
Fauriel - PC - Mathématiques Correction DM 5 - Intégrales à paramètres

Correction DM 5 - Intégrales à paramètres

Exercice 1 - CCINP PSI 2024 (Exercice - Formule de Stirling)

1. Soit x P R et fx : t ÞÑ tx´1e´t définie sur R‹
`. fx est continue sur R‹

` donc intégrable sur tout segment de
R‹

`.

• En 0 : On a fxptq „
tÑ0

1
t1´x . Or t ÞÑ 1

t1´x est intégrable en 0 si et seulement si 1 ´ x ă 1 (Riemann en

0). Donc, par critère d’équivalence, fx est intégrable sur s0, 1s si et seulement si 1 ´ x ă 1, c’est-à-dire
x ą 0.

• En `8 : On a fxptq “ o
`

e´t{2
˘

car tx´1e´t{2 ÝÝÝÝÑ
tÑ`8

0 (croissances comparées). Or t ÞÑ e´t{2 est

intégrable en `8 (car 1{2 ą 0). Donc, par critère de négligeabilité, fx est intégrable sur r1,`8r pour
tout x P R.

Ainsi, fx est intégrable sur R‹
` si et seulement si x ą 0. De plus, fx est positive donc son intégrabilité est

équivalente à la convergence de l’intégrale.

Finalement,
ż `8

0
tx´1e´tdt converge si, et seulement si, x ą 0.

2. Soit x ą 0. On pose u : t ÞÑ tx et v : t ÞÑ ´e´t.
Les fonctions u et v sont de classe C1 sur s0,`8r. De plus, uv possède des limites finies aux bornes :

• En 0` : uptqvptq “ ´txe´t ÝÝÝÑ
tÑ0`

0 car x ą 0.

• En `8 : uptqvptq “ ´txe´t ÝÝÝÝÑ
tÑ`8

0 par croissances comparées.

Donc, par le théorème d’intégration par parties généralisée, les intégrales
ż

s0,`8r

u v1 et
ż

s0,`8r

u1 v sont de

même nature et, en cas de convergence :
ż

s0,`8r

u v1 “ ruvs
`8
0 ´

ż

s0,`8r

u1 v

Or
ż

s0,`8r

u v1 “

ż `8

0
txe´tdt “ Γpx ` 1q, qui est convergente d’après la question 1 (car x ` 1 ą 0). Donc :

Γpx ` 1q “
“

´txe´t
‰`8

0
`

ż `8

0
xtx´1e´tdt “ 0 ´ 0 ` xΓpxq

D’où : @x ą 0, Γpx ` 1q “ xΓpxq.
De plus, un calcul direct donne :

Γp1q “

ż `8

0
e´tdt “

“

´e´t
‰`8

0
“ 1

En posant un “ Γpn` 1q, on a donc pour tout n P N‹ : un “ nun´1 et u0 “ 1. C’est exactement la définition
de la factorielle. D’où :

@n P N, Γpn ` 1q “ n!

On en déduit que @n P N‹, Γpnq “ pn ´ 1q!

3. Pour n P N, on pose un “ Γ
`

n ` 1
2

˘

.
On a u0 “ Γ

`

1
2

˘

et, pour tout n P N :

un`1 “ Γ

ˆ

n `
3

2

˙

“

ˆ

n `
1

2

˙

Γ

ˆ

n `
1

2

˙

“
2n ` 1

2
un
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Par récurrence :

Γ

ˆ

n `
1

2

˙

“
2n ´ 1

2
ˆ

2n ´ 3

2
ˆ ¨ ¨ ¨ ˆ

1

2
ˆ Γ

ˆ

1

2

˙

“
p2n ´ 1qp2n ´ 3q ¨ ¨ ¨ 3 ¨ 1

2n
Γ

ˆ

1

2

˙

“
p2nq!

2n ¨ p2nqp2n ´ 2q ¨ ¨ ¨ 4 ¨ 2
Γ

ˆ

1

2

˙

“
p2nq!

2n ¨ 2n ¨ n!
Γ

ˆ

1

2

˙

“
p2nq!

22nn!
Γ

ˆ

1

2

˙

Calculons Γ
`

1
2

˘

“

ż `8

0

e´t

?
t
dt. On pose φ : u ÞÑ u2, définie de R‹

` sur R‹
`. φ est de classe C1, strictement

croissante et bijective. Donc par changement de variable (avec t “ u2, dt “ 2udu), les intégrales :
ż `8

0

e´t

?
t
dt et

ż `8

0

e´u2

u
ˆ 2udu

ont même nature et sont égales en cas de convergence. Or la première intégrale est Γ
`

1
2

˘

, que l’on sait
convergente. Donc :

Γ

ˆ

1

2

˙

“ 2

ż `8

0
e´u2

du “ 2 ˆ

?
π

2
“

?
π

Ainsi : Γ
`

n ` 1
2

˘

“
p2nq!
22nn!

?
π (relation valable aussi pour n “ 0).

4. Remarquons que puisque la fonction ln est continue sur
“

1
2 ,`8

“

, les ρk sont bien définis pour tout k P N‹.
Soit n P N‹. La relation de Chasles et les propriétés du logarithme fournissent :

n´1
ÿ

k“1

ρk “

n´1
ÿ

k“1

ln k ´

n´1
ÿ

k“1

ż k` 1
2

k´ 1
2

ln tdt

“ ln

˜

n´1
ź

k“1

k

¸

´

ż n´ 1
2

1
2

ln tdt

“ lnppn ´ 1q!q ´

ż n´ 1
2

1
2

ln tdt

La convention citée par l’énoncé dit que ce résultat reste valable pour n “ 1. Donc, d’après la question 2 :

ln Γpnq “

ż n´ 1
2

1
2

ln tdt `

n´1
ÿ

k“1

ρk

5. Soit k P N‹. Le changement de variable u “ t ´ k fournit :
ż k` 1

2

k´ 1
2

ln tdt “

ż 1
2

´ 1
2

lnpu ` kqdu “

ż 0

´ 1
2

lnpu ` kqdu `

ż 1
2

0
lnpu ` kqdu

Puis en posant w “ ´u, on a
ż 0

´ 1
2

lnpu ` kqdu “

ż 1
2

0
lnpk ´ wqdw. Finalement :

ρk “ ln k ´

ż 1
2

0
lnpt ` kqdt ´

ż 1
2

0
lnpk ´ tqdt

“

ż 1
2

0
p2 ln k ´ lnpt ` kq ´ lnpk ´ tqqdt

“

ż 1
2

0
ln

ˆ

k2

pk ` tqpk ´ tq

˙

dt
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D’où :

ρk “ ´

ż 1
2

0
ln

ˆ

1 ´
t2

k2

˙

dt

6. La fonction x ÞÑ ´ lnp1 ´ xq est croissante sur r0, 1r. Donc pour tout k P N‹ et t P
“

0, 12
‰

:

0 ď ´ ln

ˆ

1 ´
t2

k2

˙

ď ´ ln

ˆ

1 ´
1

4k2

˙

En intégrant :

0 ď ρk ď
1

2
ˆ

ˆ

´ ln

ˆ

1 ´
1

4k2

˙˙

Or ´1
2 ln

`

1 ´ 1
4k2

˘

„
kÑ`8

1
8k2

. Par équivalence, les deux termes sont positifs au voisinage de `8. À un facteur

près, la série
ř 1

8k2
est une série de Riemann convergente (2 ą 1). Par critère d’équivalence pour les séries à

termes positifs, la série
ř

kě1
1
2

`

´ ln
`

1 ´ 1
4k2

˘˘

converge.

Puis, par comparaison de séries à termes positifs, la série
ř

kPN‹ ρk converge.

7. D’après la question 4, on a ln Γpnq “

ż n´ 1
2

1
2

ln tdt `

n´1
ÿ

k“1

ρk.

Posons S “

`8
ÿ

k“1

ρk (qui existe d’après la question 6). Alors
n´1
ÿ

k“1

ρk “ S ` op1q.

De manière générale, si un ÝÝÝÝÑ
nÑ`8

ℓ alors un “ ℓ ` o
nÑ`8

p1q et réciproquement.

La fonction ln admet pour primitive t ÞÑ t ln t ´ t. Donc :

ż n´ 1
2

1
2

ln tdt “ rt ln t ´ ts
n´ 1

2
1
2

“

ˆ

n ´
1

2

˙

ln

ˆ

n ´
1

2

˙

´ n `
ln 2

2
` 1

“

ˆ

n ´
1

2

˙

lnn `

ˆ

n ´
1

2

˙

ln

ˆ

1 ´
1

2n

˙

´ n `
ln 2

2
` 1

Or
`

n ´ 1
2

˘

ln
`

1 ´ 1
2n

˘

„
nÑ`8

´ n
2n “ ´1

2 . Donc :

lim
nÑ`8

ˆ

n ´
1

2

˙

ln

ˆ

1 ´
1

2n

˙

“ ´
1

2

D’où :
ż n´ 1

2

1
2

ln tdt “

ˆ

n ´
1

2

˙

lnn ´ n `
ln 2

2
`

1

2
` op1q

Posons c “ S ` ln 2
2 ` 1

2 . On obtient :

ln Γpnq “

ˆ

n ´
1

2

˙

lnn ´ n ` c ` op1q

Ce qui donne : Γpnq “ exp
``

n ´ 1
2

˘

lnn ´ n ` c ` op1q
˘

“ nn´ 1
2 e´neceop1q.

Ici il faut se rappeler que op1q veut juste dire quelque chose qui tend vers 0. Ainsi limnÑ`8 eop1q “ 1.
Donc, on obtient :

Γpnq „
nÑ`8

ecnn´ 1
2 e´n
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8. Soit n P N‹ et x ą 0. En posant u “ t
n , ce qui est un changement de variable affine donc licite (t “ nu et

dt “ ndu) :

Γnpxq “

ż n

0
tx´1

ˆ

1 ´
t

n

˙n

dt “ nx

ż 1

0
ux´1p1 ´ uqndu

Les intégrales sont bien convergentes d’après l’énoncé.

D’où : Γnpxq “ nx

ż 1

0
ux´1p1 ´ uqndu

9. Montrons par récurrence sur n P N‹ l’assertion Hn : « Pour tout x ą 0, Γnpxq “ nxn!
xpx`1q¨¨¨px`nq

. »
Initialisation : Pour tout x ą 0 :

Γ1pxq “ 1 ˆ

ż 1

0
ux´1p1 ´ uqdu “

„

ux

x
´

ux`1

x ` 1

ȷ1

0

“
1

x
´

1

x ` 1
“

1

xpx ` 1q
“

1x ¨ 1!

xpx ` 1q

Donc H1 est vraie.
Hérédité : Soit n P N‹ tel que Hn est vraie. Soit x ą 0.

On a Γn`1pxq “ pn ` 1qx
ż 1

0
ux´1p1 ´ uqn`1du.

On procède à une intégration par parties avec :

αpuq “ p1 ´ uqn`1, α1puq “ ´pn ` 1qp1 ´ uqn, β1puq “ ux´1, βpuq “
ux

x

Comme x ą 0, on a limuÑ0 αpuqβpuq “ 0 et αp1qβp1q “ 0. Donc :

Γn`1pxq “ pn ` 1qx rαpuqβpuqs
1
0 ` pn ` 1qx

ż 1

0
pn ` 1qp1 ´ uqn

ux

x
du

“
pn ` 1qx`1

x

ż 1

0
upx`1q´1p1 ´ uqndu

“
pn ` 1qx`1

x
ˆ

Γnpx ` 1q

nx`1

Par hypothèse de récurrence Hn appliquée à x ` 1 :

Γn`1pxq “
pn ` 1qx`1

x
ˆ

n!

px ` 1qpx ` 2q ¨ ¨ ¨ px ` 1 ` nq

“
pn ` 1qx ¨ pn ` 1q!

xpx ` 1qpx ` 2q ¨ ¨ ¨ px ` n ` 1q

Ainsi Hn`1 est vraie.

Conclusion : Par récurrence, @n P N‹, @x ą 0, Γnpxq “ nxn!
xpx`1q¨¨¨px`nq

10. Désignons par pfnqně1 la suite de fonctions définies sur s0,`8r par :

fnptq “

#

tx´1
`

1 ´ t
n

˘n si t Ps0, nr

0 si t ě n

Pour x ą 0 fixé, on a : @n ě 1, Γnpxq “

ż `8

0
fnptqdt.

Vérifions les hypothèses du théorème de convergence dominée :

• Mesurabilité : Les fonctions fn sont continues par morceaux sur l’intervalle d’intégration R‹
`.

• Convergence simple : Soit t ą 0 fixé. Alors Dn0 P N‹ tel que @n ě n0, 0 ă t ă n.
Ainsi, pour n ě n0 :

fnptq “ tx´1 exp

ˆ

n ln

ˆ

1 ´
t

n

˙˙
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Or :
n ln

ˆ

1 ´
t

n

˙

“ n

ˆ

´
t

n
` o

ˆ

1

n

˙˙

“ ´t ` op1q ÝÝÝÝÑ
nÑ`8

´t.

Par composition de limite avec la fonction exponentielle, continue sur R (donc en ´t), on a : fnptq ÝÝÝÝÑ
nÑ`8

tx´1e´t.
La suite de fonctions pfnqnPN‹ converge donc simplement vers f : t ÞÑ tx´1e´t, continue sur R‹

`.
• Domination : Par concavité de ln, on a @u ą ´1, lnp1 ` uq ď u. Par croissance de l’exponentielle :

@t Ps0, nr, 0 ď fnptq ď tx´1en lnp1´ t
nq ď tx´1e´t

et l’inégalité reste vraie pour t ě n (car fnptq “ 0). Donc :

@t Ps0,`8r, 0 ď fnptq ď tx´1e´t “ fptq

et f est intégrable sur R‹
` puisque Γpxq existe (question 1).

Le théorème de convergence dominée s’applique et donne :

lim
nÑ`8

Γnpxq “

ż `8

0
tx´1e´tdt “ Γpxq

La question 9 fournit alors :

@x ą 0, Γpxq “ lim
nÑ`8

nxn!

xpx ` 1q ¨ ¨ ¨ px ` nq

11. Soit x ą 0 fixé. Une récurrence utilisant le résultat de la question 2 montre que :

@n P N‹, Γpx ` nq “ px ` n ´ 1qpx ` n ´ 2q ¨ ¨ ¨ px ` 1q ¨ x ¨ Γpxq

Donc :
Γpx ` nq

Γpnqnx
“

xpx ` 1q ¨ ¨ ¨ px ` n ´ 1qΓpxq

pn ´ 1q!nx
“

xpx ` 1q ¨ ¨ ¨ px ` nqΓpxq

px ` nqpn ´ 1q!nx

Or px ` nqpn ´ 1q! “ px ` nqpn ´ 1q! „ n ¨ pn ´ 1q! “ n! quand n Ñ `8. Donc :

Γpx ` nq

Γpnqnx
„

nÑ`8

xpx ` 1q ¨ ¨ ¨ px ` nqΓpxq

n!nx

On déduit alors de la question 10 que :

lim
nÑ`8

Γpx ` nq

Γpnqnx
“ 1

Avec x “ 1
2 , on obtient Γ

`

1
2 ` n

˘

„ Γpnq
?
n.

D’après la question 3 : Γ
`

n ` 1
2

˘

“
p2nq!
22nn!

?
π.

Mais d’après la question 2 : p2nq! “ Γp2n ` 1q et n! “ nΓpnq. Donc :

p2nq!

22nn!

?
π „ Γpnq

?
n

soit :
Γp2n ` 1q

?
π „ nΓ2pnq

?
n ¨ 22n

On utilise ensuite la question 7 sur Γp2n ` 1q et Γ2pnq :

• Γp2n ` 1q „ ecp2n ` 1q2n` 1
2 e´p2n`1q “ ecp2n ` 1q2n` 1

2 e´2n´1

• Γ2pnq „ e2cn2n´1e´2n
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On obtient :
ecp2n ` 1q2n` 1

2 e´2n´1?
π „ n ¨ e2cn2n´1e´2n ¨

?
n ¨ 22n

Soit :
ecp2n ` 1q2n` 1

2 e´1?
π „ e2cn2n` 1

2 ¨ 22n

D’où :

ec „
p2n ` 1q2n` 1

2
?
π

n2n` 1
2 ¨ 22n ¨ e

“

ˆ

2n ` 1

2n

˙2n

¨

c

2n ` 1

n
¨

?
π

e

Or limnÑ`8

`

2n`1
2n

˘2n
“ limnÑ`8

`

1 ` 1
2n

˘2n
“ e et

b

2n`1
n „

?
2.

Donc :
ec “ e ¨

?
2 ¨

?
π

e
“

?
2π

ec “
?
2π

Et finalement : Γpnq „
nÑ`8

?
2π nn´ 1

2 e´n

C’est-à-dire : n! „
nÑ`8

?
2πn

`

n
e

˘n (formule de Stirling).
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