vérifier la deuxième ligne du système pour savoir parmi ces fonctions lesquelles sont
effectivement solutions.
Or,

v′ = −u+ t−et ⇔ −1

2
et− 1

3
−α cos

(√
3t
)
−β sin

(√
3t
)
=

1

2
et− t− 1

3
−α cos

(√
3t
)
−β sin

(√
3t
)
+ t−et,

ce qui est toujours vrai, donc toutes les fonctions trouvées conviennent.

5
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Conclusion : on en déduit alors que les solutions de (T ) sont les fonctions (x, y) avec

x =
u+ v

2
: t ∈ R 7→ −1

2
et +

t

3
+

1

3
+

1

2

(
α+

β√
3

)
cos

(√
3t
)
+

1

2

(
β − α√

3

)
sin

(√
3t
)

et

y =
u− v

2
: t ∈ R 7→ 2t

3
+

1

2

(
α− β√

3

)
cos

(√
3t
)
+

1

2

(
β +

α√
3

)
sin

(√
3t
)

pour (α, β) ∈ R2 quelconques.

Exercice 6. • Le problème est équivalent à

X ′ = AX où X =

 x
y
z

 et A =

 −3 5 −5
−4 6 −5
−4 4 −3

 ,

avec X(0) =

1
2
3

. Or, un calcul donne

χA = (X − 1)(X − 2)(X + 3), donc Sp(A) = {1, 2,−3}.

Donc A a trois valeurs propres différentes (et simples), est de taille 3, donc est diagonalisable.
On a

E1(A) = Vect

 0
1
1

 , E2(A) = Vect

 1
1
0

 et E−3(A) = Vect

 1
1
1

 ,

donc (puisque la matrice A est diagonalisable et qu’on a trouvé une base de chaque espace propre), la matrice

P =

 0 1 1
1 1 1
1 0 1


est inversible, et

P−1AP =

 1 0 0
0 2 0
0 0 −3

 =: D.

• Soit X : R → M3,1(R). On pose
Y = P−1X, soit X = PY.

Alors X est dérivable si et seulement si Y l’est (car les applications

Z ∈ M3,1(R) 7→ PZ ∈ M3,1(R) et Z ∈ M3,1(R) 7→ P−1Z ∈ M3,1(R)

sont linéaires), et dans ce cas
Y ′ = (P−1X)′ = P−1X ′

car P−1 est à coefficients constants. Notons, pour tout t ∈ R,

Y (t) =

 u(t)
v(t)
w(t)

 .

6
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On obtient ainsi
X ′ = AX ⇔ PY ′ = PDP−1PY

⇔ Y ′ = DY

⇔

u′

v′

w′

 =

1 0 0
0 2 0
0 0 −3

u
v
w



⇔


u′ = u
v′ = 2v
w′ = −3w

⇔ ∃(λ, µ, γ) ∈ R3, ∀t ∈ R,


u(t) = λet

v(t) = µe2t

w(t) = γe−3t

Ainsi avec X = PY =

0 1 1
1 1 1
1 0 1

u
v
w

 =

 v + w
u+ v + w
u+ w

, on obtient :

X ′ = AX ⇔ ∃(λ, µ, γ) ∈ R3, ∀t ∈ R,


x(t) = µe2t + γe−3t

y(t) = λet + µe2t + γe−3t

z(t) = λet + γe−3t

On veut x(0) = 1, y(0) = 2 et z(0) = 3, on a donc :
x(0) = µ+ γ = 1 (1)

y(0) = λ+ µ+ γ = 2 (2)

z(0) = λ+ γ = 3 (3)

.

Or, (2)− (1) donne
λ = 1 .

Donc
γ = 3− 1 = 2 et µ = 1− γ = −1 .

D’où le problème a une unique solution, à savoir
x : t 7→ −2e2t + 2e−3t

y : t 7→ et − e2t + 2e−3t

z : t 7→ et + 2e−3t

Exercice 7. • Le problème est équivalent à

X ′ = AX où X =

 x
y
z

 et A =

 1 1 0
0 3 −1
0 1 1

 ,

avec X(0) =

1
2
1

. Un calcul donne alors

χA = (X − 1)(X − 2)2,

donc 2 est valeur propre de multiplicité 2. Or

dim
(
E2(A)

)
= 3− rg

 −1 1 0
0 1 −1
0 1 −1

 = 1 ̸= 2,

7
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donc A n’est pas diagonalisable.
• Montrons que A est semblable à T .

On cherche donc (U, V,W ) ∈
(
M3,1(R)

)3 tel que la matrice par blocs P =
(
U V W

)
soit inversible et vérifie

P−1AP = T.

Or, avec P sous cette forme,

P−1AP = T ⇔ AP = PT et P est inversible

⇔
(
AU AV AW

)
=

(
U 2V V + 2W

)
(par calcul matriciel par blocs) et P est inversible

⇔


AU = U

AV = 2V

AW = V + 2W

et P est inversible

⇔


(A− I3)U = 0M3,1(R)

(A− 2I3)
2W = 0M3,1(R)

V = (A− 2I3)W

et P est inversible

On veut donc
U ∈ Ker(A− I3) = E1(A), W ∈ Ker

(
(A− 2I3)

2
)
,

et on posera
V = (A− 2I3)W.

On fera attention : comme on veut P =
(
U V W

)
inversible, il faut V ̸= 03,1, donc W /∈ Ker(A−2I3) = E2(A).

Il restera à vérifier que P est bien inversible.
On obtient :

E1(A) = Vect

 1
0
0

 ,

on pose

U =

1
0
0

 .

Recherche de W : on a

(A− 2I3)
2 =

 −1 1 0
0 1 −1
0 1 −1

 −1 1 0
0 1 −1
0 1 −1

 =

 1 0 −1
0 0 0
0 0 0

 .

Donc

W =

 0
1
0


convient, et alors

V = (A− 2I3)W =

 1
1
1

 .

Ainsi,

P =

 1 1 0
0 1 1
0 1 0


vérifie AP = PT . Et comme

det(P ) = −1 ̸= 0,

8
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la matrice P est bien inversible, donc

P−1AP = T =

 1 0 0
0 2 1
0 0 2

 .

• Soit X : R → M3,1(R). On pose
Y = P−1X, soit X = PY.

Alors X est dérivable si et seulement si Y l’est (car les applications

Z ∈ M3,1(R) 7→ PZ ∈ M3,1(R) et Z ∈ M3,1(R) 7→ P−1Z ∈ M3,1(R)

sont linéaires), et dans ce cas
Y ′ = (P−1X)′ = P−1X ′

car P−1 est à coefficients constants. Notons, pour tout t ∈ R,

Y (t) =

 u(t)
v(t)
w(t)

 .

Alors,
X ′ = AX ⇔ PY ′ = PTP−1PY

⇔ Y ′ = TY

⇔

u′

v′

w′

 =

1 0 0
0 2 1
0 0 2

u
v
w



⇔


u′ = u
v′ = 2v + w
w′ = 2w

⇔ ∃(α, λ) ∈ R2, ∀t ∈ R,


u(t) = λet

w(t) = αe2t

v′(t) = 2v(t) + αe2t (E)

Les solutions de l’équation homogène associée à (E) sont les fonctions de la forme

t 7→ βe2t

avec β ∈ R.
La recherche d’une solution particulière de (E) par la méthode de variation de la constante donne, pour tout t ∈ R,

β′(t) = α,

donc la fonction β : t 7→ αt convient. Ainsi la fonction

t 7→ αte2t

est solution particulière de (E). Ainsi,

v est solution de E ⇔ il existe β ∈ R tel que v : t ∈ R 7→ (αt+ β)e2t.

Comme

X = PY =

1 1 0
0 1 1
0 1 0

u
v
w

 =

u+ v
v + w
v

 ,
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on a :

X ′ = AX ⇔ ∃(α, β, λ) ∈ R3, ∀t ∈ R,


u(t) = λet

w(t) = αe2t

v(t) = (αt+ β)e2t

⇔ ∃(α, β, λ) ∈ R3, ∀t ∈ R,


x(t) = λet + (αt+ β)e2t

y(t) = (αt+ β)e2t + αe2t

z(t) = (αt+ β)e2t

Puis, 
1 = x(0) = λ+ β
2 = y(0) = β + α
1 = z(0) = β

⇔


λ = 0
β = 1
α = 1

.

Ainsi le problème a une unique solution, à savoir
x : t 7→ (t+ 1)e2t

y : t 7→ (t+ 2)e2t

z : t 7→ (t+ 1)e2t

Exercice 8. 1) Il est direct que

A : t 7→
(
et + t et − t
et − t et + t

)
et B : t 7→

(
−t
t

)
.

2) On cherche les valeurs propres de A, puis les espaces propres associés. On obtient :

χA =
(
X − 2et

)
(X − 2t), donc Sp(A) = {2t, 2et}.

Puis, on sait, pour tout t ∈ R,
t < 1 + t ≤ et,

donc 2t ̸= 2et, donc A a deux valeurs propres différentes, est de taille 2, donc A est diagonalisable. De plus, ses
valeurs propres sont simples, donc ses espaces propres sont de dimension 1.
On obtient

E2t(A) = Vect

((
1
−1

))
et E2et(A) = Vect

((
1
1

))
,

donc (puisque A est diagonalisable et qu’on a trouvé une base de chaque espace propre), la matrice

P =

(
1 1
−1 1

)
est inversible et vérifie

P−1A(t)P =

(
2t 0
0 2et

)
=: D(t)

pour tout réel t ∈ R.
3) Soit X : R → M2,1(R). Notons

Y = PX, soit X = PY.

Alors X est dérivable si et seulement si Y l’est (car les applications

Z ∈ M2,1(R) 7→ PZ ∈ M2,1(R) et Z ∈ M2,1(R) 7→ P−1Z ∈ M2,1(R)

sont linéaires), et dans ce cas
Y ′ = (P−1X)′ = P−1X ′

car P−1 est à coefficients constants. Notons

Y =

(
z
w

)
,
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et calculons

P−1 =
1

2

(
1 −1
1 1

)
.

Alors
X ′ = A(t)X +B(t) ⇔ PY ′ = PD(t)P−1PY +B(t)

⇔
(
z′

w′

)
= Y ′ = D(t)Y + P−1B(t) =

(
2t 0
0 2et

)(
z
w

)
+

(
−t
0

)

⇔ ∀t ∈ R,

{
z′(t) = 2tz(t)− t

w′(t) = 2etw(t)

⇔ ∃(λ, µ) ∈ R2, ∀t ∈ R,

z(t) =
1

2
+ λet

2

w(t) = µe2e
t

(en résolvant les deux équations différentielles linéaires d’ordre 1). Puis

X = PY =

(
1 1
−1 1

)(
z
w

)
=

(
z + w
−z + w

)
,

donc

X ′ = A(t)X + b(t) ⇔ ∃(λ, µ) ∈ R2, ∀t ∈ R,


x : t 7→ 1

2
+ λet

2
+ µe2e

t

y : t 7→ −1

2
− λet

2
+ µe2e

t

Exercice 9. ⋆ Cherchons les solutions de l’équation homogène en passant sous forme matricielle : soit y : R → R
une fonction trois fois dérivable sur R, si on note

X =

 y
y′

y′′

 et A =

 0 1 0
0 0 1
−4 4 1

 ,

alors
y′′′ − y′′ − 4y′ + 4y = 0 ⇔ X ′ = AX.

Puis,
χA = X3 −X2 − 4X + 4 = (X − 1)(X − 2)(X + 2), donc Sp(A) = {1, 2,−2}.

A a alors 3 valeurs propres deux à deux différentes, est de taille 3, donc A est diagonalisable, et ses sous-espaces
propres sont tous de dimension 1.
On diagonalise A : on a

E1 = Vect

1
1
1

 , E2 = Vect

1
2
4

 , E−2 = Vect

 1
−2
4

 ,

et comme on sait que A est diagonalisable et qu’on a trouvé une base de chaque espace propre, la matrice

P =

1 1 1
2 1 −2
4 1 4


est inversible, et

P−1AP =

2 0 0
0 1 0
0 0 −2

 =: D.

Puis, si on note
Y = P−1X, soit X = PY,
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alors X est dérivable si et seulement si Y l’est (car les applications

Z ∈ M3,1(R) 7→ PZ ∈ M3,1(R) et Z ∈ M3,1(R) 7→ P−1Z ∈ M3,1(R)

sont linéaires), et dans ce cas
X ′ = (PY )′ = PY ′

(car P est à coefficients constants). Notons

Y =

y1
y2
y3

 ,

alors
AX = PDP−1X = PDY,

donc (car P est inversible)

X ′ = AX ⇔ PY ′ = PDY

⇔ Y ′ = DY

⇔

y′1
y′2
y′3

 =

2 0 0
0 1 0
0 0 −2

y1
y2
y3



⇔


y′1 = 2y1

y′2 = y2

y′3 = −2y3

⇔ ∃(α, βγ) ∈ R3 | ∀t ∈ R,


y1(t) = αe2t

y2(t) = βet

y3(t) = γe−2t

et alors

X = PY =

1 1 1
2 1 −2
4 1 4

y1
y2
y3

 =

 y1 + y2 + y3
2y1 + y2 − 2y3
4y1 + y2 + 4y3


donne

y′′′ − y′′ − 4y′ + 4y = 0 ⇔ ∃(α, βγ) ∈ R3 | y : t ∈ R 7→ αe2t + βet + γe−2t

(on ne prend que la première coordonnée de X, la seule qui nous intéresse, et qui donne y = y1 + y2 + y3).
⋆ Enfin, il faut trouver une solution particulière. Utilisons le principe de superposition : l’équation différentielle

y′′′ − y′′ − 4y′ + 4y = 12

a comme solution particulière y = 3 (comme le second membre est de la forme P (t)eat avec a = 0 qui n’est pas
racine de l’équation caractéristique, on cherche une solution de la forme Q(t)eat avec Q polynôme de même degré
que P , donc de la forme t 7→ constante). Enfin, cherchons une solution particulière de l’équation différentielle

y′′′ − y′′ − 4y′ + 4y = e−t

sous la forme
t 7→ ae−t,

ce qui donne : pour tout t ∈ R,

(−1)3ae−t − (−1)2ae−t − 4a(−1)e−t + 4ae−t = e−t,

soit a =
1

6
.
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⋆ Donc les solutions de l’équation initiale sont les fonctions

t ∈ R 7→ 1

6
e−t + 3 + αe2t + βet + γe−2t

avec (α, β, γ) ∈ R3.

Exercice 10. 1) Ce système s’écrit X ′ = AX +B avec

X =

(
x
y

)
, A : t ∈ R 7→

(
−t 1

1− t2 t

)
et B : t ∈ R 7→

(
1
t

)
.

Les fonctions X1 et X2 sont de classe C1 sur R, car leurs fonctions coordonnées dans la base canonique de M2,1(R)
(à savoir t 7→ 1 et t 7→ t pour X1, t 7→ t et t 7→ t2 + 1 pour X2) sont polynomiales, donc de classe C1. Puis, pour
tout réel t ∈ R,

X ′
1(t) =

(
0
1

)
= A(t)X1(t) et X ′

2(t) =

(
1
2t

)
= A(t)X2(t),

donc les fonctions X1 et X2 sont bien solutions du système homogène associé.
2) Soit a et b deux fonctions de classe C1 sur R et X = aX1 + bX2.
Par produit et somme de fonctions de classe C1 sur R, la fonction X est de classe C1 sur R. Et :

X ′ = a′X1 + b′X2 + aX ′
1 + bX ′

2,

donc

X ′ = AX +B ⇔ a′X1 + b′X2 + aX ′
1 + bX ′

2 = aAX1 + bAX2 +B ⇔ a′X1 + b′X2 = B

(car AX1 = X ′
1 et AX2 = X ′

2). En reportant la définition de X1 et X2, on a alors

X ′ = AX +B ⇔ ∀t ∈ R,

{
a′ + tb′ = 1

ta′ + (t2 + 1)b′ = t
⇔ ∀t ∈ R,

{
b′ = 0

a′ = 1

donc
X : t ∈ R 7→ tX1(t) + 0X2(t) = tX1(t)

est une solution particulière sur R (on a pris a : t 7→ t et b : t 7→ 0, qui sont bien de classe C1 sur R).
3) On sait que les solutions générales s’écrivent sous la forme de la somme de la solution particulière que l’on a
trouvé à la question précédente, et d’une solution quelconque du système différentiel homogène correspondant (car
le système est linéaire).
Notons E0 l’espace vectoriel des solutions du système différentiel homogène

X ′ = AX.

On sait
X1 ∈ E0 et X2 ∈ E0.

On a (X1, X2) qui est une famille libre. En effet, pour tout (a, b) ∈ R2, si aX1 + bX2 = 0 (ici le 0 est la fonction

t ∈ R 7→
(
0
0

)
), alors pour tout t ∈ R, on a

aX1(t) + bX2(t) =

(
0
0

)
,

donc pour tout t ∈ R, {
a+ bt = 0

at+ b(t2 + 1) = 0
.

Comme c’est vrai pour tout t ∈ R, c’est en particulier vrai pour t = 0 et t = 1, alors la première ligne donne a = 0
et a+ b = 0, soit

a = b = 0.
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Enfin, A est une fonction continue de R dans M2(R) (car ses fonctions coefficients (à savoir, t 7→ −t, t 7→ t, t 7→ 1−t2

et t 7→ 1), qui sont les fonctions coordonnées dans la base canonique de M2(R), sont polynomiales donc continues),
et B est une fonction continue de R dans M2,1(R) (car ses fonctions coefficients (à savoir t 7→ 1 et t 7→ t), qui
sont les fonctions coordonnées dans la base canonique de M2,1(R), sont polynomiales donc continues), et R est un
intervalle. Donc le (corollaire du) théorème de Cauchy donne que E0 est un espace vectoriel de dimension 2.
Comme (X1, X2) est une famille libre de deux vecteurs de E0, qui est un espace vectoriel de dimension 2, on en
déduit que (X1, X2) est une base de E0. Donc les solutions du système différentiel homogène X ′ = AX sont les
fonctions aX1 + bX2 pour (a, b) ∈ R2 quelconque.
On en déduit que les solutions générales de X ′ = AX +B sont les fonctions du type

X : t ∈ R 7→ (t+ α)X1(t) + βX2(t)

avec (α, β) ∈ R2 quelconque.

Exercice 11. Commençons par remarquer que R est un intervalle, la fonction

t ∈ R 7→
(
2t −1
1 2t

)
est continue (car les fonctions coordonnées dans la base canonique de M2(R) sont les fonctions

t 7→ 2t, t 7→ −1, t 7→ 1,

qui sont continues sur R car polynomiales), donc par le théorème de Cauchy, les solutions du système différen-
tiel (H) : X ′ = A(t)X forment un espace vectoriel H de dimension 2. Donc, pour la question 1, on cherche bien
un plan.
1) Les fonctions x et y sont dérivables sur R si et seulement si u et v le sont (par produit avec t 7→ exp(±t2) qui
est dérivable). Si c’est le cas, dérivons comme produit : pour tout t ∈ R,

u′(t) = x′(t)e−t2 − 2tx(t)e−t2 =
(
x′(t)− 2tx(t) + y(t)

)
e−t2 − y(t)e−t2 =

(
x′(t)− 2tx(t) + y(t)

)
e−t2 − v(t)

et

v′(t) = y′(t)e−t2 − 2ty(t)e−t2 =
(
y′(t)− x(t)− 2ty(t)

)
e−t2 + x(t)e−t2 =

(
y′(t)− x(t)− 2ty(t)

)
e−t2 + u(t)

Donc

(x, y) est solution de (H) ⇔

{
u′ = −v

v′ = u
,

ce qui donne (donc là, on ne fait qu’une implication, il faudra faire la réciproque plus loin)

u′′ = −u puis v = −u′,

donc il existe (a, b) ∈ R2 avec

u : t 7→ a cos(t) + b sin(t), puis v : t 7→ a sin(t)− b cos(t).

Réciproquement, pour un tel u et un tel v, on a bien v′ = −u (c’est ainsi qu’a été construit v), et on vérifie
directement que v′ = u.
Donc

(x, y) est solution de (H) ⇔ il existe (a, b) ∈ R2 tels que
(
x
y

)
: t ∈ R 7→ a et

2

(
cos(t)
sin(t)

)
︸ ︷︷ ︸

=X1

+b et
2

(
sin(t)

− cos(t)

)
︸ ︷︷ ︸

=X2

.

On a donc

X1 : t ∈ R 7→ et
2

(
cos(t)
sin(t)

)
et X2 : t 7→ et

2

(
sin(t)

− cos(t)

)
,
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et (X1, X2) engendrent les solutions de (H). De plus, c’est une famille libre car (par exemple), X1(0) =

(
1
0

)
et

X2(0) =

(
0
−1

)
forment une famille libre de M2,1(R). Donc (X1, X2) est une base de H.

On peut sinon utiliser le théorème de Cauchy pour dire

dim
(
H
)
= 2,

et comme la famille (X1, X2) engendre H, on a bien que la famille (X1, X2) est une base de H.
2) Notons

A : t 7→
(
2t −1
1 2t

)
et B : t 7→

(
t cos(t)
t sin(t)

)
.

Alors le couple de fonctions (x, y) est solution du système si et seulement si X ′ = AX +B, en notant X =

(
x
y

)
.

Or, si on prend
X = aX1 + bX2

avec a et b de classe C1 sur R, alors la fonction X est de classe C1 sur R comme produit de fonctions de classe C1,
et en dérivant un produit, on a

X ′ = a′X1 + b′X2 + aX ′
1 + bX ′

2,

donc

X ′ = AX +B ⇔ a′X1 + b′X2 + aX ′
1 + bX ′

2 = aAX1 + bAX2 +B ⇔ a′X1 + b′X2 = B

(car AX1 = X ′
1 et AX2 = X ′

2 puisque X1 et X2 sont solutions de (H)).
En reportant la définition de X1 et X2, on a alors

X ′ = AX+B ⇔ ∀t ∈ R,

{
a′(t) cos(t)et

2
+ b′(t) sin(t)et

2
= t cos(t)

a′(t) sin(t)et
2 − b′(t) cos(t)et

2
= t sin(t)

⇔ ∀t ∈ R,

{
b′(t)et

2
= 0

a′(t)et
2
= t

⇔ ∀t ∈ R,

{
b′(t) = 0

a′(t) = te−t2

donc

X : t ∈ R 7→ −1

2
e−t2X1(t) + 0X2(t) = −1

2
e−t2X1(t)

est une solution particulière sur R (on a pris a : t 7→ −1

2
e−t2 et b : t 7→ 0, qui sont bien de classe C1 sur R).

3) Les solutions générales sont donc du type

X : t ∈ R 7→
(
−1

2
e−t2 + a

)
X1(t) + bX2(t)

avec (a, b) ∈ R2 quelconque.
Une démonstration directe : dérivons comme produit : pour tout réel t ∈ R,

u′(t) = x′(t)e−t2 − 2tx(t)e−t2

=
(
x′(t)− 2tx(t) + y(t)− t cos(t)

)
e−t2 − y(t)e−t2 + t cos(t)e−t2

=
(
x′(t)− 2tx(t) + y(t)− t cos(t)

)
e−t2 − v(t) + t cos(t)e−t2

et
v′(t) = y′(t)e−t2 − 2ty(t)e−t2

=
(
y′(t)− x(t)− 2ty(t)− t sin(t)

)
e−t2 + x(t)e−t2 + t sin(t)e−t2

=
(
y′(t)− x(t)− 2ty(t)− t sin(t)

)
e−t2 + u(t) + t sin(t)e−t2

Donc
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(x, y) est solution de (E) ⇔ pour tout réel t ∈ R,

{
u′(t) = −v(t) + t cos(t)e−t2

v′(t) = u(t) + t sin(t)e−t2

⇔ pour tout réel t ∈ R, (u+ iv)′(t) = i(u+ iv)(t) + teit−t2 .

Notons alors
λ : t ∈ R 7→ (u+ iv)(t)e−it

(pour faire la méthode de la variation de la constante). Par produit, la fonction λ est dérivable sur R, et pour tout
réel t ∈ R, on a

(u+ iv)(t) = λ(t)eit, puis (u+ iv)′(t) = λ′(t)eit + iλ(t)eit.

Alors en reportant dans l’équation,

(x, y) est solution de (E) ⇔ pour tout réel t ∈ R, λ′(t) = te−t2

⇔ il existe K ∈ C avec λ : t ∈ R 7→ −1

2
e−t2 +K.

En notant K = α+ iβ, on a alors

(x, y) est solution de (E) ⇔ il existe (α, β) ∈ R2 tels que u+ iv : t ∈ R 7→ −1

2
eit−t2 +Keit

⇔ il existe (α, β) ∈ R2 tels que


u : t ∈ R 7→ −1

2
cos(t)e−t2 + α cos(t)− β sin(t)

v : t ∈ R 7→ −1

2
sin(t)e−t2 + β cos(t) + α sin(t)

⇔ il existe (α, β) ∈ R2 tels que


x : t ∈ R 7→ −1

2
cos(t) + α cos(t)et

2 − β sin(t)et
2

y : t ∈ R 7→ −1

2
sin(t) + β cos(t)et

2
+ α sin(t)et

2

(par rapport à la formule précédente, on a α = a et β = −b).
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