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TD14 - Fonctions sur un espace vectoriel normé

Exercice 1. On se place dans E “ MdpRq avec d ě 1.
1. Montrer que GLdpRq est un ouvert de E.
2. Montrer que GLdpRq est dense dans E.

On pourra, une matrice A P E étant fixée, considérer les matrices de la forme A ´ t I.
3. Montrer que OdpRq est fermé.
4. Montrer que OdpRq est d’intérieur vide.

Exercice 2. Soit d ě 1 un entier. On note E “ MdpCq.
Montrer que le sous-ensemble des matrices diagonalisables est dense dans E.

Exercice 3. On fixe un entier d ě 2. On note E “ RdrXs.
1. Montrer qu’un élément P P E unitaire et de degré exactement d est scindé sur R si et seulement si

@z P C, |P pzq| ě |Imz|d.

2. En déduire que l’ensemble S des P P E unitaires, de degré exactement d, et scindés sur R est un fermé de E.
3. En déduire que l’ensemble T des matrices trigonalisables sur R est un fermé de MdpRq.
4. L’ensemble D des matrices diagonalisables sur R est-il dense dans MdpRq ?

Exercice 4 (applications linéaires continues). Soient E et F des espaces normés et soit u P LpE,F q.
Montrer que les phrases suivantes sont équivalentes :

1. u est bornée sur la sphère unité ;
2. u est lipschitzienne ;
3. u est continue ;
4. u est continue en 0 ;
5. u est bornée au voisinage de 0.

Exercice 5 (norme subordonnée). Soient E un espace normé.
On considère l’espace vectoriel A “ LpE,EqXC0pE,Eq des endomorphismes continus de E. On admet les résultats
de l’exercice précédent.
Si u P A, on note ~u~ “ supxPSp0,1q }upxq}.

1. Montrer que ~ ¨ ~ est une norme sur A et que @x P E, }upxq} ď ~u~ }x}.
2. Calculer ~id~ puis montrer que @pu, vq P A2, ~u ˝ v~ ď ~u~ ¨ ~v~.

Exercice 6 (d’après CCP MP 2019/2018/... : quotient de Rayleigh).
Soient E un espace euclidien et f un endomorphisme symétrique de E.
On note S “ tv P E : }v} “ 1u la sphère unité de E et on considère

M “ sup
vPS

xv, fpvqy.

1. Justifier que M est un réel bien défini et qu’il existe un vecteur a P S tel que xa, fpaqy “ M.
On fixe dans la suite un tel vecteur a.

2. Soient v P aK et t P R.

(a) Montrer que
xa ` t v, fpa ` t vqy

}a ` t v}2
“
tÑ0

M ` 2t xv, fpaqy ` Opt2q.

(b) En remarquant que a`t v
}a`t v}

P S, en déduire que fpaq K v.
3. En déduire que a est un vecteur propre de f .

Exercice 7 (CCP 2018). On considère E “

"

px, yq P R2 :

ˆ

2 y
x 1

˙

est diagonalisable sur R
*

.

1. Donner une condition nécessaire et suffisante pour que px, yq P E.
2. Montrer que E est un ouvert de R2.
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Exercice 8 (CCP 2011 Officiel de la Taupe). On définit trois suites padq, pbdq et pcdq par a0 “ a, b0 “ b, c0 “ c et
$

’

&

’

%

an`1 “ 3
4bd

bn`1 “ 3
4ad ` cd

cn`1 “ 1
4pad ` bdq

On note Xd “

¨

˝

ad
bd
cd

˛

‚et D “

¨

˝

1 0 0
0 ´1

4 0
0 0 ´3

4

˛

‚.

1. Montrer qu’il existe A P M3pRq telle que Xn`1 “ AXd pour tout entier n.

2. A est-elle diagonalisable ?

3. Trouver P inversible telle que P´1AP “ D.

4. Montrer que Φ définie par ΦpMq “ PMP´1 est continue sur M3pRq.

5. Montrer que pAnq converge vers Q représentant un projecteur dont on déterminera le noyau et l’image.

6. Montrer que padq, pbdq et pcdq convergent.
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Solutions

Exercice 1. 1. C’est l’image réciproque de l’ouvert R˚ par l’application det, qui est continue (par exemple car
polynomiale en les coefficients de son argument).

2. Soit A P E, et cherchons à approcher A arbitrairement près par des éléments de GLdpRq. Pour ce faire,
perturbons A en la translatant dans la direction de l’identité : posons Bptq “ A ´ t I. D’après le cours sur le
polynôme caractéristique,

Bptq R GLdpRq ðñ t P SppAq.

Il n’existe donc qu’un nombre fini de valeurs de t P R pour lesquelles Bptq R GLdpRq. En particulier, il
existe une suite ptnq telle que tn Ñ 0 et que @n P N, A ´ tn I P GLdpRq. Dès lors A ´ tn I P GLdpRq et
A ´ tn I ÝÝÝÑ

nÑ8
A, donc A P GLdpRq, et ce pour toute matrice A P E.

3. C’est l’image réciproque du fermé tIu par l’application A ÞÑ AJ A. Or cette dernière est, par exemple,
composée de A ÞÑ pAJ, Aq, qui est continue car linéaire, et de pA,Bq ÞÑ AB, qui est continue car bilinéaire.

4. Montrons que tout élément de OdpRq peut être approché arbitrairement près par un élément de EzOdpRq.
Soit A P OdpRq, et considérons les matrices de la forme λA pour λ P R. Alors λA P OdpRq ðñ λ2 “ 1, et
on peut donc construire une suite pλnq telle que λn Ñ 1 et que @n P N, λnA R OdpRq.

Exercice 2. Soit A P E. D’après le cours, A est trigonalisable sur C, donc on peut écrire A “ P T P´1 avec P
inversible et T triangulaire supérieure. Il suffit alors de perturber légèrement T par une matrice diagonale Dn telle
que Dn ÝÝÝÑ

nÑ8
0 en faisant en sorte que les coefficients diagonaux de T ` Dn soient tous distincts, par exemple en

prenant Dn de la forme diagp 1
n ,

2
n , . . . ,

d
nq ; dès lors, An “ P pT ` DnqP´1 est diagonalisable et An ÝÝÝÑ

nÑ8
A.

Exercice 3. 1. Soit P P E unitaire de degré d.

ñ Supposons d scindé sur R, de sorte que P s’écrive
śd

i“1pX ´ riq avec des ri toutes réelles. Alors, si
z P C,

|P pzq| “

d
ź

i“1

|z ´ ri|

ě

d
ź

i“1

|Imz| p@s P C, |s| ě |Ims|q

“ |Imz|d.

ð Supposons l’inégalité de l’énoncé vraie. Alors toutes les racines complexes de P doivent avoir une partie
imaginaire nulle, ce qui prouve que P est en fait scindé sur R.

2. Pour z P C, posons
fz : E Ñ R

P ÞÑ |P pzq| ´ |Imz|d.

Cette application est continue, car il s’agit à une constante près de l’application P ÞÑ |P pzq|, composée
de l’application linéaire P ÞÑ P pzq et de l’application lipschitzienne s ÞÑ |s|. Alors S est l’intersection de
l’ensemble des polynômes unitaires de degré d, qui est fermé comme image réciproque de t1u par l’application
linéaire P ÞÑ cdpP q, et de

Ş

zPC
f´1
z pr0,`8rq

qui est fermée comme intersection (quelconque) de fermés.

3. A P MdpRq est dans T si et seulement si χA P S. Autrement dit, T est l’image réciproque du fermé S par
l’application A ÞÑ χA. Or cette application est continue, par exemple parce que tous les coefficients de χA

sont des polynômes en les coefficients de A.

4. Non, car il est inclus dans T , qui n’est lui-même pas dense : plus précisément, si A n’est pas diagonalisable,
il n’existe même aucune suite pAnq de matrices trigonalisables telle que An ÝÝÝÑ

nÑ8
A.
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Exercice 4.1 ñ 2 Supposons que }u} ď M sur Sp0, 1q. Soit x P E. Si x ‰ 0, alors x
}x}

P Sp0, 1q, donc }up x
}x}

q} ď M ,
donc }upxq} ď M }x}, relation qui reste vraie y compris si x “ 0. Soient ensuite x et y dans E, alors

}upxq ´ upyq} ď }upx ´ yq} ď M }x ´ y}

donc u est M -lipschitzienne.
2 ñ 3 C’est du cours.
3 ñ 4 C’est une conséquence directe de la définition de la continuité.
4 ñ 5 Puisque upxq “

xÑ0
op1q, alors upxq “

xÑ0
Op1q (en cas de doute, revenir à la définition en fixant ϵ ą 0 arbitraire

(par exemple ϵ “ 1) et faire intervenir la continuité en 0).
5 ñ 1 Soit V un voisinage de 0 sur lequel u soit bornée par M . Alors V contient une boule de rayon r ą 0 centrée

en 0 ; dès lors, si x P Sp0, 1q, alors r x P V . Donc }uprxq} ď M , ce qui revient à dire que }upxq} ď M
r ¨

Exercice 5. 1. • Fonction bien définie à valeurs dans R` : c’est une conséquence de l’implication 3 ñ 1 de
l’exercice précédent.

• Condition « @x P E, }upxq} ď ~u~ }x} » : même démarche que pour la preuve de l’implication 1 ñ 2
de l’exercice précédent.

• Caractère positivement homogène : soient u P A et λ P K. Soit x P Sp0, 1q. Alors }pλuqpxq} “

|λ| }upxq} ď |λ| ~u~, donc en passant au sup ~λu~ ď |λ| ~u~. Prouvons l’inégalité réciproque. Si λ “ 0,
c’est évident ; sinon, écrivons }upxq} “ }pλuqpx{λq} ď ~λ, u~ }x{λ} “ 1

|λ|
~λ, u~ }x}. En particulier, si

x P Sp0, 1q, alors }upxq} ď 1
|λ|

~λ, u~, d’où la majoration recherchée en passant au sup.
• Inégalité triangulaire : soient u et v dans A, et x P Sp0, 1q. Alors

}pu ` vqpxq} ď }upxq} ` }vpxq} ď ~u~ ` ~v~,

d’où le résultat en passant au sup.
• Axiome de séparation : supposons que ~u~ “ 0. Alors la condition « @x P E, }upxq} ď ~u~ }x} »assure

que u est nulle sur E.
2. • On obtient immédiatement ~id~ “ 1.

• Soient u et v dans A et x P Sp0, 1q. Alors

}pu ˝ vqpxq} “ }upvpxqq}

ď ~u~ }vpxq}

ď ~u~ ~v~

d’où le résultat en passant au sup.

Exercice 6. 1. La fonction x ÞÑ xx, fpxqy est continue comme composée de l’application linéaire x ÞÑ px, xq et
de l’application bilinéaire px, yq ÞÑ xx, fpyqy. Et S est fermée et bornée. Il suffit donc d’appliquer le théorème
des bornes atteintes.

2. (a) Développons :

xa ` t v, fpa ` t vqy

}a ` t v}2
“

xa, fpaqy ` t pxa, fpvqy ` xv, fpaqy ` t2xv, fpvqyq

}a}2 ` 2txa, vy ` t2}v}2

“
M ` 2t xa, fpvqy ` Opt2q

1 ` Opt2q

“ M ` 2t xa, fpvqy ` Opt2q.

(b) Comme a`t v
}a`t v}

P S, on en déduit que

M ě

A

a`t v
}a`t v}

, fp a`t v
}a`t v}

q

E

“
xa ` t v, fpa ` t vqy

}a ` t v}2

“ M ` 2t xv, fpaqy ` Opt2q.
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Bilan :
2t xv, fpaqy ď Opt2q

mais une fonction linéaire ne peut être inférieure au voisinage de 0 à un multiple de la fonction carré
que si sa pente en l’origine est nulle, donc xv, fpaqy “ 0.

3. On vient de prouver que aK est stable par f , donc Vectpaq aussi puisque f est autoadjoint, donc a est un
vecteur propre de f .

Exercice 7. 1. Soit px, yq P R2. Alors

@λ P R, χ
λ I´

¨

˝

2 y
x 1

˛

‚

“

∣∣∣∣λ ´ 2 ´y
´x λ ´ 1

∣∣∣∣
“ pλ ´ 2qpλ ´ 1q ´ xy

“ λ2 ´ 3λ ` 2 ´ xy.

Le discriminant de ce trinôme vaut
9 ´ 4p2 ´ xyq “ 1 ´ 4xy.

De là, trois situations sont possibles.

• 1 ´ 4xy ă 0 : le polynôme caractéristique n’a pas de racine réelle, la matrice associée ne peut pas être
diagonalisable sur R, donc px, yq R E.

• 1 ´ 4xy “ 0 : le polynôme caractéristique admet une racine réelle double, donc la matrice associée
admet une valeur propre réelle double. Mais elle ne peut pas non plus être diagonalisable, car sinon elle
serait proportionnelle à la matrice identité, ce qui est impossible vu ses coefficients diagonaux. Donc
px, yq R E.

• 1 ´ 4xy ą 0 : la matrice admet deux valeurs propres réelles distinctes, donc (condition suffisante mais
pas nécessaire) elle est diagonalisable, et px, yq P E.

Bilan :
E “ tpx, yq P R2 : 1 ´ 4xy ą 0u.

2. E est l’image réciproque de s0,`8r par la fonction continue (car polynomiale) px, yq ÞÑ 1 ´ 4xy.

Exercice 8. 1) La matrice

A “
1

4

¨

˝

0 3 0
3 0 4
1 1 0

˛

‚

convient.
2) On a

χA “ X3 ´
13

16
X ´

3

16
“ pX ´ 1q

ˆ

X `
3

4

˙ ˆ

X `
1

4

˙

.

Donc
SppAq “

"

1,´
1

4
,´

3

4

*

.

La matrice A est de taille 3, a trois valeurs propres réelles deux à deux différentes, donc est diagonalisable dans
M3pRq, et tous les espaces propres sont de dimension 1.
3) Après calculs : soit

U “

¨

˝

1
´1
0

˛

‚, V “

¨

˝

12
16
7

˛

‚, W “

¨

˝

´3
1
2

˛

‚,

alors
E´ 3

4
“ VectpUq, E1 “ VectpV q et E´ 1

4
“ VectpW q.

3
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Comme la matrice A est diagonalisable, et que l’on vient de trouver une base de chaque espace propre de A, on
peut affirmer que la matrice

P “ pV |W |Uq “

¨

˝

12 ´3 1
16 1 ´1
7 2 0

˛

‚

est inversible, et vérifie
P´1AP “ D.

4) L’application Φ est linéaire, comme conséquence de la bilinéarité du produit matriciel : pour tout pM,Nq P

M3pRq2, pour tout λ P R,

ΦpλM ` Nq “ P pλM ` NqP´1 “ λPMP´1 ` PNP´1 “ λΦpMq ` ΦpNq.

Comme son espace de départ est M3pRq qui est de dimension finie, on en déduit que l’application Φ est continue.
5) ‚ Notons

D “ P´1AP “

¨

˝

1 0 0
0 ´1

4 0
0 0 ´3

4

˛

‚,

alors en multipliant par P à gauche, P´1 à droite, on a

A “ PDP´1,

et par récurrence sur n, pour tout n P N,

An “ PDnP´1 “ ΦpDnq.

‚ Or, comme la matrice D est une matrice diagonale, pour tout n P N,

Dn “

¨

˝

1 0 0

0
`

´1
4

˘n
0

0 0
`

´3
4

˘

˛

‚ ÝÑ
nÑ8

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚“: J,

car
ˇ

ˇ

ˇ

ˇ

´
3

4

ˇ

ˇ

ˇ

ˇ

ă 1 et
ˇ

ˇ

ˇ

ˇ

´
1

4

ˇ

ˇ

ˇ

ˇ

ă 1, donc
ˆ

´
1

4

˙n

ÝÑ
nÑ8

0 et
ˆ

´
3

4

˙n

ÝÑ
nÑ8

0

(ainsi, toutes les suites coordonnées (dans la base canonique) de la suite de matrices pDnqnPN convergent, ce qui
assure la convergence de la suite de matrices pDnqnPN).
‚ Par continuité de l’application Φ, par composition de limites, on en déduit que

An “ ϕpDnq ÝÑ
nÑ8

Q :“ ΦpJq “ P

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚P´1.

‚ Remarquons que
J2 “ J,

donc
Q2 “ PJP´1PJP´1 “ PJ2P´1 “ PJP´1 “ Q,

donc Q est bien une matrice d’un projecteur (on peut sinon faire comme dans l’exercice ??).
‚ Déterminons KerpQq et ImpQq :
Méthode 1 : ˛ Soit X P E´ 1

4
, alors

AX “ ´
1

4
X,

puis par récurrence directe, pour tout n P N,

AnX “

ˆ

´
1

4

˙n

X.

4
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Or,
ˇ

ˇ

ˇ

ˇ

´
1

4

ˇ

ˇ

ˇ

ˇ

ă 1, donc

lim
nÑ8

ˆ

´
1

4

˙n

“ 0, et donc lim
nÑ8

pAnXq “ 03,1.

Mais, le produit matriciel est continu (car bilinéaire et défini sur des espaces de dimension finie), donc

lim
nÑ8

pAn ˆ Xq “

´

lim
nÑ8

An
¯

ˆ X “ Q ˆ X.

Par unicité de la limite, on en déduit

QX “ 03,1, soit X P KerpQq.

Et donc
E´ 1

4
Ă KerpQq.

˛ Comme
ˇ

ˇ

ˇ

ˇ

´
3

4

ˇ

ˇ

ˇ

ˇ

ă 1, on a de même

E´ 3
4

Ă KerpQq.

˛ Puis des espaces propres associés à des valeurs propres différentes sont en somme directe, et KerpQq est un espace
vectoriel, donc

E´ 1
4

‘ E´ 3
4

Ă KerpQq.

En particulier,

dim
`

KerpQq
˘

ě dim
´

E´ 1
4

‘ E´ 3
4

¯

“ dim
`

E´ 1
4

˘

` dim
`

E´ 3
4

˘

“ 1 ` 1 “ 2.

˛ Puis, pour X P E1, on a
AX “ X,

puis par récurrence directe, pour tout n P N,
AnX “ X,

et donc (par continuité du produit matriciel),

X “ AnX ÝÑ
nÑ8

QX,

donc (par unicité de la limite)
QX “ X, soit X P ImpQq.

Donc
E1 Ă ImpQq,

et donc
dim

`

ImpQq
˘

ě dim
`

E1

˘

“ 1.

˛ Enfin, le théorème du rang appliqué à Q donne

dim
`

ImpQq
˘

` dim
`

KerpQq
˘

“ 3,

ce qui force

dim
`

ImpQq
˘

“ 1 “ dim
`

E1

˘

et dim
`

KerpQq
˘

“ 2 “ dim
´

E´ 1
4

‘ E´ 3
4

¯

.

˛ Avec une inclusion et l’égalité des dimensions, on en déduit

ImpQq “ E1 et KerpQq “ E´ 1
4

‘ E´ 3
4
.

5
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Méthode 2 : ˛ Soit X P M3,1pRq, alors

X P KerpQq ô QX “ 03,1

ô PJP´1X “ 03,1

ô JP´1X “ 03,1

ô P´1X P KerpJq

ô Dpa, bq P R2, |P´1X “

¨

˝

0
a
b

˛

‚

ô Dpa, bq P R2, |X “ P

¨

˝

0
a
b

˛

‚“

¨

˝

´3a ` b
a ´ b
2a

˛

‚“ a

¨

˝

´3
1
2

˛

‚` b

¨

˝

1
´1
0

˛

‚“ aU ` bW

Donc
KerpQq “ VectpU,W q

(et pU,W q est une famille libre, car c’est une famille de vecteurs propres de A associés à des valeurs propres
différentes, donc pU,W q est une base de KerpQq).
˛ Puis, rgpQq “ 1 : on l’obtient, soit par le théorème du rang appliqué à Q, soit car rgpJq “ 1 est direct, et
multiplier par une matrice inversible ne change pas le rang, donc

rgpQq “ rgpPJP´1q “ rgpJq “ 1.

Donc il suffit de trouver un vecteur non nul dans ImpQq pour en avoir une base. Or,

AV “ V,

donc par récurrence directe,
AnV “ V

pour tout entier n P N, et à la limite (par continuité du produit matriciel),

QV “ V, soit V P ImpQq,

et V ‰ 03,1, donc
ImpQq “ VectpV q “ E1pAq .

Méthode 3 : on a

Q “ P

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚P´1, donc QP “ P

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚.

En notant
P “

`

V W U
˘

en colonne, par calcul matriciel par blocs, on a

QP “ Q
`

V W U
˘

“
`

QV QW QU
˘

et P

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚“
`

V W U
˘

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚“
`

V 03,1 03,1
˘

.

Donc
QV “ V, soit V P ImpQq,

et donc
E1 “ VectpV q Ă ImpQq,

6
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mais aussi
QW “ QU “ 03,1, donc W P KerpQq et U P KerpQq,

soit
E´ 3

4
‘ E´ 1

4
“ VectpW,Uq Ă KerpQq.

On en déduit

dim
`

ImpQq
˘

ě dimpE1q “ 1 et dim
`

KerpQq
˘

ě dim
`

VectpW,Uq
˘

“ 2.

Mais le théorème du rang appliqué à Q donne

dim
`

ImpQq
˘

` dim
`

KerpQq
˘

“ 3,

ce qui force
dim

`

ImpQq
˘

“ 1 “ dimpE1q et dim
`

KerpQq
˘

“ 2 “ dim
`

VectpW,Uq
˘

.

Et donc, une inclusion et l’égalité des dimensions donnent

ImpQq “ E1 et KerpQq “ VectpW,Uq “ E´ 3
4

‘ E´ 1
4
.

6) Pour tout n P N,
Xn`1 “ AXd,

donc par récurrence directe sur n, on a pour tout n P N,

Xd “ AnX0,

et à la limite,
AnX0 ÝÑ

nÑ8
QX0

(par continuité du produit matriciel, ou bien par continuité de l’application

M P M3pRq ÞÑ MX0 P M3,1pRq,

qui est continue car linéaire et définie sur un espace de dimension finie). Donc la suite de matrices colonnes pXdqnPN
a une limite, ce qui revient à dire que les suites numériques

padqnPN, pbdqnPN, pcdqnPN

convergent, et de plus
¨

˚

˚

˝

lim
nÑ8

ad

lim
nÑ8

bd

lim
nÑ8

cd

˛

‹

‹

‚

“ QX0.

La question ne demandait pas de déterminer ces limites. Cependant, on peut calculer QX0 ainsi :

Méthode 1 : on a X0 “

¨

˝

a
b
c

˛

‚, et QX0 est le projeté de X0 sur E1 “ VectpV q parallèlement à E´ 1
4

‘ E´ 3
4

“

VectpU,W q. On détermine alors les valeurs (uniques) px, y, zq P R3 tels que

X0 “ xV ` yU ` zW

(en posant le système correspondant, puisque l’on connaît X0, U , V et W ), et alors

QX0 “ xV.

Méthode 2 : on a
QX0 P ImpQq “ VectpV q,
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donc il existe α P R tel que

QX0 “ αV “

¨

˝

12α
16α
7α

˛

‚.

On a
`

1 1 1
˘

A “
`

1 1 1
˘

(par calcul direct), donc pour tout n P N,

an`1 ` bn`1 ` cn`1 “
`

1 1 1
˘

Xn`1 “
`

1 1 1
˘

AXd “
`

1 1 1
˘

Xd “ ad ` bd ` cd,

donc la suite numérique
`

ad ` bd ` cd
˘

nPN

est constante, donc égale à
a0 ` b0 ` c0 “ a ` b ` c.

Puis,
a ` b ` c “ lim

nÑ8
pad ` bd ` cdq “

`

pQX0q1 ` pQX0q2 ` pQX0q3
˘

“ 12α ` 16α ` 7α “ 35α,

donc
α “

a ` b ` c

35
,

ce qui donne

QX0 “
a ` b ` c

35

¨

˝

12
16
7

˛

‚.

Donc

lim
nÑ8

ad “
12

35
pa ` b ` cq , lim

nÑ8
bd “

16

35
pa ` b ` cq et lim

nÑ8
cd “

7

35
pa ` b ` cq .
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