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Exercice 1. On se place dans E = My(R) avec d > 1.
1. Montrer que GL4(R) est un ouvert de E.

2. Montrer que GL4(R) est dense dans F.
On pourra, une matrice A € E étant fizée, considérer les matrices de la forme A —t 1.

3. Montrer que O4(R) est fermé.

4. Montrer que O4(R) est d’intérieur vide.
Exercice 2. Soit d > 1 un entier. On note E = My(C).
Montrer que le sous-ensemble des matrices diagonalisables est dense dans F.
Exercice 3. On fixe un entier d > 2. On note E = Ry[ X].

1. Montrer qu'un élément P € E unitaire et de degré exactement d est scindé sur R si et seulement si
VzeC, |P(z)]> |Imz|%

2. En déduire que I'ensemble S des P € E unitaires, de degré exactement d, et scindés sur R est un fermé de F.
3. En déduire que 'ensemble T' des matrices trigonalisables sur R est un fermé de My (R).
4. L’ensemble D des matrices diagonalisables sur R est-il dense dans My(R) ?
Exercice 4 (applications linéaires continues). Soient E et F' des espaces normés et soit u € L(E, F).
Montrer que les phrases suivantes sont équivalentes :
1. u est bornée sur la sphére unité;
2. u est lipschitzienne ;
3. u est continue;
4. w est continue en 0;
5. u est bornée au voisinage de 0.
Exercice 5 (norme subordonnée). Soient E un espace normeé.

On considére I'espace vectoriel A = L(E, E) nC%(E, E) des endomorphismes continus de E. On admet les résultats
de 'exercice précédent.

Siue A, on note [|ul| = sup,eg(o,1) |u(z)]-
1. Montrer que || - || est une norme sur A et que Va € E, |ju(z)| < [|u|| ||z
2. Calculer [[id|| puis montrer que V(u,v) € A2, [[uov|| < ||ul] - |v||.

Exercice 6 (d’aprées CCP MP 2019/2018/... : quotient de Rayleigh).
Soient E un espace euclidien et f un endomorphisme symétrique de F.
On note S = {v € E : |v| = 1} la sphére unité de E et on considére

M = sup (v, f(v)).

vES

1. Justifier que M est un réel bien défini et qu’il existe un vecteur a € S tel que {a, f(a)) = M.
On fixe dans la suite un tel vecteur a.

2. Soient v € at et t € R.
la+tv, fla+tv))
la + tv]?

(b) En remarquant que HZI%H

3. En déduire que a est un vecteur propre de f.

(a) Montrer que o M + 2t {v, f(a)) + O(t?).

€ S, en déduire que f(a) L v.

1

1. Donner une condition nécessaire et suffisante pour que (x,y) € E.

Exercice 7 (CCP 2018). On considére E = {(w,y) eR?: (?E y> est diagonalisable sur R}.

2. Montrer que E est un ouvert de R2.
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Exercice 8 (CCP 2011 Officiel de la Taupe). On définit trois suites (aq), (bq) et (cq) par ap = a, b = b, co = c et

3
an+1 = 3bq
3
b1 = J04 + ¢q

cnr1 = 5(aq + ba)

aq 1 0 0
Onnote Xgy=[|bg|et D= |0 —i 0
ca o o0 -3

Montrer qu'’il existe A € M3(R) telle que X,,+1 = AX4 pour tout entier n.
A est-elle diagonalisable 7

Trouver P inversible telle que P~'AP = D.

Montrer que ® définie par ®(M) = PM P~ est continue sur M3(R).

Montrer que (A™) converge vers ) représentant un projecteur dont on déterminera le noyau et I'image.

A I S

Montrer que (aq), (bg) et (cq) convergent.
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Solutions

Exercice 1. 1. C’est I'image réciproque de 'ouvert R* par I'application det, qui est continue (par exemple car
polynomiale en les coefficients de son argument).

2. Soit A € E, et cherchons & approcher A arbitrairement prés par des éléments de GLg(R). Pour ce faire,
perturbons A en la translatant dans la direction de l'identité : posons B(t) = A — ¢ I. D’aprés le cours sur le
polynéme caractéristique,

B(t) ¢ GLy(R) <= t € Sp(A).

Il n’existe donc qu'un nombre fini de valeurs de ¢t € R pour lesquelles B(t) ¢ GL4(R). En particulier, il
existe une suite (¢,) telle que ¢, — 0 et que Yn € N, A — ¢, I € GLy(R). Dés lors A —t,, I € GLg(R) et

A—t,I —— A, donc A € GL4(R), et ce pour toute matrice A € E.
n—0oo

3. C’est I'image réciproque du fermé {I} par P’application A ~— AT A. Or cette derniére est, par exemple,
composée de A — (AT, A), qui est continue car linéaire, et de (A4, B) — AB, qui est continue car bilinéaire.

4. Montrons que tout élément de O4(R) peut étre approché arbitrairement prés par un élément de E\Og4(R).
Soit A € O4(R), et considérons les matrices de la forme A A pour A € R. Alors AA € Oyg(R) <= A2 =1, et
on peut donc construire une suite (A,) telle que A\, — 1 et que Vn e N, A\, A ¢ O4(R).

Exercice 2. Soit A € E. D’aprés le cours, A est trigonalisable sur C, donc on peut écrire A = PT P~ avec P
inversible et T triangulaire supérieure. Il suffit alors de perturber légérement 7" par une matrice diagonale D,, telle
que D,, —— 0 en faisant en sorte que les coefficients diagonaux de T 4+ D,, soient tous distincts, par exemple en

n—o0

prenant D,, de la forme diag(%, %, cey %) : dés lors, A, = P (T + D,,) P! est diagonalisable et A, — A.
n—
Exercice 3. 1. Soit P € F unitaire de degré d.

= Supposons d scindé sur R, de sorte que P s’écrive Hf:I(X —r;) avec des r; toutes réelles. Alors, si
z e C,

~
—_

d
H|z—7‘i|
d

H\Imz\ (Vs e C, |s| = |Ims|)
-1

[P(2)] =
=

i
= |Imz|d.
< Supposons 'inégalité de I’énoncé vraie. Alors toutes les racines complexes de P doivent avoir une partie
imaginaire nulle, ce qui prouve que P est en fait scindé sur R.

2. Pour z € C, posons
| EF — R
P — |P(2)] — [Imz|%.

Cette application est continue, car il s’agit & une constante prés de Iapplication P +— |P(z)|, composée
de I'application linéaire P — P(z) et de l'application lipschitzienne s — |s|. Alors S est l'intersection de
I’ensemble des polynémes unitaires de degré d, qui est fermé comme image réciproque de {1} par Papplication
linéaire P — c4(P), et de

N ([0, +of)

zeC
qui est fermée comme intersection (quelconque) de fermés.

3. A € My(R) est dans T si et seulement si x4 € S. Autrement dit, 7" est l'image réciproque du fermé S par
I’application A — x 4. Or cette application est continue, par exemple parce que tous les coefficients de xa
sont des polyndmes en les coefficients de A.

4. Non, car il est inclus dans T', qui n’est lui-méme pas dense : plus précisément, si A n’est pas diagonalisable,

il n’existe méme aucune suite (A,) de matrices trigonalisables telle que A, — A.
n—
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Exercice 4.1 = 2 Supposons que |u| < M sur S(0,1). Soit x € E. Six # 0, alors ﬁ € 5(0,1), donc ||u(iH)H <M,

[
donc |u(z)| < M ||z||, relation qui reste vraie y compris si # = 0. Soient ensuite x et y dans E, alors

[u(z) = u(y)] < [u(z —y)| < M|z —y|

donc u est M-lipschitzienne.

2 = 3 C’est du cours.

3 = 4 (C’est une conséquence directe de la définition de la continuité.

4 = 5 Puisque u(z) = o(1), alors u(x) = O(1) (en cas de doute, revenir & la définition en fixant € > 0 arbitraire
(par exemple € = 1) et faire intervenir la continuité en 0).

5 =1 Soit V un voisinage de 0 sur lequel u soit bornée par M. Alors V contient une boule de rayon r > 0 centrée
en 0; des lors, si z € 5(0,1), alors rz € V. Done |u(rz)| < M, ce qui revient a dire que |u(z)| < 2L

Exercice 5. 1. e Fonction bien définie a valeurs dans R : c’est une conséquence de I'implication 3 = 1 de
I’exercice précédent.

e Condition « Vx € E, |u(x)|| < [|ul| |z] » : méme démarche que pour la preuve de l'implication 1 = 2
de l'exercice précédent.

e Caractére positivement homogéne : soient uw € A et A € K. Soit z € 5(0,1). Alors [(Au)(z)| =
IA] |u(x)]| < [A|]|u]|, donc en passant au sup || A u|| < |A] [|u|. Prouvons I'inégalité réciproque. Si A = 0,
c’est évident ; sinon, écrivons |u(z)| = [|[(Au)(x/N)| < [N\ ul| |z/A] = |—}\| IIA, w|| |=|. En particulier, si
x € 5(0,1), alors |u(x)| < ﬁ [IA, u[|, d’ott la majoration recherchée en passant au sup.

o Inégalité triangulaire : soient u et v dans A, et x € S(0,1). Alors
[(u +0) (@) < [u@)] + o) < llull + vl

d’ou le résultat en passant au sup.

e Axiome de séparation : supposons que ||u|| = 0. Alors la condition « Yz € E, |u(z)| < ||ul| |z| »assure
que u est nulle sur F.

2. e On obtient immédiatement |[id|| = 1.
e Soient u et v dans A et z € S(0,1). Alors

[(wov)(@)] = [ulv(z))]
< [lull ()]

<
< llullf floli
d’ott le résultat en passant au sup.

Exercice 6. 1. La fonction z — (z, f(x)) est continue comme composée de l'application linéaire x — (z,x) et
de l'application bilinéaire (z,y) — {(z, f(y)). Et S est fermée et bornée. Il suffit donc d’appliquer le théoréme
des bornes atteintes.

2. (a) Développons :

lattv, flattv)) <a,fla)+1t(a, fv))+<v, fla)) + 5, f(v))
la+tv]? la]* + 2ta, v) + 2] v
M + 2t{a, f(v)) + O(t?)
1+ O(t?)
M + 2t {a, f(v)) + O(£?).

(b) Comme ﬁ €S, on en déduit que

M > (i FGie)
_la+tou, fla+tv))
B la+tvl?
= M + 2t v, f(a)) + O(t?).
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Bilan :
2t (v, f(a)) < O(t?)

mais une fonction linéaire ne peut étre inférieure au voisinage de 0 & un multiple de la fonction carré
que si sa pente en l'origine est nulle, donc (v, f(a)) = 0.

3. On vient de prouver que a® est stable par f, donc Vect(a) aussi puisque f est autoadjoint, donc a est un
vecteur propre de f.

Exercice 7. 1. Soit (x,y) € R%. Alors

YA eR, Xu_<2 y> =' N —1
z 1
=A=2)A—=1)—=xy
— A2 -3\ +2—ay.
Le discriminant de ce trinéme vaut
9—-4(2—zy) =1—4ay.

De 14, trois situations sont possibles.

e 1 —4xy < 0 : le polynéme caractéristique n’a pas de racine réelle, la matrice associée ne peut pas étre
diagonalisable sur R, donc (z,y) ¢ E.

e 1 —4xy = 0 : le polynéme caractéristique admet une racine réelle double, donc la matrice associée
admet une valeur propre réelle double. Mais elle ne peut pas non plus étre diagonalisable, car sinon elle
serait proportionnelle & la matrice identité, ce qui est impossible vu ses coefficients diagonaux. Donc
(z,y) ¢ L.

e 1 —4zy > 0 : la matrice admet deux valeurs propres réelles distinctes, donc (condition suffisante mais
pas nécessaire) elle est diagonalisable, et (z,y) € E.

Bilan :
E = {(z,y) e R? : 1 — 4day > 0}.

2. E est I'image réciproque de ]0, +0o[ par la fonction continue (car polynomiale) (z,y) — 1 — 4xy.

Exercice 8. 1) La matrice

L [0 30
110

convient.
2) On a

13 3 3 1

=X X - = (X-1D[(Xx+2)(x+=).

x4 6~ 16 )< +4>< +4>

Donc

sp@n::{L—i,—z}.

La matrice A est de taille 3, a trois valeurs propres réelles deux & deux différentes, donc est diagonalisable dans
Mj3(R), et tous les espaces propres sont de dimension 1.
3) Aprés calculs : soit

1 12 -3
v=|-1], v={[16], w=/[1],
0 7 2

alors
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Comme la matrice A est diagonalisable, et que I'on vient de trouver une base de chaque espace propre de A, on
peut affirmer que la matrice

12 -3 1
P={VWU =16 1 -1
7T 2 0
est inversible, et vérifie
P 'AP =D.

4) L’application ® est linéaire, comme conséquence de la bilinéarité du produit matriciel : pour tout (M, N) €
M3(RR)2, pour tout A € R,

SAM + N) = POAM + N)P~' = A\PMP~' + PNP~' = \&(M) + &(N).

Comme son espace de départ est M3(R) qui est de dimension finie, on en déduit que I'application ® est continue.
5) e Notons

1 0 0
D=pP'AP=1|0 -1 o0 |,
0o o0 -3
alors en multipliant par P a gauche, P~! & droite, on a
A=PDP,

et par récurrence sur n, pour tout n € N,
A" = PD"P~! = &(D").

e Or, comme la matrice D est une matrice diagonale, pour tout n € N,

1 0 0 100
D=0 (-H)" o0 |— [0 0 0]=
o 0 (=3)/""7\o o0 o0

car

3 1
—4‘ <1let ‘—4 < 1, donc

(ainsi, toutes les suites coordonnées (dans la base canonique) de la suite de matrices (D™),en convergent, ce qui
assure la convergence de la suite de matrices (D")pen).
e Par continuité de 'application ®, par composition de limites, on en déduit que

pL

n—o0

1
A" = ¢(D") — Q:=®(J) =P |0
0

o O O
o O O

e Remarquons que
J? =,

donc
Q*=PJP'PjP ' = PPt =PJP ! = Q,

donc @ est bien une matrice d’un projecteur (on peut sinon faire comme dans l’exercice 77).
e Déterminons Ker(Q) et Im(Q) :
Méthode 1 : o Soit X € E_1, alors

4

puis par récurrence directe, pour tout n € N,
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Or,

1
—4’ < 1, donc

n—0o0

1 n
lim (—) =0, et donc lim (A"X) = 031.
Mais, le produit matriciel est continu (car bilinéaire et défini sur des espaces de dimension finie), donc

lim(A"xX):(limA")xX:QxX.

n—0o0 n—0o0

Par unicité de la limite, on en déduit
QX =031, soit X € Ker(Q).

Et donc
F

c Ker(Q).

1
1

o Comme

3
—4’ < 1, on a de méme

E_% c Ker(Q).

o Puis des espaces propres associés a des valeurs propres différentes sont en somme directe, et Ker(Q) est un espace
vectoriel, donc

E‘i (—BE_% < Ker(Q).

En particulier,

dim (Ker(Q)) > dim (E_; @ F_y ) = dim (E_, ) + dim (E_3) =1+1=2.

1
1

¢ Puis, pour X € Eq, on a
AX = X,

puis par récurrence directe, pour tout n € N,
A"X = X,

et donc (par continuité du produit matriciel),

X = A"X — QX,

n—o0

donc (par unicité de la limite)
QX =X, Soit X € Im(Q).

Donc
E, c Im(Q),

et donc

dim (Im(Q)) = dim (E1) = 1.

o Enfin, le théoréme du rang appliqué a Q donne
dim (Im(Q)) + dim (Ker(Q)) = 3,
ce qui force
dim (Im(Q)) =1 =dim (B1) et dim (Ker(Q)) =2 = dim (E_; ® F_s) .

¢ Avec une inclusion et I'égalité des dimensions, on en déduit

Im(Q) = F; et Ker(Q) = FE
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Meéthode 2 : o Soit X € M3 ;(R), alors
XeKer(Q) & QX =033
< PJP X =03,
o JP'X =054

< P71X eKer(J)

0
< 3a,b)eR? |P X =|a
b
0 —3a+b -3 1
< a,b)eR? | X =Pla|= a—b |=al| 1 |+b|—-1]=aU+bW
b 2a 2 0

Donc

| Kex(Q) = Vect(U, W)

(et (U, W) est une famille libre, car c’est une famille de vecteurs propres de A associés a des valeurs propres
différentes, donc (U, W) est une base de Ker(Q)).

o Puis, rg(Q) = 1 : on l'obtient, soit par le théoréme du rang appliqué a @, soit car rg(J) = 1 est direct, et
multiplier par une matrice inversible ne change pas le rang, donc

rg(Q) = rg(PJP™!) = 1g(J) = 1.
Donc il suffit de trouver un vecteur non nul dans Im(Q) pour en avoir une base. Or,
AV =V,

donc par récurrence directe,

AWV =V
pour tout entier n € N, et a la limite (par continuité du produit matriciel),
QV =V, soit Ve lIm(Q),

et V # 031, donc

[Im(Q) = Vect(V) = Fy(4)]

Méthode 3 : on a

100 100
Q=P|0 0 0|P, donc QP=P|0 0 0
0 00 000
En notant
P=(Vv|iwlU)
en colonne, par calcul matriciel par blocs, on a
100 100
QP=Q(V|W|U)=(QV|QW|QU ) et PO O O)=(V|W|U)|0 0 0]=(V]0s1]03:
0 00 0 00
Donc
QV =1V, soit Ve Im(Q),
et donc

E; = Vect(V) < Im(Q),
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mais aussi

QW = QU =03, donc WeKer(Q) et U eKer(Q),

soit

= Vect(W,U) < Ker(Q).

1
1
On en déduit

dim (Im(Q)) > dim(Ey) =1 et dim (Ker(Q)) > dim (Vect(W,U)) = 2.
Mais le théoréme du rang appliqué & ) donne

dim (Im(Q)) + dim (Ker(Q)) = 3,

ce qui force
dim (Im(Q)) =1 = dim(E) et dim (Ker(Q)) = 2 = dim (Vect(W,U)).

Et donc, une inclusion et ’égalité des dimensions donnent

Im(Q) = Ey| et Ker(Q) = Vect(W,U) = E_s ® E

SIS
=

6) Pour tout n € N,
Xnt1 = AXd7

donc par récurrence directe sur n, on a pour tout n € N,
Xq = A"X,

et a la limite,
A" Xy — QX
n—aoo

(par continuité du produit matriciel, ou bien par continuité de 'application
M e Mg(R) — MXO € MgJ(R),

qui est continue car linéaire et définie sur un espace de dimension finie). Donc la suite de matrices colonnes (Xg)nen
a une limite, ce qui revient & dire que les suites numériques

(ad)nen, (bd)nen, (Cd)neN

convergent, et de plus

lim ag
n—ao

lim by | = QXO-

n—o0

lim ¢4
n—0o0

La question ne demandait pas de déterminer ces limites. Cependant, on peut calculer ) Xy ainsi :
a
Méthode 1 : on a Xy = | b |, et QXj est le projeté de X sur Eq = Vect(V) parallélement & F_1 @ E_
4
c
Vect(U, W). On détermine alors les valeurs (uniques) (z,y, z) € R3 tels que

o

Xo =2V +yU + zW
(en posant le systéme correspondant, puisque ’on connait X, U, V et W), et alors
QRXo =aV.

Méthode 2 : on a
QXo € Im(Q) = Vect(V),
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donc il existe a € R tel que
12c
QRXy=aV = | 16«
Ta
On a
(11 1)A4A=(1 1 1)

(par calcul direct), donc pour tout n € N,
g1 Fbnsi+ =01 1 )X =(1 1 1)AXg=(1 1 1)X4=aq+bg+ cq,

donc la suite numérique
(ad + by + Cd)

neN
est constante, donc égale a
ag+bo+cg=a+b+c.

Puis,
a+b+c= nlgrolc(ad +bg+cq) = ((QX0)1 + (QXo)2 + (QXo)g) = 12« + 16a + 7a = 35a,

donc

_atb+c
35
ce qui donne
12
b
QXO_a—i- +c 16
35
7
Donc
. 12 . 16 . 7
nh_r)roload—£(a+b+c), J%bd—g(a—kb—kc) et nh_r)rgocd—ﬁ(a%—bch).




