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Chapitre 14 - Fonctions sur un espace
vectoriel normé

1 Topologie d’un espace vectoriel normé

1.1 Points intérieurs, parties ouvertes

Définition : Point intérieur

Soit E un evn. Soient A Ă E et a P A. On dit que a est un point intérieur de A
s’il existe r ą 0 tel que :

B̊pa, rq Ă A.

On note Å l’ensemble des points intérieurs.

Exemples : 0 est un point intérieur de R. C’est aussi un point intérieur de s ´ 1, 1r. En
revanche, ce n’est pas un point intérieur de R`.
Remarque : l’intuition est que « être un point intérieur » est équivalent à « ne pas être
sur le bord ».

Définition : Partie ouverte

Soit E un evn. Soit A Ă E. On dit que A est une partie ouverte de E si tous les
points de A sont intérieurs de A, c’est-à-dire si A “ Å.

Exemples :
• s0, 1r est une partie ouverte de R. r0, 1s, r0, 1r et s0, 1s ne le sont pas.
• E est une partie ouverte de lui-même. ∅ est également une partie ouverte.

Remarque : l’intuition est que le bord de A ne fait pas partie de A lui-même. On rendra
cette intuition plus précise un peu plus tard.

Proposition

Les boules ouvertes sont ouvertes.

Propriétés :
• La réunion (quelconque) de parties ouvertes est ouverte ;
• L’intersection (finie) de parties ouvertes est ouverte.

Exemples : avec Ys1{n; 1r, s0, 2rXs1, 3r et Xs ´ 1{n, 1{nr.

1.2 Parties fermées, adhérence, partie dense

Définition : Partie fermée

Soit E un evn. Soit A Ă E. On dit que A est une partie fermée de E si son
complémentaire dans E est ouvert, c’est-à-dire lorsque EzA est ouvert.

Exemples :
• r0, 1s est une partie fermée de R. s0, 1r, r0, 1r et s0, 1s ne le sont pas.
• Les boules fermées sont fermées. Les sphères sont fermées.

Remarque : Attention, ouvert n’est pas le contraire de fermé ! Par exemple r0, 1r n’est ni
ouvert ni fermé. Il existe également des ensembles à la fois ouvert et fermé. En particulier,
E et ∅ sont à la fois ouverts et fermés.

Proposition : Caractérisation séquentielle des fermés

Soit A Ă E. A est fermée si et seulement si la limite de suite convergente d’éléments
de A est un élément de A.

Démonstration : À faire ? ˝

Exemple : Q n’est pas un fermé de R
Propriétés :

• La réunion (finie) de parties fermées est fermée ;
• L’intersection (quelconque) de parties fermées est fermée.

Remarque : cela résulte du passage au complémentaire des propriétés pour les ouverts.
Exemples : avec Xr1{n; 1s, r0, 2s Y r1, 3s et Yr´1 ` 1{n, 1 ´ 1{ns.

Définition : Point adhérent

Soit a P E. On dit que a est un point adhérent à A lorsque :

@r ą 0, B̊pa, rq X A ‰ ∅.

L’ensemble des points adhérents de A est appelé l’adhérence de A et est noté A.

Remarques :
• Tout point de A est adhérent à A. La réciproque est fausse.
• 0 est adhérent à s0, 1s mais pas à s1{n, 1s, ni même à r1{n, 1s.
• L’idée est que a est juste sur le bord de A.
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Proposition : Caractérisation séquentielle

Soit a P E. a P A si et seulement si il existe une suite d’éléments de A convergeant
vers a.

Démonstration : À faire ? ˝

Exemple : On peut retrouver le fait que 0 est adhérent à s0, 1s.

Corollaire

A est fermée si et seulement si A “ A.

Exemple : Comme on le disait Q n’est pas fermé, donc on a Q ‰ Q. Et effectivement, on
a Q “ R. En fait cela est une situation très intéressante liée à la définition suivante.
Remarque : C’est hors-programme, mais on peut définir la frontière de A par BA “ AzÅ.
On remarque alors que A est fermée si et seulement si BA Ă A. Et on remarque que A est
ouvert si et seulement si BA X A “ ∅. Cela correspond à nos intuitions sur les bords.

Définition : Partie dense

Soient A et B deux parties de E. On dit que B est dense dans A lorsque B “ A.

Exemple : Q est dense dans R.
Application : déterminer toutes les applications continues de R dans R vérifiant fpx `

yq “ fpxq ` fpyq.
Remarque : toutes les définitions précédentes dépendent de la norme choisie... Enfin
presque, on a la propriété suivante.

Proposition

Les notions topologiques précédentes sont invariantes par passage à une norme
équivalente.

Remarque : en particulier, en dimension finie, ces notions ne dépendent pas de la norme
choisie.

2 Limite et continuité en un point

2.1 Limite en un point

Définition : Limite en point

Soit f une application de A Ă E à valeurs dans F où E et F sont deux evn. Soit
a P E adhérent à A. Soit b P F .
On dit que f admet b comme limite au point a si :

@ϵ ą 0, Dδ ą 0, @x P A, }x ´ a}E ď δ ñ }fpxq ´ b}F ď ϵ.

Dans ce cas, b est unique et on note b “ limxÑa fpxq (ou parfois b “ lima f).

Remarques :
• Cela correspond à la définition usuelle de la limite pour les applications de R dans
R à condition d’utilisation | ¨ | pour la norme.

• Cela correspond également au sens que l’on avait donné à la continuité pour les
applications complexes dans le cadre des séries entières, en utilisant le module comme
norme.

Proposition : caractérisation séquentielle

Dans le même contexte, f a pour limite a en b si et seulement si pour toute suite
pxnq d’éléments de A qui converge vers a, la suite pfpxnqq converge vers b.

Remarques :
• Le sens direct ñ est une simple composition de limite.
• Le sens réciproque permet cependant de généraliser une propriété valable sur les

suites. C’est notamment ce qui permet de faire fonctionner le théorème de conver-
gence dominée avec les paramètres continues.

2.2 Opérations sur les limites

Proposition : Limite d’une combinaison linéaire

Soient f et g deux applications de A dans F admettant pour limites respectives b
et c au point d’adhérence a. Alors pour tout α P K :

lim
a

αf ` g “ αb ` c.
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Proposition : Limite d’un produit par une application scalaire

Soient f une application de A dans F et u une fonction de A dans K. Alors :

lim
xÑa

upxqfpxq “ lim
xÑa

upxq lim
xÑa

fpxq

Proposition : Limite d’une composition

Soient f et g deux applications. f est définie sur A à valeurs dans F et g est définie
sur B Ă F à valeurs dans G.
Si a est adhérent à A, b est la limite de f en a, si b est adhérent à B et c est la
limite de g en b alors :

lim
a

g ˝ f “ lim
b

g

2.3 Continuité en un point

Définition : Continuité en point

Soit f une application de A Ă E à valeurs dans F où E et F sont deux evn. Soit
a P A
On dit que f est continue en a si lima f “ fpaq.

Remarque : Si a R A mais si a est adhérent à A, on peut définie le prolongement par
continuité de f en a.

Proposition : caractérisation séquentielle

Dans le même contexte, f est continue en a si et seulement si pour toute suite pxnq

d’éléments de A qui converge vers a, la suite pfpxnqq converge vers fpaq.

3 Continuité sur une partie

3.1 Généralités

Définition : Continuité sur un domaine

Soit f : A Ñ F . On dit que f est continue sur A si f est continue en tout point de
A.

Remarques :

• On voit ici que la continuité est une propriété locale. Elle est d’abord définie en un
point puis se généralise sur l’ensemble. C’est pourquoi être continue sur un ensemble
de domaines An revient à être continue sur l’union de ces domaines.

• L’ensemble des fonctions continues de A dans F est notée C0pA,F q.
Propriétés :

• La restriction d’une application continue est continue
• La composition de deux applications continues est continue
• Les combinaisons linéarires d’applications continues sont continues
• Le produit par une application scalaire continue, ou la division par une application

scalaire continue qui ne s’annule pas, préserve la continuité

3.2 Image réciproque de parties ouvertes/fermées

Proposition : Image réciproque d’un ouvert/d’un fermé

Soit f de E dans F continue. Alors l’image réciproque d’un ouvert de F est un
ouvert de E.
De même, l’image réciproque d’un fermé de F est un fermé de E.

Remarques :
• dans le cas particulier où f : E Ñ R, cela signifie que l’ensemble tx P E, fpxq ą 0u

est un ouvert. En revanche, tx P E, fpxq “ 0u et tx P E, fpxq ě 0u sont fermés.
• On retrouve le résultat : les boules ouvertes sont ouvertes et les boules fermées sont

fermées.
• Le résultat est faux pour les images directes. Par exemple, fps ´ 1, 1rq “ r0, 1r si
f : x ÞÑ x2.

3.3 Fonctions lipschitziennes

Définition

Soit f définie de A dans F . Soit k ą 0. On dit que f est k-lipschitzienne sur A
lorsque :

@px, yq P A2, }fpxq ´ fpyq}F ď k}x ´ y}E .

Remarques :
• L’application x ÞÑ }x} est 1 lipschitzienne.
• La composition d’une fonction k lipschitzienne avec une fonction k1 lipschitzienne

est une fonction kk1 lipschitzienne.
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• Si k P r0, 1r, on parle parfois d’application k-contractante.

Proposition

Toute application k lipschitzienne sur A est continue sur A.

Démonstration : À faire. ˝

Exemple : l’application norme est continue sur E.

4 Espaces vectoriels normés de dimension finie
Rappel : équivalence des normes.

Théorème : Théorème des bornes atteintes

Une fonction réelle continue sur une partie non vide fermée bornée d’un espace
vectoriel normée de dimension finie est bornée et atteint ses bornes.

Démonstration : Hors-programme. ˝

Proposition : Continuité des applications linéaires

Soit f une application linéaire de E dans F , espaces de dimension finie.
Alors :

• Il existe K ą 0 tel que @x P E, }fpxq}F ď K}x}E .
• f est K-lipschitzienne sur E.
• f est continue sur E.

Remarques :
• Donc en dimension finie, toutes les applications linéaires sont continues !
• Par exemple, la trace est une application continue.
• C’est évidemment faux en dimension infinie...

Proposition : Continuité des applications multilinéaires

Soit f une application linéaire de pKnqp dans E, espace de dimension finie.
Alors :

• Il existe k ą 0 tel que @pXiqiPrr1,pss P pKnqp, }fpX1, . . . , Xpq}E ď

k
śp

i“1 }Xi}Kn .
• f est continue sur pKnqp.

Exemples : Le produit matriciel est continue, ainsi que le déterminant. On en déduit
par exemple que l’ensemble des matrices inversibles est un ouvert et que l’ensemble des
matrices non-inversibles est un fermé.
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