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1.2 Parties fermées, adhérence, partie dense

CHAPITRE 14 - FONCTIONS SUR UN ESPACE Definition : Partic formée
VECTORIEL NORME Soit E un evn. Soit A < E. On dit que A est une partie fermée de E si son

complémentaire dans E est ouvert, c’est-a-dire lorsque E\A est ouvert.

Exemples :
. y . .
1 TOpOlOgle d’un espace vectoriel normé e [0,1] est une partie fermée de R. ]0,1[, [0, 1] et ]0, 1] ne le sont pas.

1.1 Points intérieurs, parties ouvertes e Les boules fermées sont fermées. Les sphéres sont fermées.
M 9

Remarque : Attention, ouvert n’est pas le contraire de fermé! Par exemple [0, 1[ n’est ni
Définition : Point intérieur ouvert ni fermé. Il existe également des ensembles a la fois ouvert et fermé. En particulier,

Soit E un evn. Soient A € F et a € A. On dit que a est un point intérieur de A E et @ sont 4 la fois ouverts et fermés.

s’il existe r > 0 tel que : ( - Proposition : Caractérisation séquentielle des fermés
B(a,r) c A.
Soit A ¢ E. A est fermeée si et seulement si la limite de suite convergente d’éléments

On note A I'ensemble des points intérieurs.
p de A est un élément de A.

Exemples : 0 est un point intérieur de R. C’est aussi un point intérieur de | — 1,1[. En
revanche, ce n’est pas un point intérieur de R . Démonstration : A faire ? o
Remarque : 'intuition est que « étre un point intérieur » est équivalent & « ne pas étre

sur le bord ». Exemple : Q n’est pas un fermé de R

Propriétés :

Définition : Partie ouverte e La réunion (finie) de parties fermées est fermée ;

Soit E un evn. Soit A = E. On dit que A est une partie ouverte de E si tous les e L’intersection (quelconque) de parties fermées est fermée.

points de A sont intérieurs de A, c’est-a-dire si A = A. Remarque : cela résulte du passage au complémentaire des propriétés pour les ouverts.
Exemples : avec n[1/n;1], [0,2] U [1,3] et U[-1+ 1/n,1—1/n].

Exemples : v o e
e |0, 1] est une partie ouverte de R. [0, 1], [0, 1[ et ]0, 1] ne le sont pas. éfinition : Point adhérent
e [ est une partie ouverte de lui-méme. & est également une partie ouverte. Soit a € E. On dit que a est un point adhérent & A lorsque :

Remarque : 'intuition est que le bord de A ne fait pas partie de A lui-méme. On rendra

cette intuition plus précise un peu plus tard. Vr >0, Bla,r)nA# 2.

L’ensemble des points adhérents de A est appelé 'adhérence de A et est noté A.

Proposition
Les boules ouvertes sont ouvertes. Remarques :
o e Tout point de A est adhérent & A. La réciproque est fausse.
Propriétés :

. . t adhérent a |0, 1 i a ]1/n,1], ni méme a [1/n,1].
e La réunion (quelconque) de parties ouvertes est ouverte ; *0 ?S adhérent 4 10, ] mais pas a |1/n, 1], ni méme & [1/n, 1]
e L’intersection (finie) de parties ouvertes est ouverte. o L'idee est que a est juste sur le bord de A.

Exemples : avec U]1/n;1[, ]0,2[n]1,3[ et n] —1/n,1/n].
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Proposition : Caractérisation séquentielle 2 Limite et continuité en un pOint
Soit a € E. a € A si et seulement si il existe une suite d’éléments de A convergeant 2.1 Limite en un point
Vers a.

Définition : Limite en point

Soit f une application de A c E a valeurs dans F' ou F et F' sont deux evn. Soit

Démonstration : A faire ? o
a € E adhérent a A. Soit be F.
Exemple : On peut retrouver le fait que 0 est adhérent a ]0, 1]. On dit que f admet b comme limite au point a si :
Lol Ve>0,30>0, Yoe A, |z—a|lp <= |f(z) —blr <e

A est fermée si et seulement si A = A. Dans ce cas, b est unique et on note b = lim,_,, f(z) (ou parfois b = lim,, f).
Exemple : Comme on le disait Q n’est pas fermé, donc on a Q # Q. Et effectivement, on
a Q = R. En fait cela est une situation trés intéressante liée a la définition suivante.

Remarque : C’est hors-programme, mais on peut définir la frontiére de A par 0A = A\A.

Remarques :

e Cela correspond & la définition usuelle de la limite pour les applications de R dans

On remarque alors que A est fermée si et seulement si 0A < A. Et on remarque que A est R a condition dutilisation |- | pour la norme.
ouvert si et seulement si 0A N A = @. Cela correspond & nos intuitions sur les bords. e Cela correspond également au sens que 'on avait donné a la continuité pour les
applications complexes dans le cadre des séries entiéres, en utilisant le module comme
Définition : Partie dense norme.
Soient A et B deux parties de E. On dit que B est dense dans A lorsque B = A. Proposition : caractérisation séquentielle
Exemple : Q est dense dans R. Dans le méme contexte, f a pour limite a en b si et seulement si pour toute suite
Application : déterminer toutes les applications continues de R dans R vérifiant f(z + (zn) d’éléments de A qui converge vers a, la suite (f(z,)) converge vers b.

y) = f(@) + f(y).
Remarque : toutes les définitions précédentes dépendent de la norme choisie... Enfin Remarques :

presque, on a la propriété suivante. e Le sens direct = est une simple composition de limite.

Proposition e Le sens réciproque permet cependant de généraliser une propriété valable sur les
suites. C’est notamment ce qui permet de faire fonctionner le théoréme de conver-

Les notions topologiques précédentes sont invariantes par passage & une norme gence dominée avec les paramétres continues.

équivalente.

2.2 Opérations sur les limites
Remarque : en particulier, en dimension finie, ces notions ne dépendent pas de la norme
choisie. Proposition : Limite d’une combinaison linéaire

Soient f et g deux applications de A dans F' admettant pour limites respectives b
et ¢ au point d’adhérence a. Alors pour tout o € K :

limaf+g=ab+ec.
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Proposition : Limite d’un produit par une application scalaire
Soient f une application de A dans F' et u une fonction de A dans K. Alors :

lim u(x) f(z) = lim u(z) lim f(z)

r—a r—a r—a

Proposition : Limite d’une composition

Soient f et g deux applications. f est définie sur A a valeurs dans F' et g est définie
sur B c F a valeurs dans G.
Si a est adhérent & A, b est la limite de f en a, si b est adhérent & B et c est la
limite de g en b alors :

lign go f = lilI)Il g

2.3 Continuité en un point
Définition : Continuité en point

Soit f une application de A ¢ E a valeurs dans F' ou F et F sont deux evn. Soit
ac A
On dit que f est continue en a si lim, f = f(a).

Remarque : Si a ¢ A mais si a est adhérent & A, on peut définie le prolongement par

continuité de f en a.

Proposition : caractérisation séquentielle

Dans le méme contexte, f est continue en a si et seulement si pour toute suite (z,,)
d’éléments de A qui converge vers a, la suite (f(z,)) converge vers f(a).

3 Continuité sur une partie

3.1 Généralités
Définition : Continuité sur un domaine

Soit f: A — F. On dit que f est continue sur A si f est continue en tout point de
A.

Remarques :

e On voit ici que la continuité est une propriété locale. Elle est d’abord définie en un
point puis se généralise sur ’ensemble. C’est pourquoi étre continue sur un ensemble
de domaines A,, revient & étre continue sur 'union de ces domaines.

e L’ensemble des fonctions continues de A dans F est notée C°(A, F).
Propriétés :

e La restriction d’une application continue est continue

e La composition de deux applications continues est continue

e Les combinaisons linéarires d’applications continues sont continues

e Le produit par une application scalaire continue, ou la division par une application
scalaire continue qui ne s’annule pas, préserve la continuité

3.2 Image réciproque de parties ouvertes/fermées
Proposition : Image réciproque d’un ouvert/d’un fermé

Soit f de E dans F' continue. Alors 'image réciproque d’un ouvert de F' est un
ouvert de F.
De méme, I'image réciproque d’un fermé de F' est un fermé de F.

Remarques :

e dans le cas particulier ou f : F — R, cela signifie que Uensemble {z € E, f(z) > 0}
est un ouvert. En revanche, {z € E, f(z) =0} et {x € E, f(x) > 0} sont fermés.

e On retrouve le résultat : les boules ouvertes sont ouvertes et les boules fermées sont
fermées.

e Le résultat est faux pour les images directes. Par exemple, f(] — 1,1[) = [0, 1] si

[z 22

3.3 Fonctions lipschitziennes
Définition

Soit f définie de A dans F. Soit £ > 0. On dit que f est k-lipschitzienne sur A
lorsque :
Y(z,y) € A% | f(z) = F®)lF <kl - yls

Remarques :
e L’application = — |z| est 1 lipschitzienne.

e La composition d’une fonction k lipschitzienne avec une fonction k' lipschitzienne
est une fonction k&’ lipschitzienne.
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e Si k € [0, 1], on parle parfois d’application k-contractante. Proposition : Continuité des applications multilinéaires
Proposition Soit f une application linéaire de (K™)P dans E, espace de dimension finie.
Alors :
Toute application k lipschitzienne sur A est continue sur A. )
o Il existe & > 0 tel que V(Xi)ieqipy € (K")P, [f(X1,...,Xp)|e <
kT oy 1 Xl
Démonstration : A faire. o e f est continue sur (K™)P.

Exemple : 'application norme est continue sur E.
Exemples : Le produit matriciel est continue, ainsi que le déterminant. On en déduit

. . . . par exemple que I’ensemble des matrices inversibles est un ouvert et que ’ensemble des
4 Espaces vectoriels normés de dimension finie matrices non-inversibles est un fermé.

Rappel : équivalence des normes.
Théoréme : Théoréme des bornes atteintes

Une fonction réelle continue sur une partie non vide fermée bornée d’un espace
vectoriel normée de dimension finie est bornée et atteint ses bornes.

Démonstration : Hors-programme. o

Proposition : Continuité des applications linéaires

Soit f une application linéaire de F dans F', espaces de dimension finie.
Alors :

o Il existe K > 0 tel que Vz € E, ||f(z)|r < K||z|Eg-
e f est K-lipschitzienne sur E.

e f est continue sur F.

Remarques :
e Donc en dimension finie, toutes les applications linéaires sont continues !
e Par exemple, la trace est une application continue.

e C’est évidemment faux en dimension infinie...



