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TD15 - ESPERANCE ET VARIANCE

1 Espérance et variance

Exercice 1. Soit U une urne avec une boule blanche et une boule noire. On joue de la fagon suivante : On tire
une boule de I'urne.

e Si elle est blanche, on gagne et le jeu s’arréte.
e Si elle est noire, on remet la boule dans 'urne et on rajoute m boule(s) noire(s), puis on recommence.

Soit X la variable aléatoire réelle qui vaut le numéro du tirage ou I’on gagne, si cela arrive, et 0 sinon.
Donner la loi de X lorsque m = 1, puis lorsque m = 2. Dans les deux cas, est-ce que X a une espérance finie ? Si
oui, une variance ?

Exercice 2 (pool testing). On se propose d’analyser le sang d’'une population de N individus pour déceler la
présence éventuelle (résultat positif) d’une maladie non contagieuse dont on sait qu’elle affecte une personne
donnée avec la probabilité p. On a pour cela deux méthodes :

e Méthode I : on analyse le sang de chacune des N personnes.

e Méthode II : on regroupe les IV individus en g groupes de n individus. On met le sang des n individus d’un
méme groupe dans une méme éprouvette. Si le résultat d’un groupe est positif, on analyse alors le sang des n
individus du groupe.

1. Quelle est la loi de la variable aléatoire réelle X égale au nombre de groupes positifs.

2. Soit Y la variable aléatoire réelle égale au nombre d’analyse dans la deuxiéme méthode. Calculer en fonction
de N, n et p 'espérance et la variance de Y.

3. Comparer les deux méthodes dans le cas ou N = 1000, n = 10 et p = 0,01.

Exercice 3. On effectue une suite illimitée de lancers d’une piéce de monnaie équilibrée. X; est la variable de
Bernoulli qui prend la valeur 1 si le i-éme lancer donne un résultat « pile », et 0 si c’est « face ».

1. Pour i € N\{0, 1}, on désigne par Y; la variable aléatoire qui prend la valeur 1 si 'on obtient 2 « pile » a la
suite, lors des (i — 1)-éme lancer et i-éme lancer, et 0 sinon. Autrement dit : Y; = X;_1 x X;. Pour n > 2, on

n
pose S, = Z Y;.
i=2

(a) Quelle est la loi suivie par X; ? Calculer E(X;), V(X;), Cov(X;, Xiy1).
(b) Quelle est la loi suivie par Y; 7 Calculer E(Y;), V(Y;) et Cov(Y;, Yii1), puis E(S,), V(Sy).
2. Pour i € N\{0,1}, on désigne par Z; la variable aléatoire qui prend la valeur 1 lorsque le (i — 1)-éme et

le i-éme tirage donnent des résultats différents (pile puis face ou face puis pile), 0 sinon. Et pour n > 2, on
n

pose T, = Z Z;. T,, indique le nombre de « changements » dans la suite des résultats des n premiers lancers.
i=2
Démontrer que Z; = X; + X;_1 — 2Y;. Calculer E(Z;), V(Z;), Cov(Z;, Zi+1) et enfin E(T,) et V(T,).

Exercice 4. Soit X une variable aléatoire réelle suivant la loi binomiale B(n, p). On définit deux nouvelles variables
aléatoires par Y = (1 + X) "t et Z = AX (avec A > 0). Calculer E(Y) et E(2).

Exercice 5. Soit p €]0,1[ et ¢ = 1 — p. Soit X une variable aléatoire discréte vérifiant X (£2) = N et pour n €
N, P(X = n) = pg". Montrer que X? a une espérance finie, et la calculer.

Exercice 6 (extrait Centrale MP 2016). Soit S et T deux variables aléatoires réelles discrétes indépendantes
définies sur (€2, 4,P). On suppose que T" et —7" ont méme loi. Montrer que

E(cos(S +T)) =E(cos(S))E(cos(T)).

Exercice 7. Soient (X,Y") un couple de variables aléatoires, défini sur un espace probabilisé (€2, A, P), et a valeurs
dans N2, dont la loi est donnée par :
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V(’i,j)EN2, ]P)(X:/Lvyzj):?%ljl

1. Déterminer o.

. Déterminer les lois de X et de Y.

w N

(a) Prouver que 1 + X suit une loi géométrique et en déduire I'espérance et la variance de X.

(b) Déterminer I'espérance et la variance de Y (indication : avant de calculer la variance, regarder IE(X (X —
1)).

4. Les variables X et Y sont-elles indépendantes ?
5. Calculer P(X =Y).

Exercice 8. Soit p €]0, 1[, on note ¢ = 1 — p. On considére deux variables aléatoires L; et Ly & valeurs dans N*
chacune, de sorte que, pour tout (n, k) e (N*)2,

P(Ly =n, Ly = k) = p*q"*' + ¢"p"*!

( Ly suit la loi de la variable donnant, dans une infinité de lancers d’une piéce qui donne Pile avec probabilité p,
la longueur de la premiére série de valeurs consécutives, Lo celle de la deuxieme série).
Montrer que LqLs a une espérance finie, et la calculer.

Exercice 9. Soit p et ¢ deux réels de l'intervalle ]0, 1] .
1. Vérifier que I’on définit une probabilité P sur N? en posant, pour tout (4, j) € N2, P((i, ])) =pq(1—p)(1—
q) -
2. (a) Déterminer les lois des variables aléatoires discrétes X et Y définies sur (N? P(N?),P) par : pour
tout (i,7) € N2,
X(i,j) =1 et Y(i,j) =]
(b) Calculer P(X =Y) et P(X >Y) .

3. Soit Z la variable aléatoire discréte définie par : pour tout (4, j) € N2,

1 si ¢ et j sont pairs
Z(i,j) =< —1 siiet j sont impairs

0  sidet j sont de parités différentes

Montrer que Z admet une espérance finie et la calculer.

4. Justifier que la famille (Z (1, i)]P’((z', z))) - est sommable et calculer sa somme.
(S

Exercice 10. Soit X; et X9 deux variables aléatoires réelles discrétes strictement positives, de méme loi et
indépendantes. On pose U = X7 + X9, T = X7 — Xo, Y7 = % et Yo = %
1. Montrer que Y7 et Y5 suivent la méme loi et, pour tout k € N*, Ylk et YQk ont une espérance finie. Calculer E(Y7)
et E(Yg)
2. Soit Z = L, montrer que pour tout k € N*, Z* a une espérance finie. Déterminer E (Z), puis V (Z) en
fonction de V(Y7).

Exercice 11. Soit X une variable aléatoire discréte qui posséde une espérance finie. Soit A un événement de
probabilité non nul. Montrer que la loi conditionnelle de X sachant A posséde une espérance finie.

Exercice 12. Soit X une variable aléatoire ayant une variance. Soit e > 0 et U = e — X + E(X). Soit B = ¥ (7~0)
la variable aléatoire indicatrice de 'événement (U > 0).
1. Justifier que I'on a U < UB.

2. A Taide de l'inégalité de Cauchy-Schwarz appliqué aux variables aléatoires U et B, montrer I'inégalité :

V(X)
P(X —E(X)>e) <
. . V(X)
3. Montrer de méme que : P(X — E(X) < —e) < VX )12



Fauriel - PC - Mathématiques TD15 - ESPERANCE ET VARIANCE

4. Donner un majorant de IP’(|X —E(X)| = e) et comparer avec le majorant fourni par I'inégalité de Bienaymé-
Tchebychev.

Exercice 13. Soit (Y),)neny une suite de variables aléatoires ayant une variance, définies sur un méme espace
probabilisé (Q, A, P). On suppose que les limites £ = lir}rl E(Y,) et lirf V(Y;,) = 0 existent. Montrer que, pour
n——+ao0 n—+0o0

tout e >0, lim P(|Y, -/ >e)=0.
n—+00
Exercice 14 (CCP PSI 2016 BEOS). Soit X, Y des variables aléatoires vérifiant les hypothése suivantes :

1. X et Y ont chacune une espé- 2. X et X —Y sont indépen- 3. Y et X —Y sont indépen-
rance finie, dantes, dantes.

Montrer que X —Y est presque strement constante. Indication : On montrera ’existence, puis la nullité de V(X —Y).

Exercice 15 (CCP PC RMS 2016 - exo 2). Soient X et Y deux variables aléatoires indépendantes suivant une
loi de Bernoulli de paramétre p. On pose Z = X + Y. Déterminer la loi de Z, son espérance et sa variance.

Exercice 16 (CCP PSI 2015 BEOS). Une machine tire au hasard un nombre dans N* : c’est n € N* avec
probabilité p,, = 2%
Le jeu : le joueur gagne n points si le nombre tiré n est pair, et perd n points si le nombre tiré n est impair.

1. Quelle est la probabilité que le joueur gagne?

2. Soit G la variable aléatoire qui est égale au gain du joueur. Calculer I'espérance et la variance de G.

Exercice 17. Soit p €]0, 1[. Soit X, Y et Z trois variables aléatoires indépendantes suivant la méme loi géométrique
de parameétre p. On pose U = min(X,Y) et V = max(X,Y).

1. Déterminer les lois de U et V. Calculer E(U), puis E(V) de deux maniéres différentes.
2. Quelle est laloide U +V?
3. Déterminer la probabilitée P(X +Y < Z).

Exercice 18. Soit X une variable aléatoire suivant une loi de Poisson P(\). On pose Y = ﬁ Montrer que Y
admet une espérance finie et la calculer.

Exercice 19. Un commercant se fournit auprés d’un grossiste pour constituer son stock au début de la saison, lequel
consiste en un certain nombre d’unités d’'un produit de consommation. Chaque unité vendue par ce commergant
lui rapporte un bénéfice net de = euros alors que chaque unité invendue & la fin de la saison engendre une perte
nette de y euros, x et y sont des réels strictement positifs. Ce commergant doit constituer son stock au début de
la saison et désire déterminer la taille n de ce stock afin de maximiser son espérance de gain.

On admet que le nombre d’unités qui seront commandées & ce commercant pendant la saison est une variable
aléatoire a valeurs dans N, notée X. On note Y,, la variable aléatoire égale au gain (positif ou négatif) de ce
commercant & la fin de la saison. On désigne par U la variable aléatoire qui vaut 1 si X < n et qui vaut 0 si X > n.
On admet que ces variables sont toutes définies sur le méme espace probabilisé (2, A, P).

1. En distinguant deux cas selon la valeur de U montrer que : Y, = (X — (n— X)y)U + nz(1 - U).
2. (a) Verifier que la variable XU prend ses valeurs dans {0,1,...,n}.
(b) Exprimer, sous forme de somme, 'espérance de XU a l'aide de la loi de X.

(c) Montrer enfin que

E(Y,) = (z + y) Z (k —n)P(X = k) + nz.
k=0

Dans la suite, on suppose que (z + y)P(X =0) < z.
n
3. (a) Exprimer E(Y,,+1) — E(Y,) en fonction de x, y et 2 P(X = k).

k=0
(b) Montrer qu’il existe un unique entier naturel ngy tel que

no x no+1 x
Z]P’(sz)< et ZP(X:k)>
k=0 r+y k=0 T +y
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(¢) En déduire que ce commergant maximise son espérance de gain, avec un stock de taille ny = ng + 1.
4. Une étude statistique faite au cours des saisons précédentes donne que X suit la loi de Poisson P(«), o > 0.
(a) Exprimer P(X =k + 1) en fonction de P(X = k).
(b) Utiliser ce résultat pour écrire un programme en python permettant de calculer et d’afficher n; lorsque
I'utilisateur fourni les valeurs de z, y et a.

Exercice 20. Soit X et Y deux variables aléatoires, X de loi de Poisson P(\), et Y « de loi de Poisson de
parametre X », c’est-a-dire que la loi de Y pour la probabilité P(x_,) est une loi de Poisson 1 P(n). Déterminer
la loi de Y (en laissant la probabilité sous forme d’une somme) puis 'espérance de Y (sous forme simplifiée).

Exercice 21. Soit X et Y deux variables ayant une variance, et telles que X +Y et X — Y sont indépendantes.
Montrer que V(X) = V(Y).

2 Fonctions génératrices

Exercice 22. Soit X une variable aléatoire a valeurs dans N, qui a pour fonction génératrice Gx (t) = # Quelle
est la loi de probabilité de X ? Reconnaitre la loi de Y = £} et en déduire E(X) et V(X).

Exercice 23. Soit X une variable aléatoire a valeurs dans N, qui a pour fonction génératrice G x (t) = a exp (1—|—t2).
Calculer la valeur de a. Quelle est la loi de probabilité de X 7 E(X)? V(X)?

Exercice 24. Une boite contient quatre boules numérotées 0, 1, 1, 2. On effectue n tirages avec remise. Soit S,
la somme des numéros tirés. Déterminer la loi de probabilité de la variable aléatoire S,, (on pourra chercher sa
fonction génératrice).

Exercice 25 (loi de Pascal). On effectue des tirages successifs avec remise dans une urne avec une proportion p
de boule blanches. Pour n € N*, on note X, le nombre total de boules tirées au moment ol on tire la n-iéme boule
blanche.

1. Etablir que X,(Q2) = [[n, +o[ et pour k € X,,(Q),

P(X, = k) = (f; - 1)p"<1 .

2. En dérivant N fois la série géométrique, montrer que pour N € N, x €] — 1,1],

+0o0 (k)xk,_N B 1
Z - _ N+1°
S\ (1—a)N+

3. (a) Montrer que X,, posséde une espérance finie et donner sa valeur en fonction de n et p.

(b) Montrer que, pour n = 2, )?:11 posséde une espérance finie égale a p.
n

4. Calculer la fonction génératrice de X,,. En déduire que X,, a la méme loi que la somme Z; + --- + Z,, ol
les Z; sont des variables aléatoires indépendantes suivant toutes la loi géométrique de paramétre p.

5. Retrouver 'espérance de X,,. Calculer la variance de X,.

Exercice 26. Dans tout ’exercice, X est une variable aléatoire suivant la loi de Poisson de paramétre A > 0.

1. Montrer que P(|X — | = )) < % En déduire I'inégalité () :

P(X > 2)) <

> =

2. Premiére amélioration de 'inégalité (x).
(a) On considére une variable aléatoire discréte Z, d’espérance nulle et de variance o?. Montrer que, pour
tout couple (a,z) de ]0,4+o00[ x R4 :
P(Z 2 a) < P(Z+2)* = (a+12)?%).

1. Normalement on devrait avoir n > 0. On garde la méme formule pour n = 0, et on considére que I'image est encore N.
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(b) En appliquant I'inégalité de Markov & la variable aléatoire (Z 4 z)2, montrer que pour a > 0, pour z = 0,

2 2

+
(a+ z)?

(¢) En déduire que pour a > 0,

2

o
PZ>a) < ——
( ) o2+ a?

(on pourra étudier la fonction f:x e Ry — %)

(d) Utiliser cette derniére inégalité pour montrer que :

3. Deuxiéme ameélioration de I'inégalité (x). On note Gx la fonction génératrice de X.

(a) Montrer que pour t € [1,40[ et a > 0,

(b) En déduire que :

Cette inégalité est-elle meilleure que celle obtenue en 2d ?

Exercice 27 (CCP PSI 2015 BEOS). Soit a un réel strictement positif. Soit X une variable aléatoire discréte a

valeurs dans N* telle que : pour tout n € N*, P(X =n) = n(n“H).

1. Déterminer a.

2. X admet-elle une espérance finie, une variance ?

3. Expliciter la fonction génératrice de X.
Exercice 28. Soit X et Y deux variables aléatoires définies sur un méme espace probabilisé (2, A,P) & valeurs
dans N.

1. Soit (w,y) € [~1,1]?. Montrer que la famille (m”ykIP’(X =n,Y = k))
G(x,v)(7,y) sa somme.
Soit (x,y) € [~1,1]%. Montrer que Gy y)(z,y) = E(z%y").

Comment, connaissant G(x y), peut-on déterminer Gx (la fonction génératrice de X)?

(n,k)eN? est sommable. On note

Montrer que si X et Y sont indépendants, alors pour tout (z,y) € [—1,1]?, Gxy)(7,y) = Gx(x) x Gy (y).

In(1—pzx)
In(1-p)
Soit p €]0,1[, Z une variable aléatoire indépendante de X et de loi géométrique G(p). On pose Y = X + Z.
Calculer, pour tout (z,y) € [-1,1]%, G(x,yy(z,y).

Justifier que G : z € [-1,1] —

est la fonction génératrice d’une variable aléatoire X a valeurs dans N.

Al

Exercice 29. Soit X une variable aléatoire & valeurs dans N. Exprimer Gx 1 et Gox en fonction de Gx.
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Solutions

Exercice 1. 1) X(Q) < N car soit X renvoie 0, soit il renvoie un nombre de tirages.
Puis, si l'on tire que des boules noires (ce qui est possible, vu I'expérience que I'on veut modéliser), on aura X = 0
qui sera réalisé, donc 0 € X (). Et pour n € N*, si on tire successivement n — 1 boules noires, puis une boule
blanche (la encore c’est possible), on aura X = n de réalisé, donc n € X (). Par conséquent, N ¢ X (Q). Puis, par
double inclusion,

X(Q) =N|

P(X =1)=12% quem=1oum=2.
Puis, pour n € N* notons B,, I’événement « obtenir une boule blanche au n-iéme tirage ». Alors, pour n € N
avec n = 2, on a

(X=n)=Bin-nBy_1n By,

et par la formule des probabilités composées,

P(X =n) =P(B) XPE(E) X - X PEm~~-mm(B”_l) X PEQ...QK(Bn)
1

Ensuite, le calcul des probabilités conditionnelles dépend du protocole.
* Cas m = 1 : on ne remet qu’une boule noire en plus & chaque tirage d’une boule noire. Alors, pour k € N*,

kE+1
PEm---mE(Bk+1) = k+2

car on sait qu’'on n’a pas encore eu la boule blanche (donc le jeu continue et il y a un tirage numéro k + 1), et
comme avant on a eu k boules noires, on en a remis k dedans.
Par conséquent, pour n = 3,

1 ("= k+1 12 1— 1
P(X =n) = = Al Y IS CH | ntlon_
2\ S k+2 n+1 2(n—2)+2 n+1 n(n+ 1)
en reconnaissant un produit télescopique, et

P(X:2):;(1f§):;3

(donc la méme formule reste valable pour n = 2, et aussi pour n = 1, puisque P(X = 1) =

D=
~—

Remarque. Pour n € N*, P(X = n) # 0, donc en particulier on retrouve n € X ().

Comme X (©2) © N, on peut calculer P(X = 0) par la formule

1= STR(X =

n=1

P(X

ce qui donne :

P(X i i 1 1- I i 1 1 1- 1 1 1 0
= - — =1— lim - — =1— lim — =
= n(n+1 = n+1 N+ =\ n n+1 N—+o© N+1

(par somme télescopique). On a donc la loi compléte de X, en disant :

‘X(Q)=N‘, ‘}P(X:O)z()‘, Vn € N¥, P(X=n)=m

* Cas m = 2 : on remet deux boules noires en plus & chaque tirage d’une boule noire. Alors, pour k € N*,

2k +1
PEm--'mE(Bk+l) = 2k + 9
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car on sait qu’'on n’a pas encore eu la boule blanche (donc le jeu continue et il y a un tirage numéro k + 1), et
comme avant on a eu k boules noires, on en a remis 2k dedans.

Par conséquent, pour n = 3,
1 ("= 2k +1 2n — 1
P(X =n)== 1-—
(X =n) 2<H2k+2 ( on >

k=1

IP(X:Q):1<1—3>:1.

et
2 4
Remarque. Pour n € N*, P(X = n) # 0, donc en particulier on retrouve n € X ().

Pour simplifier, c’est classique : on multiplie au numérateur et dénominateur par le produit des nombres pairs qu’il
manque pour avoir une factorielle, puis on regroupe au dénominateur les 2 : pour n > 3,
(2n=3)2n—5)...3(2n—2)(2n—4)...2 1 (2n —2)! ~ (2n-2)!

2n(2n —2)...2(2n —2)(2n —4)...2  2n22n2(n—1)l(n—1)!  22n-Ipl(n —1)!

P(X =n)=

Remarque. On remarque que cette formule reste valable pour n = 2 et n = 1.
Pour simplifier les calculs & venir, on peut remarquer que, pour n € N*,

 (@2n=2)! (2n-1)(2n)  (2n)! 1
C22n-Ipl(n — 1) 2n—1)2n 227(n!)22n — 1’

P(X =n)
On a toujours X (€2) < N, mais calculer P(X = 0) par la formule

IP’(XzO)zl—iIP’(in)
=1

3

parait plus difficile... Or, par définition,

k=1
donc par continuité décroissante de P,
. — _— 1% 2k +1 (2n)!
P(X =0) = nETwP(Bl noen Bn) B n—1>r—&r-loo 2 Pl 2k + 2 B n—lg-loo 22n(n!)?
Or, par la formule de Stirling, on a n! ~ (%)n v/ 27n, donc
n—-+00
(2n)! (2n)%r — e 1
220 (nl)2 notoo  e2n 47Tn22”n2”27rn = /rn noteo 0
donc
P(X=0)=0
On a donc la loi compléte de X, en disant :
X(Q) =N [P(X=0)=0] V¥neN* |P(X=mn)= (2n — 2)!
' ' ’ 22n=Inl(n —1)!

ee}

Remarque. On peut vérifier (en connaissant bien ses DSE...) que Z P(X = n)z" = 1—+/1— z, valable pour
n=1

tout z €] — 1, 1[.

2) Regardons pour 'espérance finie et la variance.

* Cas m = 1 : pour tout n € N*,
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est le terme d’une série numérique divergente, donc la famille (nIP(X = n))n n’est pas sommable. Donc X n’a
pas d’espérance finie, encore moins de variance.

* Cas m = 2 : Avec la formule de Stirling, on a vue

(2n) 1 11

eN

PX=n)=5"—"5 ~
( ) 227(n!)2 2n — 1 n>+w \/n7 2n
Donc 1
nP(X =n) ~ ——,
( ) n—+0w 24/Tn
1
or la série numérique Z = diverge (série de Riemann avec § < 1) et est & termes positifs (et ﬁ > 0), donc
neN*
par critére d’équivalence des séries a termes positifs, on en déduit que la série numérique Z nP(X = n) diverge,

neN

donc la famille (n]P’(X = n)) n’est pas sommable. Donc X n’a pas d’espérance finie, encore moins de variance.

neN

Exercice 2. 1) Calculons la probabilité r qu’un groupe soit positif. Le nombre U de personnes malades dans
un groupe donné suit une loi binomiale B(n,p), car on a n personnes dans un groupe, chacune a la méme
probabilité p d’étre malade, et ce indépendamment les uns des autres (la maladie étant non contagieuse).
Donc
r=PU=>1)=1-PU=0=1-(1—-p)".

Comme chaque groupe a la méme probabilité r = 1 — (1 — p)™ d’étre positif, et que 'on suppose que chaque
personne est malade indépendamment les uns des autres, donc que chaque groupe est positif indépendamment les
uns des autres, X suit une loi

B(g,r) |
2) On a
Y =g+nX,

et donc par linéarité de ’espérance finie, comme X et la constante g ont une espérance finie, on obtient que Y a
aussi une espérance finie, et

E(Y):g—i—nE(X):g+ngr:g+ng(1—(1—p)"): N(i—kl—(l—p)”).

On sait que X a une variance, donc par le cours, Y aussi, et

V(Y) =n*V(X) =n?g(1 - (1-p)")(1 = p)" =|Nn(l - (1-p)")(1-p)"|

3) Avec la méthode II, on fait donc en moyenne

1
N<+1—(1—p)”> ~ 196

n

analyses (avec un écart-type d’environ \/Nn(l —(1=p)") (1 —p)» ~ 29).
Avec la méthode I, on en fait 1000...

Remarque.

1. Ce procédé, nommé « parcours d’arborescence », était déja mis en ceuvre par 'armée américaine lors de
la Seconde Guerre mondiale afin de détecter les malades (IST en l'occurrence) parmi les troupes - chaque
analyse cotiitait quelques dollars. La méthode utilisée a été la suivante : on teste d’abord un mélange du sang
de tous les soldats. Quand le résultat est positif (il y a un malade dans les rangs), on divise les effectifs en
deux groupes sur le sang desquels on réitére 'opération, et encore avec le groupe ou le test est positif, et
ainsi de suite jusqu’a isoler les soldats malades. (Réf. Dossier Pour la Science, n°66, janvier-mars 2010, p.36).

2. L’espérance de gain du laboratoire, qui, de toutes fagons, fait payer 1000 tests, est maximum. Le nombre
moyen de tests gagnés est 1000 — 196 = 804, soit un gain moyen de prés de 80%.
Un tel procédé a été interdit par la loi : quiconque demande un test & un laboratoire a droit & un test, et pas
a 20% d’un test!
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3. Une étude de la fonction z — N (L + 1 — (1 — p)®) (pour les valeurs de N et p considérées) montre que n = 10
ou n = 11 donne la valeur de E(X) la plus basse.

Exercice 3. 1a) Soit i € N\{0,1}. La variable aléatoire X; ne peut prendre que deux valeurs, 0 ou 1, donc
la variable aléatoire X; suit une loi de Bernoulli. Puis, la piéce est équilibrée, la probabilité d’avoir Pile est %,

donc P(X; = 1) = 3. Donc
1
Xi~B|=z]}
(z)

E(X;) == |V(X)=->|

et donc

X; ne concerne que le tirage i, X;11 que le tirage 7 + 1, et les tirages sont indépendants, donc X; et X;,1 sont
indépendants, et donc

| Cov(X;, Xj41) = 0}

1b) Soit i € N\{0, 1}. La variable aléatoire Y; ne peut prendre que deux valeurs, 0 ou 1, donc la variable aléatoire Y;
suit une loi de Bernoulli. Puis,
Yi=1)=(Xi-1=1)n (X; = 1),

donc par indépendance des lancers,
P(Y; = 1) = P(X;-1 = DP(X; = 1),

et comme la piéce est équilibrée, la probabilité d’avoir Pile est %, d’ou

1
PY; =1)=-.
(Vi=1)=
Donc
1
}/i’\’ - )
5(3)
et donc
E(Y) = <] V() = -
1_47 2_16

Y;Yi11 ne peut prendre que 0 ou 1 comme valeurs (car le produit de 0 ou 1 par 0 ou 1 donnera 0 ou 1), donc la
variable aléatoire Y;Y;.1 suit une loi de Bernoulli. Puis,

(Y;Y;'+1 = 1) = (Y; = 1)ﬁ(m+1 = 1) = ((Xifl = 1)ﬁ(X,L = 1))(\((Xz = 1)“(Xi+1 = 1)) = (Xifl = 1)(\(X,L = 1)(\(Xi+1
et comme les variables aléatoires (X;_1, X;, X;11) sont indépendants (puisque les lancers le sont), on a
1
P(Y;Yiy1=1) = 3

Donc Y;Y;41 ~ B (%), et E(Y;Yi41) = £. Alors,

COV(YinH) = E(Yiyi-i-l) - E(Yz)E(YzH) =

|
=~ =
| =
—_
(@)

Remarque.

1. Ce serait bien de justifier que la covariance existe avant d’en faire le calcul! C’est le cas ici car Y; et Y;41 ont
une variance. On peut aussi dire que c’est le cas car Y;(Q2) et Y;;1(€2) sont finis.

2. Pour le calcul, on peut aussi utiliser que Y; = X;_1X;, et donc Y;11 = X;X;41, pour avoir

E(Y;Yii1) = E(X;1 X2 X41) = E(XG)E(XP)E(X 41)
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car (X;—1, X;, X;+1) sont indépendants, donc (Xi_l,XZZ,XZ-H) aussi (lemme des coalitions).
Puis, E(X;1) = E(Xj41) = 1, et

1 1 1
E(X?) = V(X) + B(X) = 2+ L -

par la formule de Huygens (sinon, on peut utiliser le théoréme de transfert : X;(Q2) = {0, 1}, donc

1
E(X}) =0 P(X;=0)+ 1> P(X; =1) = 3
ou encore remarquer que X? = X; (car 02 4+ 0 et 12 = 1)), et on retrouve E(Y;Y;11) = %, puis
1 1 1 1
Cov(Y;,Yir1) = E(YiYi1) — E(Y)E(Yi41) = R X 1 = 6!

Remarquons par contre (cela servira) que pour j € N avec j > i + 2, les variables aléatoires Y; et Y sont
indépendantes (car Y; concerne les tirages i — 1 et 4, alors que Y; concerne les tirages j — 1 et j, et il n’y en a pas
de commun, puisque j — 1 >+ 1), et donc

Cov(Y;,Y;) =0

sij=i+2.
Par linéarité de l'espérance, comme les Y; ont une espérance finie, on a .S, qui a une espérance finie et

E(S,) = ; ;

Comme les Y; ont une variance, il en est de méme de S,, (par addition), et on a

n—1
4

AM»—*

V(Sn) = zn: Z COV 2 ]
=2 2<i<j<n
n 3 n—1 n
= Z 5 +?2 DD Cov(Y;,Y5)
=2 1=2 j=1+1

= 3o 1)—1—22 Cov(Y;,Yit1) + Z Cov(Y;,Y))

£ Jj=1+2

16

=0

5n — 7
16

— 31 —2 _
- 6 2% =

2) Quatre cas sont possibles :
e OnalX;, =X, 1=1LalorsY;=1et X; + X;,_1 —2Y; =0, puis Z; = 0.
eOnalX;,=1let X;_1=0,alorsY; =0et X; + X;_1 —2Y; =1, puis Z; = 1.
eOna X;=0et X;_1=1alorsY;=0et X; + X;_1 —2Y; =1, puis Z; = 1.
e Ona X; =X, 1=0,alors Y; =0et X; + X;_1 —2Y; =0, puis Z; = 0.
Dans tous les cas, on a bien Z; = X; + X;_1 — 2Y;, ce qui justifie ’égalité de ces variables aléatoires.

Remarque. Comme Xf = X, XZ?_1 =X, 1etY;=X;X; 1,onaZ; =(X;— X; 1) Mais cette écriture ne sert
pas spécialement ici.

e Pour le calcul de E(Z;) et V(Z;) :
Meéthode 1 : Z; ne peut prendre que deux valeurs, 0 ou 1, donc Z; suit une loi de Bernoulli. Puis,

(Zi=1) = (Xica = 0) 0 (Xi = 1)) U (Xim1 = 1) 0 (Xi = 0)),
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et comme l'union est disjointe (X; ne peut pas valoir 0 et 1 en méme temps), on a alors
P(Zi=1) =P((Xic1 =0) n (X; = 1)) + P((Xi=1 = 1) n (X; = 0)).
Comme les lancers sont indépendants, on a alors
P(Z;=1)=P(X;-1 =0)P(X; =1)+P(X;-1 = 1)P(X; =1) = -.

Donc Z; ~ B (%), et donc
1

(que l'on aurait pu retrouver a partir de I'égalité Z; = X; + X;_1 — 2Y; et la linéarité de 1'espérance), puis

Méthode 2 : on n’est pas obligé de passer par ce calcul : Z;(Q2) < {0,1}, donc Z; suit une loi de Bernoulli. Son
paramétre est P(Z; = 1), mais c’est aussi E(Z;). Or, X;, X;_1 et Y; ont une espérance finie, donc par linéarité de
I'espérance (on retrouve que Z; en a une aussi et)

E(Z) = E(X:) + E(Xi1) — 2E(Y;) = = 4 = —22 = L,

et donc Z; ~ B (%) Donc

Méthode 3 : on a Z; = X; + X;_1 — 2Y;, donc par linéarité de ’espérance, on obtient

1 1 1 1
E(Zi) = E(X:) + E(Xi—1) = 2E(Yy) = 5 + 5 -2, = 5.

Comme Z;(2) = {0,1} et que 0> =0, 12 = 1, on a Z? = Z;, donc la formule de Huygens donne
V(Z) =E(Z?) —E(Z)* =E(Z) —E(Z;)* = = —2~ = —.
Méthode 4 : Pour le calcul de V(Z;) (une fois que I'on a remarqué que E(Z;) = 3), on peut utiliser :

V(ZZ) = V(XZ + X1 — 2}[1) = V(Xz) + V(Xi_l) + V( — 21/1) + 2 COV(XZ', Xz'+1) +QCOV(XZ‘, —2}[1‘) + QCOV(Xi_l, -2
—_—

=0
= 1+14(-2)?2V(Y;) — 4Cov(X;,Y;) — 4Cov(X;_1,Y)
Puis,
1 1 1
Cov(X;1,Y;) =E( Xi1Y; ) —E(Xi-)E(Y;) = E(X7 1 X;) — = x - = E(X7)E(X;) — =
N 27 4 8
=Xi2—1Xi

car les variables X; et X;_1 sont indépendantes (donc Xf_l et X; aussi). Et donc, par la formule de Konig-Huygens,

1 1 1\1 1 1
COV(X'Z'_l7 Yz) = (V(Xi_l) + E(Xi_1)2)E(XZ') — g = <4 + 22) 5 — g = g

De méme,

1
COV(E, X’L) = g

Donc, en reportant,
1 3 1 1 1
Zi)==-+4+4——4-—4— = —,
V(z) SR T B

e Pour le calcul de Cov(Z;, Z;11) :
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Meéthode 1 : Par bilinéarité,

Cov(Zi, Zit1) = Cov(X;+ Xio1 —2Y;, Xip1 + Xi — 2Yiq1)

= COV(Xi, Xi-i—l) + COV(X'Z'7 Xz) -2 COV(XZ', Y;_H) + COV()(Z‘_l7 Xi+1) + COV(AXZ'_l7 Xz) —2 COV(XZ'_l, Y;

b e i % %
—2Cov(Y;, Xiv1) —2 Cov(Y;, X;) +4 Cov(Yi, Yii1)
0 _1 _

L
16

[

ot les 0 proviennent de ce que l'on prend la covariance de deux variables aléatoires indépendantes (car elles
concernent des tirages différents).
Donc

COV(ZZ‘, Zi+1) = - - — = + =

Méthode 2 : ce n’est pas surprenant, car on peut montrer que Z; et Z;1 sont indépendants.
Par exemple,

(ZZ = 0) M (Zi+1 = 1) = ((Xi—l = 0) M ()(Z = O) M (Xi+1 = 1)) ) ((Xi—l = 1) M (Xz = 1) M (Xi+1 = 0))

est de probabilité

1

et on fait de méme pour les trois autres probabilités (on peut sinon faire comme dans la remarque qui suit). On
en déduit bien alors Cov(Z;, Z;+1) = 0.
Méthode 3 : on passe par la loi du couple (Z;, Z;+1), puis le théoréme de transfert :

(Zi = 1) N (Zi+1 = 1) = ((Xi—l = 0) N (Xz = 1) N (Xi+1 = O)) U ((Xi—l = 1) N (Xz = 0) N (Xi+1 = 1))

est de probabilité % (on a une union de deux événements incompatibles, et chacun de ces deux événements est une
intersection de trois événements indépendants).
On a alors la loi de (Z;, Z;4+1) qui s’écrit (comme Z;(Q) < {0,1} et Z;11(Q) < {0,1}) :

Zi\Z;iy1 |0 | 1
0 alb
1 c i

Remarque. Sans plus de calcul, on peut déterminer a, b et ¢, car on a la loi de Z; et Z; 1 : on a

1 1 1
§=IP’(ZZ-=1)=0+Z, donc c=7
Puis,
1 1 1
=P(Ziy1=1) —b~|—1, donc b= -
Et enfin,
1
5 =PZi=0)=a+b
(ou bien & =P(Z;41 = 0) = a + ), et donc
1
a 17

mais on ne s’en servira pas dans cette méthode (remarquons aussi que de 14, I'indépendance est directe).

Le théoréme de transfert (qui s’applique car Z;(£2) et Z;+1(Q2) sont finis) donne :

1
E(ZiZiH):OxOxa—i—Oxl><b+1><0><c+1><1><Z:f

puis
COV(ZZ', Zi+1) = E(ZZZH-I) — E(ZZ)E(ZZ+1) =
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e Enfin, pour tout j € N, si j > ¢ + 2, alors les variables aléatoires Z; et Z; sont indépendantes, car ne concernent
pas les mémes tirages, donc Cov(Z;, Z;) = 0.
e Pour finir, par linéarité de ’espérance, puisque les Z; ont une espérance finie, T}, a une espérance finie, et

n—1
2

Et, comme les Z; ont une variance, T;, a une variance, et

n—1

V(Tn)=;V(Zi)+2 > Cov(Zi, Z;) =

2<i<j<n

=0

Exercice 4. 1) X suit une loi binomiale B(n,p), donc X () = [0,n], en particulier X > 0, donc Y est bien
définie.

X est & image finie, donc Y aussi, donc Y a une espérance finie, et on peut utiliser le théoréme de transfert :
comme X (2) = [[0,n]] (c’est important de le savoir, cela donne sur quoi on somme!),

b1
E(Y = —P(X =k
() 2 TP =H
& 1 <”>k Kk
D e (A Ck
S 1+k\k
" 1 n+1 k —k
= 1— n
;On+1<k+1>p( P)

nl n+1
= 1 p] 1 1 n+1l—j
j=k+1 ntl =1 ( J > ( )

; a (@ =p)"™ =@ p)

binéme (g Newton p( )

= (=
p(n+1)

2) X est a image finie, donc Z aussi, donc Z a une espérance finie, et on peut utiliser le théoréme de transfert :
comme X () = [0, n]],

n

B(Z) = 3 AR =) = 344 (1) - = Y -t = [+ 1]
k=0 k=0 k=0

(toujours par le binome de Newton).

Exercice 5. Remarquons déja que (n, pq”)neN définit bien la loi d’une variable aléatoire (grace & un théoréme du

cours, car N est dénombrable, pg” > 0 pour tout n € N, et par somme géométrique, la série numérique Z pq"
neN

converge de somme ﬁ = 1 puisque g €] — 1, 1]).

Puis, X(2) = N étant dénombrable, le théoréme de transfert (appliqué avec la fonction

f:zeR—a2?eR,

bien défini sur X (£2)) donne que X? = f(X) a une espérance finie si et seulement si la famille (f(n)P(X = n))
est sommable, donc si et seulement si la série numérique

Z f(n)P(X =n) = Z n*P(X =n) = Z n’pq"

neN neN neN

neN

converge absolument.
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Remarque. Comme c’est une série a termes positifs, converge suffit.

2T . 2 .
Enfin, % = nipg" s 0 par croissance comparée, puisque g €] — 1, 1[. Donc

2
1
2 n: —
n“pq . (n2>

Or, la série numérique >, _yx« L est une série numérique convergente (Riemann avec 2 > 1) et & termes positifs.
) neN* p2

n

Le critére de domination des séries & termes positifs permet alors de conclure que la série numérique Z n?pq"

neN
converge absolument.

Remarque. On peut aussi montrer ceci & partir du critére de D’Alembert : pour tout n € N*, on a n’pg" # 0, et
2
(n+1)%pg" | 1
=1+ lad — ldl <1,
n n—+000

2
n°pq"
donc la série numérique Z n?pg" converge absolument.

neN
Enfin, un éléve a eu I'idée de faire ainsi :

n’pq"  ~ pg*n(n—1)¢" 2,

n——+o00

n—2

or la série numérique Z n(n — 1)q converge absolument (en tant que série géométrique dérivée deux fois,

n=2
de raison ¢ avec ¢ €] — 1,1[), donc par critére d’équivalence des séries a termes positifs, on a bien que série

numérique Z n?pg" converge absolument.
neN

Donc X? a une espérance finie, et (comme 1 — ¢ = p),

[ee}
E(X?) = ) n’p"
[ee}
= Z (n—1)+ 1)pq”

a0
= 040+ pg? Z (n—1)q +pq2nq !

n=1

— 2_ 2 1
= PUa=gr TP

= pg? 3+Pq

_  2¢%+pq
p2

q(29+p) _ (1-p)(2—p)
p2 o p2

car q €] — 1,1[, et car la série géométrique est une série entiére de rayon 1, donc sa somme est dérivable terme a
o0

terme sur | — 1, 1[ (done, en dérivant une, puis deux fois la fonction x +— Z " =
n=0

Y- () catm o Zreew- () -ty

-1,1
_xsur] ,1[, on a

pour z €] — 1,1[).
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Exercice 6. Tout d’abord, S est une variable aléatoire discréte & valeurs dans R et cos est une fonction définie
sur R, donc cos(S) est une variable aléatoire discréte. Puis,

| cos(9)| <1,

et la variable aléatoire constante 1 a une espérance finie, donc cos(S) aussi. De méme pour cos(T) et cos(S + T),
puis pour sin(S) et sin(7"), puis pour cos(S) cos(T") et sin(.S) sin(7).
Puis,

cos(S + T') = cos(S) cos(T) — sin(S) sin(T").

Alors, par linéarité de ’espérance finie,
E(cos(S + T)) = E(cos(S) cos(T)) — E(sin(S) sin(T)).

Puis, S et T sont indépendantes, donc toute fonction de S est indépendante avec toute fonction de T'. Donc cos(S)
et cos(T') sont indépendantes, et comme de plus ces deux variables ont une espérance, on a alors

E( cos(S) cos(T)) = E(cos(S))E( cos(T)).

De méme,

E(sin(9)sin(T)) = E(sin(S))E(sin(T)).
Enfin, T et —T ont méme loi, donc sin(T") et sin(—7") aussi. Or, la fonction sin est impaire, donc sin(—7") = — sin(7).
Donc sin(T") et —sin(7") ont méme loi, donc méme espérance, donc par linéarité de ’espérance finie,

E(sin(T)) = E( —sin(T)) = —E(sin(T)).

Par conséquent,
E(sin(T)) = 0.

En mettant tout bout a4 bout, on a bien
E(cos(S+T)) =E(cos(S))E(cos(T)).

Exercice 7. 1) N? est dénombrable, et pour tout (i,7) € N?, +1 5 = 0. Le théoréeme de Fubini (version famille
dans [0, +o0]) donne alors

Z 2@+1]| Zz2z+1]| 2]2;)2 ;

(i,4)eN? j=0i=0

b‘)ﬂ.

en reconnaissant une série géométrique de raison % (donc convergente car % e] 1, 1[), puis une série exponentielle
(donc convergente). Par conséquent,

1
]

Q‘H
M\H
l\.’)\»—t

(i,7)eN?
Or, comme N? est dénombrable, la famille (21%1],) - est une distribution de probabilité si et seulement si
*/ (i,5)€
Y PX=iY=j)=1 et V(i,j) e N?, %20, soit a = 0.
(5N .
Donc
1
a=-=¢"!
e

convient (la somme fait alors bien 1, et > 0).
2) o On a, par définition, X (Q2) = N et Y(2) € N, et N est bien stir au plus dénombrable.
e En particulier, ((X = i))ieN est un systéme complet d’événements. La formule des probabilités totales donne
alors, pour tout j € N,
0 0 1

« « a 1 «
g\l (X =iY =) ; DLl T jl2 A% T jl1— L v

N[

en reconnaissant une série géométrique de raison 3 (donc convergente car % €] — 1,1[). Donc, pour tout j € N,
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Remarque. On a alors, pour tout j € N, P(Y = j) > 0, donc (Y = j) # &, donc j € Y(€2). Donc N < Y (Q),
puis | Y(Q) = N|

e De méme, ((Y =3 ))jeN est un systéme complet d’événements. La formule des probabilités totales donne alors,

pour tout i € N,

. . « «Q a4
=)= 2P =6Y =) = ), gy = gt X 57 = giei®
jeN 7=0 ’ j=0""

en reconnaissant une série exponentielle. Puis, ae! = 1, donc pour tout ¢ € N,

Remarque. On a alors, pour tout i € N, P(X = i) > 0, donc (X = i) # ¢, donc i € X(Q2). Donc N < X(Q),
puis | X(©2) = N|.

3a) e Pour les 3/2: On a X(2) c N (on a méme ’égalité, mais on n’en a pas besoin), N est (au plus) dénombrable,
la famille (nP(X = n))neN est a termes positifs, et est sommable car on reconnait le terme général d'une série
géométrique dérivée de raison % avec 3 e] 1,1[ (donc on sait que cette série converge absolument). Donc X a

une espérance finie, et

= = 1 & 1 1
:an( Z n+1: ZZ nlzz(l 2:‘

n=0 -3)

On a X(Q) c N, N est (au plus) dénombrable, la famille (n(n — 1)P(X = n)) nen €St a termes positifs et est
sommable car on reconnait le terme général d’une série géométrique dérivée deux fois de raison ; avec 5 e]l—-1,1]
(donc on sait que cette série converge absolument). Donc le théoréme de transfert s’applique, et donne que X (X —1)
a une espérance finie, et

o] o8]
IE( Znn—l Zn 2n+1=
n=0

n=0

& 1 2
Z:: 2n2:§ 1 =2

OO\*—‘

Puis,
X2 = X(X—-1)+ X,

or X et X (X —1) ont une espérance finie, donc par linéarité de I'espérance finie, X? aussi, donc X a une variance,
et
E(X?)=E(X(X-1)+EX)=2+1=3.

La formule de Huygens donne alors
V(X) = E(X?) -E(X)?=3-1%=[2]

e Pour les 5/2 : On a X(Q2) = N, donc en notant Z = 1 + X, on a Z(Q2) = N*. Puis, pour tout n € N*,
comme n — 1 €N,

1 1 1!

Donc Z suit une loi géométrique de paramétre % :

2-5(1).

Par conséquent, Z a une espérance finie et une variance, et

E(Z) =

ol =

11
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Puis, X = Z — 1, donc par linéarité de ’espérance finie, X a une espérance finie, et

E(X)=E(Z)-1=2-1=]1],

et X a une variance, qui vaut
V(x) =v(2)=[2]

3b) e Pour les 3/2: On a Y (Q) ¢ N, N est (au plus) dénombrable, la famille (nP(Y = n)) _ est a termes positifs.
Pour tout n e N|

0 sin=20

nP(Y =n)=—e " = 1 ,-1 * )

=y ® sineN
donc la famille (nP(Y = n))neN est sommable car on reconnait le terme général d’une série exponentielle (donc on
sait que cette série converge absolument), & un décalage d’indice prés. Donc Y a une espérance finie, et

= Z nP(Y =n) = 2 = 2 '
n=0 n=1 k=0

=n—

On a Y(Q2) N, N est (au plus) dénombrable, la famille (n(n — 1)P(X = n)) est & termes positifs. Pour

neN
tout n € N,
—1 0 sin=0oun=1
n(n—1PY = n) = ”(”7,) B A :
n! =1k sine N avecn > 2

donc la famille (n(n —DPY = n))neN est sommable car on reconnait le terme général d’une série exponentielle
(donc on sait que cette série converge absolument), a un décalage d’indice prés. Donc le théoréme de transfert
s’applique, et donne que Y (Y — 1) a une espérance finie, et

E(Y( i (n—1)P :n)=0+0+§2(n_1

n=0

ee}
2 = 1.
Puis,

Y2=Y(Y -1)+Y,

or Y et Y(Y — 1) ont une espérance finie, donc par linéarité de I'espérance finie, Y2 aussi, donc Y a une variance,
et
EY?) =E(Y(Y -1) +EY)=1+1=2.

La formule de Huygens donne alors
VY)=EY?) -EY)?=2-12=][1]
e Pour les 5/2 : On reconnait que Y suit une loi de Poisson de paramétre 1 :
Y ~P(1),

donc

E(Y) =V(Y)=1]

4) On a X(2) = Net Y(Q2) = N. De plus, pour tout (i,5) € N2,

L€
P(X =i) = ST et P(Y =j) = iR
donc
, . 1 e! . .
P(X =)P(Y =j) = ST P(X =4,Y =j).

Donc les variables aléatoires X et Y sont indépendantes.
5) Ona ((X = i))ieN qui est un systéme complet d’événements (car X (2) < N), donc la formule des probabilités
totales donne :

-1 —1

w\»—‘
~—.
I
—
—

0 0
. . . 1 e
IP’(XzY)zE]P’(Xz@,XzY)zEIP’(XzZ,YzQzE2l+1 = E N
i=0 i=0 =0 =0

12
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Exercice 8. o Li(Q) c N* Ly(92) c N*, et N* est (au plus) dénombrable, donc (N*)? aussi. Donc le théoréme
de transfert donne que LiLo a une espérance finie si et seulement si la famille

(nkP(Ly = n, Ly = k)) = (nkp*q"™ + nkgtp" )

(n,k)e(N*)? (n,k)e(N*)?

est sommable, et dans ce cas E(L;Lg) vaut la somme de cette famille :

E(LiLy) = Y. (nkP(Ly =n, Ly = k)).
(n,k)e(N¥)?

est sommable, car la série numérique

Dkt =p Y kpt!

k=1 k=1

e La famille (k:pk) bENF

est une série géométrique dérivée de raison p, donc absolument convergente car p €]0,1[c] — 1,1[. De plus, sa

somme vaut alors
k 1 P
2k =g =
LeN#* (]' - p) q

. est sommable, car la série numérique

Z nqn-i-l _ q2 Z nqn—l

n=1 n=1

e La famille (nq”“)neN

est une série géométrique dérivée de raison ¢, donc absolument convergente car ¢ €]0,1[c] — 1,1[. De plus, sa
somme vaut alors

1 ¢
1 2
2, " = =
S (I—q)* p
e Par produit, on en déduit que la famille (k:npkq”H) (n)e(NF )2 est sommable, et sa somme vaut

Z knpFq"tt = (Z kpk> < Z nq”“) = %qé — 1

(n,k)e(N*)2 keN* neN* o P

e De méme (en échangeant le role de p et ¢), la famille (nqup"H) , est sommable, et sa somme vaut

(n,k)e(N*)

kel z 1 gp” 1

2. Rndph = Y ket ) D] ) = S =

(n,k)e(N*)2 keN* neN* p=q q
e Par linéarité de la somme finie, on en déduit que la famille

nkP(Ly = n, Ly = = 4+ nkq®p
(nkP(Ly = n, Ly = k)) (nkp®q™™ + nkq*p"+!

(n,k)e(N*)?2

est sommable, donc que L L2 a une espérance finie, et que

1 1
E(Lng) = Z knpkanrl + Z knqkpn+1 B e
(n,k)e(N*)2 (n,k)e(N*)2

(car p+ ¢ =1).

Exercice 9. 1) N et N x N = N2 sont dénombrables.
La famille (p(l — p)i)ieN est sommable car la série numérique

Dli(1—p)
€N

converge absolument (on reconnait une série géométrique de raison 1 —p avec 1 —p €]0, 1[c] — 1, 1[, multipliée par
la constante p). Sa somme vaut alors

iEZNP(l —P)i = Pm =L

13
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Pour la méme raison, la famille (q(l —q)! )jeN est sommable de somme 1.

Par produit, on en déduit que la famille (pq(l —p)i(1 — Q)j)(z’j)eNQ est sommable, de somme

> pa(l—p)(l—q) = (Zp(l —p)i> (Z q(1- Q)j> =17 =1

(4,5)eN2 €N jEN

Enfin, pour tout (i,5) € N2, ‘ .

pg(1 —p)'(L—¢q)) =20
(car pe [0,1] et g € [0,1]).
Donc on peut bien définir une probabilité P sur (Nz, P(N2)), en posant, pour tout (i, j) € N2,

P((i,)) = pg(1 - p)'(1 - q)’.

Remarque. Elle est définie de maniére unique par : pour tout A € P(N?),

P(A) = Y P((g)).

(4,5)eA

2a) Par définition, X (Q) = Y(Q) = N. Puis, pour tout (i,7) € N?, (X =4,Y = j) = {(i,5)}, donc

P(X =i,Y =j) =pq(1 —p)'(1 —q).

Comme Y(Q) c N, (Y = ))jeN est un systéme complet d’événements, et donc la formule des probabilités totales
donne, pour tout 7 € N,

= VP(X =i,Y Z )'(1—q) =p(1—p)'.
j=0 j=0

De méme, pour tout j € N, ‘

PY =j) =q(1—q).
2b) Comme Y (Q2) c N, ((Y = j))jeN est un systéme complet d’événements, et donc la formule des probabilités
totales donne

o0
:ZP
j=0

3) Z est une fonction de (X,Y) : en posant

0

0 pq
X =4Y =4 ; P(1-q) = 1-(1-p)(1—-0q) |

=0

.

1 si ¢ et j sont pairs
f:(i,j)eN?> - { —1 siietjsont impairs )
0 si ¢ et j sont de parités différentes
on a
Z = f(X,Y).

De plus, X(22) € N, Y () = N, donc (X, Y)(Q) = N2, et N? est dénombrable. Donc, par le théoréme de transfert, Z
a une espérance finie si et seulement si la famille

(fENPX =4,Y = 5)) g hewe = (F@)pa =)' (1= a)) ;e

est sommable. Et dans ce cas, IE(Z ) vaudra la somme de cette famille.
Or, pour tout (,75) € ’ 1, donc

et la famille (P(X =4,Y = j)) (ij)enz €St sommable (par o-additivité de P). Donc, par croissance de la somme
(dans le cas des familles & termes dans [0, +00]), la famille (f(i,j)P(X =4,Y = j))(i ez ©st sommable, donc Z
a une espérance finie.

14
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Remarque. On a aussi, plus simplement, |Z]| < 1 et 1 a une espérance finie, donc par inégalité, Z aussi.
De plus (toujours par le théoréme de transfert), on a
= > fGIPX =4,Y =4)= >, f(i,7)pg(1—p)'(1—q).
(1,5)eN? (i,5)eN?

Comme c’est la somme d’une famille & termes positifs, et que N? est dénombrable, on peut utiliser le théoréme de
sommation par paquets (on manipule la somme dans [0, +00]), avec la partition

N? = [(2N) x 2N)] u[(2N) x 2N+ 1)] u [(2N + 1) x 2N)] u [(2N + 1) x (2N + 1)],
puis le théoréme de Fubini. On a alors

E(Z) = Dajeenxen f(6)pad =) (1 =) + X jeemx @ (6 )pa(l = p)'(1 — q)!
par
paquets

+ 2 e x @) f 6 )Pa(l = p) (1 —a) + X vy @i £ (@ 9)pa(l —p) (1 — g)

YieN 2 jen S )pa(L—p)'(1—q)7 + 3 ien > jen [f(i,7)pg(1 —p) (1 —q)!

Fubini i pair  j pair ¢ pair  j impair

+3 gen 2 jen f(i,)pg(L—=p)'(1—q +3 jen X jen [f(i5)pa(l —p)'(1 —q)

4 impair 7 pair J impair J impair

Puis, par définition de f, on a alors

E(Z> = Z zeN Z JjeN pQ<1_ )i(l_Q)j‘i‘E;’eN Z jeN 0

j=2L tparr  j impair

+20 deN 2 jeN 0+Z ieN > jen  —pq(l—p)i(1—gq)’

7 impair j pair =2k+1 j=20+1
= Do Dizopa(l —p)*(1—q)* = X Xl pa(l — ) (1 - g)* !

= (Xiopr(1—p)?*) (X0 q(1 = 9)*) — (ZiZo(1 = p)p(1 — p)*) (XiZo(1 — q)q(1 — ¢)*)

_ P q _ _p(1=p) _q(1—q)
1-(1-p)2 1-(1=¢)?  1-(1-p)? 1-(1—q)?

p+q—pq
(2-p)(2—-19q)

—
|
IS
—
|
)

LL
2—p2—

v
bS]
T
Q

car 1 —(1—p)2=2p—p?=p2—p)et1—(1—-q)?=2¢—q*>=q(2—q) (et la troisiéme égalité provient juste du
produit de la somme de deux familles sommables).
4) On a |Z| < 1, donc pour tout i € N,

|Z (i, )P((i,4))| < P((4,9)).
Or, les événements {(z, z)} pour i € N sont deux & deux incompatibles, N est dénombrable, donc par o-additivité,
la série numérique
>, P((9)
ieN

converge, donc par critére de comparaison des séries & termes positifs, la série numérique

> 2(i,1)P((i,4))

€N

converge absolument. Donc la famille (Z (2,7)P(q, i))ieN est sommable.

15
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Comme N est dénombrable et N = (2N) s (2N + 1), le théoréme de sommation par paquets donne alors

Dien 2 (1, z)P((z,z)) = 2 N Z(i,i)P((i,i)) +2 ieN Z(i,i)P((i, z))

1 = 2k pair i = 2¢ + 1 impair

= Y oP((2k,2k)) + X2 (- 1)P((2¢ + 1,20 4 1))

= D opa(l—p)* (1 —q)?* = Y2 pa(l — p)?F (1 — g)*+t

Pq pq(1-p)(1—q)

1-(1-p)2(1-¢)2  1-(1-p)%(1—g)?

1-(1-p)(1—q) _ pg

1-(1-p)(1-q)) (1+(1-p)(1-9))  [1+ (1 —p)(1 —q)

pQ(

Exercice 10. On a X; > 0 et X2 > 0, donc U > 0, donc on peut bien diviser par U.
1) * Montrons que Y; et Y3 suivent la méme loi.
e Montrons que (X7, X2) suit la méme loi que (X2, X1) : on a

Xl(Q) X X2(Q) = XQ(Q) X Xl(Q)
car X1 et Xo suivent la méme loi (donc X;(Q2) = X2(Q2)), et pour tout (z,y) € X1(Q2) x X2(Q),
P((X1,X2) = (z,1)) =P((X1 = 2) n (X2 = y)) = P(X1 = 2)P(Xy = y) = P(X; = 2)P(X; = y),

en utilisant que X et X5 sont indépendants, puis que Xo suit la méme loi que X7.
De méme,

P((X2, X1) = (z,9)) =P((X2 = 2) n (X1 =y)) = P(X2 = 2)P(X; = y) = P(X; = 2)P(X; = y).
On a donc bien, pour tout (z,y) € X1(2) x X2(Q2),
P((X1, X2) = (z,y)) = P((X2, X1) = (,9)).

Donc (X7, X2) suit la méme loi que (X2, X7).
e Par conséquent, si on pose

(x,y) € (R*)? — v € R,
fi(zy) e (RY) Z+y

comme on suppose X1(£2) < R¥ et Xo(Q2) cR%, on a
Y1 = f(X1,X2) et Yy = f(Xo, X1),

et donc le cours permet de conclure que Y; et Y3 suivent la méme loi (ce sont la méme fonction de deux variables
aléatoires qui suivent la méme loi).

Démonstration plus élémentaire :

e Notons X1(2) = X5(R) < {xp}neny < RE.

Soit € R%, alors la formule des probabilités totales appliquée avec le systéme complet d’événements ((Xl =
Tn)), o (C’en est un car X est une variable aléatoire avec X1(Q2) € {Zn}nen) donne :

n=0
_ niop ((X2 = % —xn> N (Xy = xn))
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(la derniére égalité provenant de ce que X; et Xy sont indépendantes).
e La formule des probabilités totales appliquée avec le systéme complet d’événements ((Xg = x”))neN (c’en est
un car Xy est une variable aléatoire avec X2(£2) < {2y }nen) donne

e - 5 (22 e )

n=0
- Sp((n-Z s o - a)

(la derniére égalité provenant de ce que X; et X5 sont indépendantes).
e Comme X, et X5 sont de méme loi, on a

P(Xlzx—”—mn) :P(ngx—"—a;n) et P(Xy =) = P(Xs = )

T x

pour tout n € N et pour tout € R¥. On en déduit

pour tout z € R%. Or,
Y1(Q) c RE et Y>2(Q2) ¢ R
(car X7 > 0 et X > 0), de plus Y] et Y3 sont des fonctions de la variable aléatoire (X7, X2), qui est discréte car X
et X5 le sont, donc sont discrétes aussi. On en déduit bien que Y7 et Y5 suivent la méme loi discréte.
* Montrons que, pour tout k£ € N, Ylk et YQk a une espérance finie.
Ona X; >0et Xg >0, donc X7 + X9 > X; >0,donc1>Y; >0.
Ainsi, pour tout entier k € N, on a

0=0"<vf<1¥=1 soit |¥f|<L

Or, la variable aléatoire constante 1 a une espérance finie, donc par inégalité, Yll’C aussi.
Comme Y5 suit la méme loi que Y7, on a aussi Y2k qui a une espérance finie, et ce pour tout entier k € N.
* On a

Yi+Y, =1,

donc par linéarité de I'espérance (et car Y7 et Y2 ont une espérance finie),
E(Y1) + E(Y2) = 1.

Comme Y7 et Y5 suivent la méme loi, on a

E(Y1) = E(Ya).

Donc

(Y1) = B(Y)) — % |

2) % Soit k€ N. On a
T

Z = i Y1 - Y5
Donc,
|Z] < Y|+ |Ya] <2,
donc pour tout entier k € N,
’Z’“‘ — |7|F < 2",

17
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Or, la variable aléatoire constante 2¥ a une espérance finie, donc par inégalité, Z* a une espérance finie.
% Par linéarité de l’espérance,

E(Z) =E(Y1 —Y2) = E(Y1) —E(Y2) = 0
(car Y7 et Y3 ont une espérance finie).

Puis, Y1 + Y5 =1, donc
0= V(Yi + Yg) = V(Yl) + V(Yg) + QCOV(Yi, Yé)

(la covariance existe car Y] et Y5 ont une variance, puisqu’elles ont un moment d’ordre 2).
Puis,

V(Z) = V(Y1 - Ya) = V(Y1) + V(Y2) — 2Cov(Y1, Y2) = 2V(Y1) + 2V(Y2) = [4V(V))
(car Y] et Y5 suivent la méme loi, donc V(Y7) = V(Y3)).

Exercice 11. On sait donc que la famille (zP(X = z)) ) est sommable. Puis, pour tout z € X(Q),

zeX (0

N (X =1))
P(A)

P(X = x) 1

< |z

A
|2P(X = z|A4)| = |:U\P(

car (A N (X = x)) c (X = z), ce qui par croissance de la probabilité pour l'inclusion donne
P(An (X =2)) <P(X =2z).

Or, ﬁ est une constante, et la famille (|z[P(X = z)) est sommable puisque la famille (|z|P(X = z))

zeX(Q)
est sommable (c’est ’hypothése « X a une espérance finie »).

zeX (Q)

Alors, par linéarité de la somme finie, la famille (ﬁh}ﬂ?()&' = ;U)) @ est sommable.
xTe

Donc, par inégalité, on en déduit que la famille (|z[P(X = z|A)) est sommable, donc que la loi conditionnelle

zeX(Q)
de X sachant A posséde une espérance finie.

Exercice 12. 1) Soit w € §2. Deux cas sont possibles :
e soit U(w) > 0, et alors B(w) = 1, et donc

(UB)(w) = U(w) x B(w) =U(w)

et 'inégalité voulue est méme une égalité,

e soit U(w) <0, et alors B(w) = 0, et donc
(UB)(w) = Ulw) x B(w) = 0 > U(w)

Donc, pour tout w € €2, on a bien
(UB)(w) = U(w).

Donc UB > U.
2) X a une variance, donc une espérance finie, donc (par addition avec une constante), U aussi et

EU)=e—-EX)+EX) =e.

X a une variance, donc (par addition avec une constante), U aussi et

B suit une loi de Bernoulli, donc a une espérance finie et une variance, qui valent
E(U)=PU >0), et V(U) =P(U > 0)(1 - P(U > 0)).
U et B ont une variance, donc U? et B? ont une espérance finie, et la formule de Huygens donne alors

E(U?) = V(U) + E(U)? = V(X) + €%, E(B?) = V(B) + E(B)* =P(U > 0).

18
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Remarque. Comme B(f2) < {0,1} et que 0> =0, 12 =1, on a B? = B, et donc
E(B?) = E(B) = P(U > 0)
directement.

Comme U? et B? ont une espérance finie, alors I'inégalité de Cauchy-Schwarz s’applique, et donne que UB a une
espérance finie, et que
E(UB)* < E(U*)E(B?) = (V(X) + ¢*)P(U > 0).

Puis, de la définition de U, on a
(U>0)=(e—X+E(X)>0) =(X-E(X)<e).
Donc (comme V(X) + e? > e? > 0, car une variance est positive),

E(U B)>
V(X) +e?

P(X —E(X) <e) >

Enfin, de la question 1, on a UB > U, et UB et U ont une espérance finie, donc par croissance de I'espérance,
E(UB) = E(U) =e> 0.
Par croissance de la fonction carrée sur Ry, on a alors
E(UB)? = é?,
et donc en reportant,
E(UB)? - e?

V(X)+e2 ™ V(X)+e2

P(X —E(X) <e) >
En passant au complémentaire, on a

e2
P(X -E(X)>e)=1-P(X -E(X)<e)<1-— e V(X()Xﬁef

3) On pose Y = —X, X a une variance donc Y aussi et V(Y') = V(X). La question précédente donne alors (en
lappliquant & Y au lieu de X) :
V(YY) V(X)

PY-EM =) <gy)ie ~ v+ @

Puis,
Y-EY)ze & —-X-E-X)ze < —-X+EX)Ze < X-EX)<-—e

donc
P(Y -E(Y)>e) =P(X —E(X) < —e),

et en reportant on a l'inégalité voulue.
4) ¢ Comme e > 0, on a

X —E(X)|2ee X -EX)>e ou X —E(X) < —e,
et donc en passant aux événements,
(X —E(X)|=ze) = (X -E(X)=e)u (X —E(X) < —e).

Par sous-additivité de P, on a alors

2V(X)

P(IX —E(X)| >e) <P(X —E(X) >e) + P(X —E(X) < —e) < VX) + o2

19



Fauriel - PC - Mathématiques TD15 - ESPERANCE ET VARIANCE

e L’inégalité de Bienaymé-Tchebychev donne (puisque X a une variance) :

V(X)
P(|X —E(X)|=e) < o
e Cherchons le signe de la différence de ces deux majorations :
2V(X)  V(X) _2°V(X) - V(X)?—e’V(X) _ V(X) (&~ V(X))
V(X) + €2 e? e2(V(X) + ¢?) e?(V(X) + e?) ’

cette expression est du signe de e? — V(X) (car une variance est positive), donc la majoration trouvée dans cet
exercice est meilleure que celle de Bienaymé-Tchebychev si et seulement si

V(X) = e

(donc dés que e est « assez petit »).

Exercice 13.
Soit n € N et e > 0. Remarquons d’abord que (|Yn —l > e) c (\Yn —l = e), donc par croissance de la probabilité,

P(|Y, — 4] >e) <P(|Y, — £ >¢).
Puis, |Y,, — £| = e = (Y;, — £)? = e? (car e > 0), donc on a I'inclusion d’événements
(1Y, =t =€) = (Y, —0)* = €?),
donc par croissance de la probabilité,
P(|Y, — ¢ = e) < P((Y, — ) > ¢?)

(en fait, il y a égalité ici).
Puis, comme Y,, a une variance, Y,, — £ aussi et la formule de Huygens donne

E((Yn —0)?) = V(Y =€) + (E(Y, — 0)) = V(Y;) + (E(Yn) — £)°,

en utilisant la formule V(aX + b) = a®?V(X) si X a une variance, et la linéarité de I'espérance (et le fait qu'une
constante £ a pour espérance elle-méme). Donc I'inégalité de Markov (qui s’applique car (Y;, — £)? est positive et
a une espérance finie, et car e > 0) donne :

2
0< P(’Yn _ K’ > e) < P((Yn o 5)2 > e2) < E((Yne; @2) _ V(Yn> + (i(yn) _E) njoo 0

et le théoréme des gendarmes conclut.
Autre fagon : fixons e > 0. Soit n € N, par inégalité triangulaire,

Y, — €] = |Yn —E(Y,) + E(Y,) — €] < |Ya — E(Ya)| + [E(Ya) — 4,

donc
Y, —E(Y,)| <e—[E(Yn) — | = [Yn — 4| < |Yn —E(Yo)| + [E(Ya) — ¢] <e,

et donc en contraposant,
Y, =l =e= |V, —E(Y,)| = e—|E(Y,) — {,

ce qui donne l'inclusion d’événements
(|Yn —{ = e) < (’Yn —E(Yy)| ze— [E(Yy) - E’)v
puis par croissance de la probabilité :

P(|Y, — ¢ =€) <P(|Y, —E(Y,)| = e — [E(Y,) — £]).

20
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Puis, pour n assez grand on aura [E(Y,) — {| < §, donc e — [E(Y,) — ¢| > §, ce qui donne I'inclusion

(I¥: — EQa)| > e~ [E(Ya) — 4]) = (1¥a —E()| > 5)

puis par croissance de la probabilité :

P([Y, — £ > ¢) < p(m —EY,)| = e - [E(Y,) - a) <P <|Yn —E(Y,)| = g) .

L’inégalité de Bienaymeé-Tchebychev donne alors :

0 < B(I¥u—t] > ¢) < B(I¥u—t] 2 ¢) < P([YaE()| 2 e [EMa) 1) < P (1Y ~E()| > 5) < 08—

et le théoréme des gendarmes conclut.

Exercice 14. e X et Y ont chacune une espérance finie, donc par linéarité de ’espérance, X — Y aussi et
E(X —-Y)=E(X)-E(®Y).

X et X —Y sont indépendantes, X et X —Y ont une espérance finie, donc X (X —Y') a aussi une espérance finie,
et de plus on a I'égalité
IE(X(X — Y)) =EX)E(X —-Y).

De méme, Y (X —Y) a une espérance finie et
E(Y(X -Y)) =E(Y)E(X -Y).
Donc, par linéarité de I’espérance,
XX-Y)-Y(X-Y)=(X-Y)?

a une espérance finie, et

E(X-Y)?) = EXX-Y))-E(Y(X-Y))
= E(X)E(X-Y)-EY)E(X —Y)
= (E(X)-E(Y))E(X -Y)

= (E(X -Y))’

Donc, la formule de Huygens donne que X — Y a une variance, et
V(X —Y)=E((X -Y)?) - (B(X -Y))* =0.
e [’inégalité de Bienaymé-Tchebychev donne alors, pour tout e > 0,

V(X -Y)

0<SP(X-Y-EX-Y)|>e) < =

=0,

soit pour tout e > 0,
P(I X -Y -E(X -Y)|>e) =0.
Notons alors pour n € N*|
1
E, = <|X—Y—E(X—Y)| > >

n

U Bn=(X-Y-E(X-Y)|>0) = (X -V #E(X -Y)),

neN*

et comme pour tout n € N* on a
En < En+1
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1 1 . L o
(car 5= TH)’ par continuité croissante de P, on a

e 0] e 0]
(mais on peut aussi dire P ( U En> < Z P(E,) = Z 0 = 0). Par conséquent,

neN* n=1 n=1

1=P(X-Y #EX-Y))=P(X-Y =E(X -Y)),
ce qui conclut.
Exercice 15. La fonction génératrice Gx de X est
Gx:t—pt+(1—p)

et celle de Y est
Gy :t—pt+(1—p).

Comme X et Y sont indépendants, la fonction génératrice Gz de Z = X + Y est
Gz :t— Gx(t) x Gy(t) = (pt + (1 —p))2 =p*t2 + 2p(1 — p)t + (1 — p)*.

On en déduit

2 ={0,1,2},  |P(Z=0)=(1-p), [PZ=1)=2(1-p)| |P(Z=2)=p|

Remarque. On peut aussi I'obtenir ainsi (pour rester dans le cadre de ce TD) : de maniére évidente, on a
Z(Q) < {0,1,2},

puis pour k € {0, 1,2}, la formule des probabilités totales appliquée avec le systéme complet d’événements ((X =
0),(X = 1)) donne :

P(Z = k) P(X+Y =k)n(X=0)+P(X+Y =k)n (X =1))

= B((Y =K)n (X =0) +B((Y =k~ 1) n (X = 1))
En utilisant que X et Y sont indépendants, on a alors
PZ=k) = PY=kKPX=0)+PY=k—-1)P(X =1)
= 1-pPY =k)+pP(Y =k—1)
Il n’y a plus qu’a calculer pour k = 0, puis k = 1, puis k = 2, sachant
P(Y =-1) =0, P(Y =0)=1-p, P(Y =1)=p, P(Y =2)=0.
On retrouve les valeurs annoncées précédemment.

Par linéarité de l'espérance, comme X et Y ont une espérance finie (car de loi de Bernoulli), Z en a une aussi, et

E(Z) = E(X) +E(Y) =|2p|

Comme X et Y ont une variance et sont indépendants, V' a une variance qui vaut

V(Z) = V(X) + V(Y) =|2p(1 - p) |

Remarque. C’est beaucoup plus rapide qu’en passant par la formule de Huygens et le théoréme de transfert...

Exercice 16. 1) Notons G I'événement « le joueur gagne », c’est-a-dire
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« on tire un nombre pair ».
Notons, pour n € N*, E, ’événement
« on tire n ».

Pour tout n € N* FE,, est un événement de probabilité

Alors
0
= U E2n7
n=1

et les événements Fa, sont deux & deux incompatibles (car on ne tire qu'un seul numeéro), on a une union dénom-
brable, donc par o-additivité de la probabilité, on a

=§1P(E2n)=§12; i( >n % :

(en reconnaissant une série géométrique de raison 1, convergente car €] — 1,1[).
2) * On a

={2n,neN*} U { - (2n+1), ne N}

(c’est bien un ensemble dénombrable, comme union de deux ensembles dénombrables).
Puis, pour n € N, (G = 2n) = Es,, donc

1 1
et pour n € N, (G =—(2n + 1)) = F9,.1, donc
1 1 1
* Ensuite, G a une espérance finie si et seulement si la famille ( P(G ))neG(Q) est sommable, et dans ce cas,

I’espérance de G vaut la somme de cette famille.

Ona G(Q) = {2n, ne N*} V) { —2n+1),ne N}, union de deux ensembles dénombrables, donc par le théoréme
de sommation par paquets, G a une espérance finie si et seulement si les familles (Zn]P(G = Qn))neN* et ( —(2n +
DP(G =2n+1)),

oy Sont sommables, autrement dit si les séries numériques

D1 2mP(G =2n) et D =@n+1)P(G = —(2n +1))

neN* neN

convergent absolument, et dans ce cas,

0 0
= Y 2P(G =2n)+ Y —(2n+ )P(G = —(2n + 1)).
n=1 n=0

Or, c’est le cas, car

S mB(G=2m) = 3 zn4i cxa(h)

neN* neN#* nEN*
est une série géométrique dérivée de raison 4 avec % €] — 1, 1[, donc est absolument convergente, de somme
a0
1 1 8
2 2P(G =2n) = o ——5 =,
n=1 (1-1)

et

n—1 n
Z(2n+l)P(G=—(2n+1)):Z(2n+1);41n=iZn(i) +;Z<i>

neN neN neN*
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est la somme d’une série géométrique dérivée de raison i et d’une série géométrique de raison %, avec i el —1,1],
donc est absolument convergente, de somme

o6}
1 1 1 1 4 2 10
2n+1P(G=—-2n+1)) = - + = =+ o=—
Z:l d1-4H? 21-7 93 9
Donc G a une espérance finie, et
0 0
8 10 2

* G a une variance si et seulement si G2 a une espérance finie, donc par le théoréme de transfert, si et seulement
si la famille (n*P(G = n))neG(Q) est sommable.

Or, pour tout n € G(2),

que n soit pair ou impair. Puis, la fonction
neG(Q) — |n| e N*

induit une bijection, donc on peut faire le changement d’indice k = |n|, ce qui donne : G? a une espérance finie
si et seulement si la famille (nQ]P’(G =n (/{:2 )keN* est sommable., autrement dit si et seulement si la

))neG( Q)

pE-eigmen() iz

keN* k>2 k N*

série numérique

est absolument convergente (convergente suffit, puisqu’elle est a termes positifs), et c’est le cas car elle est la somme
d’une série géométrique dérivée deux fois de raison % et d’une série géométrique dérivée une fois de raison %,
avec 3 €] — 1,1[.

On a alors

Remarque. La aussi, on aurait pu utiliser le théoréme de sommation par paquets, mais c’est plus long a rédiger...

La formule de Kénig-Huygens donne alors

V(G) = B(G?) —E(G)® = 6 — % - 48% .

Autre rédaction, beaucoup plus simple : il faut remarquer que

Q) = {n(-1)", neN*} et VneN* P(G =n(-1)") =p, = 2%

Alors, par définition, G a une espérance finie si et seulement si la famille (n(—1)"P(G = n(—l)”))neN*
(n(—l)” L ) nen €St sommable, autrement dit si et seulement si la série numérique

n 1
2 n(—1) on

neN*

converge absolument, or cette série est une série géométrique dérivée de raison %, et % €] —1,1[, donc elle converge
bien absolument. Alors

en utilisant la formule
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valable pour tout z €] — 1,1[ (et ici on prend z = —3 €] — 1, 1[).

Pour la variance, cela permet aussi d’étre plus rapide : par le théoréme de transfert, G? a une espérance finie si et
seulement si la famille ((n(—1)")?P(G = n(—l)"))neN* = (n2 2
si la série numérique

) nen €st sommable, autrement dit si et seulement

> (-5 = 3 nig

neN* neN*

converge absolument (comme elle est & termes positifs, converge suffit).

Or, pour tout n € N*,
11 N2 1 /1\"!
2
- (= nlZz
ST )<2> +2”(2)

est le terme général d’une série numérique convergente, comme combinaison linéaire des termes d’une série géomé-
trique dérivée deux fois et d’une série géométrique dérivée une fois, toutes deux de raison %, donc termes d’une série
numérique convergente, puisque % €] — 1,1[. Par le théoréme de transfert, on en déduit que G? a une espérance
finie, donc G une variance, et

1 & IN\"? 12 NNt 1 2 11
2y _ = _ - - - I _ — —
E(G?) 4Zn(n 1)(2> +22n<2> Y- +5 442=6,

n=2

en utilisant la formule

- 2
n—2 __
nZ::;L(n—l)x RS
valable pour tout = €] — 1, 1[ (et ici on prend z = § €] — 1, 1[).
La formule de Kénig-Huygens donne alors
4 482
=EG*) -EG)?=6——=|—|

Remarque. Le calcul peut méme étre plus rapide, si on a I'idée d’utiliser la variante de la formule de Huygens :
V(G) =E(G(G - 1)) + E(G) — E(G)%.

Exercice 17. 1) % Les variables aléatoires X et Y sont a valeurs dans N*, donc U () < N*.
Soit k€ N*. On a

donc par indépendance de X et Y,

Or,

M8

£e0) - S

par incompatibilité deux a deux des événements (X i) pour ¢ = k, et o-additivité de P.

Remarque. On peut aussi obtenir cette égalité a 1'aide de la formule des probabilités totales : X est une va-
riable aléatoire avec X (Q) = N*, donc ((X = i)) est un systéme complet d’événements, puis la formule des
probabilités totales donne alors

1eN*

P(X>k) = S2,P((X =k)n(X =)
Y P((i = k) n (X =19))

SFIP((i 2 k) n(X =9) + X2, P((i = k) n(X =)

S

= Y P(X =1

25
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Donc
N S S
PX=2k)=> ¢ 'p=pD ¢ = pi > = = ¢"
i=k i=k j=izk =0 l—gq

P(U > k) = ¢**72,

Puis, pour tout k € N*,
Uzk)=U=k)vU>k)=U=kuv(U=k+1)

(car U est a valeurs entiéres, donc (U > k) = (U = k + 1)), et c’est une union de deux événements incompatibles,
donc

PU=k)=PU=k)+P(U = k+1),

soit
PU=k) =PU =k ~PUzk+1)=¢*2-¢* =21 -} =(1-(1-¢))"'1-¢)
Donc
U~G(l-¢)
Et donc .
E(U) = !

Remarque. On peut aussi remarquer que la série numérique

> PU = k)

keN*

converge (c’est une série géométrique de raison ¢% € [0, 1[), et comme U est a valeurs dans N, alors on sait que U
a une espérance finie, et

e} ee} 1
E(U) =Y PU=k) =D %= T~
k=1 k=1 q

* e Les variables aléatoires X et Y sont a valeurs dans N*, donc V() < N*.
Soit n € N. Alors
P(V<n)=P(X<n)n(Y <n))=P(X <n)PY <n)

car les variables X et Y sont indépendantes. Puis, comme X ~ G(p), pour n € N* on a

P(X <n)=P (U(X = k)) = ip(x =k) = ipq’“l =p11:q
k=1 k=1

q

n

=1—¢q"

(par incompatibilité deux & deux des événements (X = k) pour k € [1, n]], et par o-additivité de P), en posant ¢ =
1—p.

n
Remarque. On peut aussi obtenir I'égalité P(X < n) = Z P(X = k) par la formule des probabilités totales, de

k=1
la méme maniére qu’a la remarque 17.

On remarque que cette formule reste vraie pour n = 0 (car (X < 0) = & est de probabilité 0 = 1 — ¢°). Donc,

pour tout n € N
P(V<n)=(1- q”)Q.

Puis, pour n € N* on a
(V<n)=(V<n-1)u((V=n)

(car V est a valeurs entiéres), et comme ces deux événements sont incompatibles, on a

P(V<n)=P(V<n-1)+P(V =n),
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donc (puisque n et n — 1 sont dans N, pour pouvoir appliquer la formule précédente),

P(V — TL) _ (1 _qn>2 . (1 _ qn—1)2 _ qn—l(l N q) (2 N qn—l o qn).

Donc, pour tout n € N*

P(V=n)=p" ' 2-¢""—q")|

Cette probabilité est non nulle (car 0 < ¢ < 1), donc n € V(Q2) pour tout n € N*, donc
N* c V(Q).

Par double inclusion, on a alors

V(Q) = N*|.

e La variable aléatoire V' a une espérance finie car V(2) = N* et la famille (nIF’(V = n)) est sommable,

puisque la série numérique
Z nP(V = n)

neN*

neN*

est absolument convergente (cette série numérique est une combinaison linéaire de séries géométriques dérivées de
raison ¢ € [0, 1] ou ¢% € [0, 1[, qui sont donc absolument convergentes). Puis

E(V)=p Z_:l (2nqn_l - n(q2>n_l - nQ(QQ)n_l) =p ((1 _2q)2 - (11—+qg)2> = 1 tzg

e L’autre facon est de remarquer que
U+V=X+Y,

et donc, comme U, X et Y ont une espérance finie (car suivent des lois géométriques), par linéarité de I'espérance, V

aussi et 11 1 1+2
q

E(V) = E(X) + E(Y) —E(U) = ~ + = — - .

V) = B +E() E@) = L+ Lo L o 1t

2) On a
U+V=X+Y.

Puis, les variables aléatoires X et Y sont a valeurs dans N*, donc X +Y est a valeurs dans N\{0, 1}. Pour tout n € N
avec n = 2, on a par la formule des probabilités totales appliquée avec le systéme complet d’événements ((X =
k)) s (C'en est un, car X est une variable aléatoire avec X (Q) = N*) :

P(X +Y =n)

DP(X=k)n(X+Y =n) =Y P(X=k)n(Y =n-k)=>PX=kPY =n—k)
k=1 k=1 k=1

(en utilisant que X et Y sont indépendants). Puis, pour tout k€ N, si k = n, on an —k < 0 et donc

donc

18

n—1 n—1
PU+V =n)=PX+Y =n)= > PX =k)PY =n—k)+ > 0= > pd" 'pg" "' =|(n—1)p°¢"
k=1 k=1

k

n

Cette probabilité est non nulle (car 0 < p et 0 < ¢), donc n € (U + V)(§2) pour tout n € N avec n > 2, donc
N\{0,1} < (U + V)(Q).

Par double inclusion, on a alors

(U +V)(©) = N\{0,1}]

Autre démonstration : par les fonctions génératrices. On a

U+V=X+Y.
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Donc, pour tout t €] — 1, 1],
Guiv(t) = Gxyv(t) = Gx(t) x Gy (1),
car X et Y sont indépendants. Puis,

Guclt) = Gr(0) = 7

pour ¢ €]—1, 1] (et méme pour ¢t € ]—%, % [, par le cours, puisque X et Y suivent une loi géométrique de paramétre p),
2

pt 22 1

Guiv(t) = — ) =p*?——.

Or, pour t €] —1,1[, on a |¢t| < ¢ < 1, donc la formule de la série géométrique dérivée donne, pour tout t €] — 1, 1],

donc pour tout t €] — 1,1,

Guav(t) tszqt Zn—l )PP
n:2

On en déduit

(X +Y)(Q) = (U +V)(Q) =

et pour tout n € N avec n > 2,

P(X+Y =n)=PU+V =n) =(n—1)p°q" 2|

3) Utilisons la formule des probabilités totales appliquée avec le systéme complet d’événements ((X +Y = n))

>2

(c’en est un, car X + Y est une variable aléatoire avec (X + Y)(Q) < N\{0,1}) : "

o0 o6 e}

P(X+Y <Z)= Y P(X+Y < Z)n(X+Y =n)) = ) P(n< Z)n(X+Y =n)) = Z P(X+Y = n)

car X, Y et Z sont indépendants, donc X + Y et Z sont indépendants (lemme des coalitions).

Puis, a la question 1, on a vu (puisque Z suit la méme loi que le X de la question 1), que pour n € N*,

P(Z =n)=q""".
Donc
P(X +Y < 1)p?gn2 = (P2 = E(a2)F—1 — _
e Sa Pa Q= D@NT 2 p LM = o =

(en reconnaissant une série géométrique dérivée de raison ¢2).

Exercice 18. X suit une loi de Poisson, donc X > 0, donc Y est bien définie. Puis, par le théoréme de transfert,

comme H—n > 0 pour tout n € N, et que X(Q2) =N,
Y a une espérance finie < la famille (H%IP’(X = n)> N est sommable
ne
- - 1
< la série numérique Z T P(X = n) converge absolument
n

neN

et alors E(Y') vaudra la somme de cette série.

Remarque. Converge suffit, car la série numérique considérée est a termes positifs.

Or,

1 1 A" 67)‘ )\n+1 ef)\ )\k
P(X =n) = ER A San— 21
T e - T e - (3 ) 2 5

|
n=-—1 keN kt

et on reconnait une série exponentielle, donc absolument convergente (donc Y a bien une espérance finie), et

e 1—e?
A
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Exercice 19. 1) U ne prend que deux valeurs : 0 ou 1.
Si U =1, alors X < n, donc le commercgant fait un bénéfice de X euros pour les X produits qu’il vend, mais
perd (n — X)y euros pour la non vente d’ici la fin de la saison des n — X produits restants. Donc, dans ce cas,

Vo=2X—-(n—X)y=(zX — (n—X)y) i]l —I—nl‘(l:OU).

SiU =0, c’est que X > n, donc le commercant a pu tout vendre, et donc il a gagné nx euros, et pas de frais du
aux invendus. Donc, dans ce cas,

Vo=nz=(2X—-(n-X)y) U +nz(1-U).

=0 2
Dans tous les cas, on a bien I'égalité de I’énoncé.
2a) X est a valeurs dans N, U a valeurs dans {0, 1}, donc par produit, UX est a valeurs dans N. Puis, si X <n
alors UX < n, donc dans ce cas, UX est a valeurs dans {0,...,n}. Et si X > n, alors U = 0, et donc dans ce
cas UX = 0 est encore a valeurs dans {0,...,n}.
On a donc bien

UX(Q) c{0,...,n}.

2b) Comme XU est d’image finie incluse dans {0,...,n}, XU a une espérance finie, et
E(X Zk}P’XU—k—OJer]P’XU—k)
_ k=1

Puis, on applique la formule des probabilités totales avec le systéme complet d’événements ((X = i))ieN (c’en est
un, car X est une variable aléatoire avec X (2) = N) : pour tout entier k € [[1,n]],

o0 o0
P(XU = k) = Y P((X (XU = k)) ZIP’ A (iU = k).
=0
Soit i € N.

Sii > n, alors (X =1i) < (U = 0), et donc

car k > 1, donc
P((X =) n (iU = k)) =

Sii<naveci#k, (X=1i)c (U=1), et donc
X=0)n@WU=kcX=i)n(i=k =g

car ¢ # k, donc
Donc, pour k € [[1,n]],

Donc

U)=Zn]k]P’X=
k=0

(on a rajouté le terme k£ = 0 qui est nul, c’est utile pour la question suivante).
2c) XU et U ont une espérance finie, donc par combinaison linéaire, Y, aussi, et par linéarité de I'espérance, on a

E(Y,) = 2zE(XU) — nyE(U) + yE(XU) + nx — nzE(U) = (z + y)E(XU) + nx — n(z + y)E(U).

Or, comme U suit une loi de Bernoulli de parameétre P(X < n), on a

E(U) = P(X <n) =P<O(X=k)> = ip(xz
k=0 k=0
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(car les événements (X = k), pour k € [[0,n]], sont deux a deux incompatibles), et donc
E(Y, x—l—yz k) +nx —n(z +y) ZIP’ k)z(x—l—y)Z(k—n)]P’(sz)—irnx.
k=0 k=0 k=0

3a) Soit n € N, alors

B(Yyn) ~B(1) = o = (o +3) 3, PX

(le terme en k = n + 1 de la somme pour E(Y,,4+1) est nul, puis il suffit de regrouper les deux sommes ensembles).

3b) On considére ’ensemble
P
x
E=<{peN P(X =k) < .
trem Srac-n < 2 |

FE est non vide, car 0 € E puisque par hypothése

FE est majoré car

p o0 T
];)P(Xz i g = _1>x+y

(la somme de la série fait 1 car X () c N, et I'inégalité est stricte car y > 0), donc il existe un entier py € N tel

que pour tout p = pg, on a
P
T
DIP(X =k) = :
iz r+y

soit p ¢ E. Donc F est majoré par py.
Comme F est un ensemble d’entiers, E est alors fini, et donc il existe ng = max(FE), et par définition de « ng € E »
et de « ng+1¢ E », on aura bien

%]P’(sz)< i et DIPX =k) = -
k=0

x+y

Montrons 'unicité : soit n < ng = max(FE), alors

iP(X:k)siP(X:k)Jr N RX =k =Y PX=k)<——,

k=0 k=0 k=n+1 k=0

donc n € E. Donc
E = [0, max(E)].

Donc, si n < ng, on an+ 1€ E, donc n ne peut convenir pour ng.
Et sin = ng+ 1, alors n ¢ E (car ng = max(FE)), c’est-a-dire

SIP(X = k) > —
T+yY

k=0

donc n ne peut convenir pour ng.
Donc seul ng = max(F) est possible. D’ou I'unicité.
3c) Pour tout n € N,

E(Ypi1) —E(Y,) >0 < DIP(X =k) < p—

Donc la suite (E(Yn))n <ng41 €St strictement croissante.
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Puis, pour n = ng + 1, on a

o no+1 no+1 n n
SO PX=kK< D PX=k+ > PX=k=)>PX=k),
zT+y k=0 k=0 k=ng+2 i’o_/ k=0
donc
E(Yn+1) —E(Y,) <0
Donc la suite (E(Yn))n>n0 . est décroissante.
On en déduit bien que E(Y},) sera maximal pour
n=mn;:=ng+ 1.
4a) Pour tout k € N,
k+1 k
o o A &)
PX=Fk+1)=e“ = T = P(X =k)|
( LR A o syl s L e oy i Gl

4b) On utilise le résultat de la question précédente pour calculer les valeurs successives de P(X = k) de maniére
« optimale ».

def stock_ideal(x, y, alpha)

test = x / (x +y) # La valeur que la somme doit franchir

n=20

proba = exp(- alpha) # Contient \P(X=0)

som = proba # Contient le terme k=0 de la somme

while som < test : # A cette étape, som contient la somme jusqu’a k=n

# et proba contient \P(X=n)

# Si le test est vrai, alors n est dans E
n=n+1 # La valeur de n change, donc maintenant, som contient la somme jt
# et proba contient \P(X=n-1)

proba = proba * alpha / n # proba passe de \P(X=n-1) a \P(X=n)
som = som + proba # On rajoute d som le terme k=n, donc som contient la somme jusqu’
return n # Quand on sort de la boucle, c’est que som >= test pour la p1
# et donc n contient le premier indice ou n n’est pas dans E,

# donc a cette étape, n vaut n_0+1 soit n_1, la valeur qu’on veut renvoyer.

Exercice 20. e Pour tout n € N*,
Y(X=n)=N

car sachant (X = n), Y suit une loi de Poisson de paramétre n.

Pour n = 0 : une loi de Poisson de paramétre 0 n’existe pas. Ceci dit, si on adapte la formule d’une loi de Poisson
dans le cas d’un paramétre nul, on obtient une variable aléatoire presque stirement égale a 0. L’énoncé dit qu’on
garde Y(X =0) = N.

Puis, X(©2) = N, donc @ = |J (X = n), puis

neN
Y(Q):Y(U(in)> - Jy(x =n)=JN=[N]
neN neN neN

e Pour tout k € N, la formule des probabilités totales avec le systéme complet d’événements ((X = n))neN (c’en
est un, car X est une variable aléatoire avec X (2) = N) donne :

0 @ n nk
P(Y =k) = ). P(X =n)Px_p(Y = k) =| ). )\—.e_)‘—e_”

n=0 n=0
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A" 7)\1@

Pour calculer I'espérance, on utilise le théoréme de Fubini : comme la famille <kﬁe re " est positive

) (n,k)eN?
et indexée sur N2, qui est dénombrable, on a

EY) = Z k Z —!e_kﬁe_”

Il
[
L
g
3

()

|

3
18
ol
=| 3

7= n=0 7=0
0 n
= e Z n—e "e”
n!
n=0

o0
= e Mo+ )
f=n—1 ( ;) Al
= e et =

Exercice 21. X et Y ont une variance, donc
Cov(X,X) = V(X), Cov(X,Y) = Cov(Y, X) et Cov(Y,Y) =V(Y)

existent.
Comme X et Y ont une variance, X —Y et X + Y aussi comme somme et différence, puis Cov(X — Y, X +7Y)
existe. De plus, X +Y et X —Y sont indépendantes, donc

0=Cov(X -Y, X +Y).
Par bilinéarité de la covariance, on a alors
0=Cov(X -Y, X +Y)=Cov(X,X)+ Cov(X,Y) — Cov(Y, X) —Cov(Y,Y) = V(X) - V(Y),

~~

=0

ce qui conclut.
Autre démonstration (sur idée d’un éléve) : partir du fait que X —Y et X + Y sont indépendants en utilisant
qu’alors

V((X +Y)+ (X — Y)) =VX+Y)+ V(X -Y).

C’est en effet possible : X et Y ont une variance, donc par somme (et soustraction), X +Y et X — Y aussi, et
comme X +Y et X — Y sont indépendants, la formule du cours donne bien

VIX+Y)+ V(X -Y)=V((X+Y)+(X-Y)),

autrement dit
V(X +Y)+ V(X -Y) =V(2X) = 22V(X) = 4V(X).

Mais, toujours par le cours, comme X et Y ont une variance,
V(X +Y)=V(X)+ V() + 2Cov(X,Y) et V(X -Y)=V(X)+ V() - 2Cov(X,Y).
Par conséquent,
AV(X) =V(X) + V(Y) + 2Cov(X,Y) + V(X) + V(Y) — 2Cov(X,Y) = 2V(X) + 2V(Y),

ce qui donne bien (aprés simplification) :
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Exercice 22. * La fonction Gy est développable en série entiére sur | — v/2,v/2[ (pour que ‘%‘ < 1), car on

C . 2
reconnait une série géométrique de raison %, et pour tout t €] — V2, ﬁ[, on a:

t 1 t+oo t2 n +00 1 _
Gx() =577 =3 <2) = 2 gt

n=0

Donc

’X (Q) est ensemble des entiers positifs impairs ‘,

soit

X(Q)={2n+1, neN}

(X(Q) est formé de 'ensemble des indices k € N tels que le coefficient devant t* n’est pas nul), et pour n € N on a

P(X=2n+1)= St

(par unicité du développement en série entiére).

Remarque. {(2n +1, Qn%) }neN définit bien la loi d’une variable aléatoire (car pour tout n € N, Qn% = 0 et car
+o0

1
Z T = 1) a valeurs dans N (car 2n + 1 € N pour tout n € N), dont Gx est la fonction génératrice.

n=0

*x oY = % suit alors

S St 1
une loi géométrique de paramétre 3 |.

En effet, X ne prend que des valeurs impaires, donc Y ne prend que des valeurs entiéres non nulles, soit
Y () c N,

et pour n € N*,
P(Y— )—P(X—2 —1>—]P)(X—2( —1) 1)—7—7 1—7n1
=n) = = 2n = = 2(n + = ST

(car n — 1 € N)
Autre méthode : Y est a valeurs dans N. Puis, pour tout ¢ € [0, 1], par linéarité de ’espérance,

Gy (1) = E(") =E () =B (VIVE) = VIB(VI") = ViGx (V) = Vi _\[tﬁz it (ft_ 0

donc Gy est égale a la fonction génératrice d’une loi géométrique de paramétre % sur [0,1]. Comme la fonction
génératrice caractérise la loi, on peut bien conclure que

Y suit une loi géométrique de paramétre % .

e On en déduit que Y a une espérance finie, qui vaut

I =

et une variance qui vaut

Or, X =2Y —1, et Y et 1 ont une espérance finie et une variance, donc par combinaison linéaire, X aussi, et par
linéarité de ’espérance,
E(X) = 2E(Y) 1= [3]

et (par la formule V(aX + b) = a?V(X) valable dés que X a une variance), on a
V(X) =2%V(Y) =[8]
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Exercice 23. Puisque Gy est la fonction génératrice d'une variable aléatoire, on doit avoir
Gx(1) =1, donc a = exp(—2) |,
et donc, pour tout t € [—1, 1] (en fait, pour tout ¢t € R),

+0
Gx(t) = exp (t2 —1)=¢"! 2

—-
fors n.

Donc

X(Q) = 2N

(X(Q) est formé de I'ensemble des indices k € N tels que le coefficient devant t* n’est pas nul), et pour tout
entier n € N,

Remarque. {(2n, en;,l)} définit bien la loi d’une variable aléatoire (car pour tout n € N, en;,l > 0 et car
U ) f e !

+o00
e1

Z —— = 1) a valeurs dans N (car 2n € N pour tout n € N), dont Gy est la fonction génératrice (pour a = e~2).

|
oy n:

La fonction Gy est dérivable sur R, donc en 1, donc X a une espérance finie. Pour tout réel ¢t € R,

G (t) = 2texp (t2 —-1),

donc
E(X) = Gy (1) = 2]

La fonction Gx est deux fois dérivable sur R, donc en 1, donc X a une variance. Pour tout réel ¢t € R,
G (t) =2exp (* — 1) + 4t%exp (* — 1),

donc
E(X(X -1)) =G%(1)=2+4=6.

La formule de Huygens donne alors :
V(X)=E(X(X-1)+EX)-EX)?=6+2-4=[4]
Remarque. De la loi, on reconnait que % ~ P(1).

Exercice 24. Si on effectue qu’un seul tirage, la loi de S; est directe (c’est le numéro obtenu lors d’un seul tirage
dans une boite, dont le contenu est connu) :

k 0]1]2
PO =0 [ 11111

On en déduit que, pour tout ¢ € [—1, 1] (en fait pour tout ¢ € R),

1 1 1 1+¢)2
Gsl(t)zzto‘i‘itl‘i‘ztz: (2) .

Les tirages étant avec remise, .S, est la somme de n variables aléatoires indépendantes et de méme loi que Sj.
D’aprés le théoréme du cours, on a donc, pour tout t € [—1, 1] (1a encore, en fait c’est pour tout t € R),

Gs. (1) = (T)Qn

En développant avec la formule du binéme de Newton, pour tout ¢ € [—1,1], on a

s0-2 (06 6 -5 ()=
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On déduit immeédiatement

et, pour 0 < k < 2n,

Exercice 25. 1) e Déterminons 'image de X,,. La variable aléatoire X,, est mal définie dans I’énoncé : que se
passe-t-il si la n-iéme boule blanche n’est jamais tirée ? On va dire que dans ce cas X, prend la valeur 0.
X, prend comme valeur soit 0, soit une valeur entiére car c¢’est un nombre de tirages, et plus précisément

X, (Q)c{0}u{n,n+1,...}

car pour obtenir n boules, il faut au moins n tirages (et 0 est présent pour tenir compte du fait qu’on puisse ne
jamais avoir n boules blanches).
De plus,

{0} u{n,n+1,...} < X, (),

car si, pour k € N* on note By I’événement « on a une boule blanche au k-iéme essai », alors on a I'inclusion
Bin---nBy1nByn---nByyi1 0By < (X =n+1),

et donc par indépendance des By, pour k € N* (car les tirages sont indépendants puisqu’avec remise) et croissance
de la probabilité,

P(X, =n+i) = P(B) x -+ x P(Bn_1) x P(By) % -+ x P(Buyi—1) x P(Bnsi) = p"(1 — p) > 0.

Donc pour tout i € N,
(Xp =n+1) # J, donc n+ie X,(Q).

Pour 0,

+ooi
(B: < (X, =0),
i=1

ce qui justifie que
0e X,(Q)

(mais cela ne justifie pas que P(X,, = 0) > 0, d’ailleurs on verra que c’est faux). Donc

| X0 (Q) = {0} U [n, +oo[ |

e Soit k € N avec k > n. Les k — 1 premiers tirages sont une répétition d’épreuves identiques et indépendantes,
donc le nombre de boules blanches obtenu (qui arrive a chaque tirage avec probabilité p), suit une loi binomiale
de paramétre k — 1 et p. D’o11, la probabilité de ’événement F, = « il y a eu n — 1 boules blanches lors des k — 1
premiéres épreuves » vaut
k—1
n—1

P(Ey) = < )p”‘1(1 — p)k=i=(n=1)

(c’est la probabilité qu’une loi binomiale B(k — 1, p) vaille n — 1).
L’événement (X,, = k) est I’événement : « le tirage numéro k& améne une boule blanche (il faut que ce soit la n-iéme)
et il y a eu n — 1 boule blanche obtenues lors des k — 1 premiers tirages ». Le « et » se traduit par une intersection
d’événements :

(X, = k) = Br n E,

et By et Ej sont indépendants car concernant des tirages différentes (et que les tirages sont indépendants car il y
a remise), donc

P(X,, = k) = P(Bg) P(Ey).

Comme P(By) = p, on a bien le résultat voulu :
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On fait le calcul de P(X,, = 0) plus loin, et l'on constatera que P(X,, = 0) = 0, ce qui explique pourquoi dans
l’énoncé on « enléve » la valeur 0 de X, (£2).
2) La série entiére

2, e

keN

est de rayon 1, donc sa somme
io 1
k
T — ¥ = ——
= 11—z
est de classe C* sur | — 1, 1], et sur cet intervalle, on peut dériver terme a terme. Ainsi, pour tout x €] — 1, 1[, pour

tout N € N,
+00 ) +00 (N) 1 (N)
k\(N) _ k _
- (24) (5

k=0

Or, pour tout x €] — 1, 1[, pour tout N € N,

+00 (V) N-1 +00 N +00 k! N +00 k .
k=0 k=0 k=N k=N k=N

Puis, par récurrence directe sur N € N, pour tout = €] — 1, 1] et pour tout N € N,

1 \W N!
(1—3;) :(1—33)N+1’

et 'égalité de ces deux expressions conclue (en simplifiant par N1).

Remarque. On n’a pas calculé P(X,, = 0). Comme X,(Q) = {0} u{k €N, avec k > n}, ona:

+00

1- > P(X, =k)

k=n

3
e
I
=
I

Il
—_
|
g
8
N
I
[
_ =
N———
s
3
_
|
=
T
3

+oo i
— _an _ p)i—(n—1)
RSN AD) <n_1)(1 p)

1 —p"ji <]‘<,> (1—py¥

en notant N =n — 1€ N. Comme 1 —p €] — 1,1[, la formule établie a cette question s’applique avec x = 1 — p, et
donne

1 1
P(X,=0)=1—p" w5 =1-p"— =[0]
(1-(1—p) " p
3a) Pour tout k € N avec k > n, on a
kP(X, = k) = (kD p"(1 - p)kn

Il
3
i
£
~
3 =
N
—
|
S
i
3
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Or, d’aprés la question précédente (qui s’applique avec x = 1 — p, car 1 — p €] — 1, 1]), la série numérique
k

> <n> (1—p)F

k=n

converge, de somme
1

(1 . (1 _p))n+1‘

Donc la série numérique

> kP(X, = k)

k=n
converge, et comme elle est & termes positifs, elle converge absolument.
Donc la famille (kP(X = k))k>n est sommable (et rajouter 0- P(X = 0) ne change rien, puisque c’est nul), donc X
a une espérance finie (puisque X,(Q) = {0} U {k € N, avec k = n}), et

+0 +00 k N 1 1 n
E(X)=0-P(X,=0)+ » kP(X, =k)=mnp" ( )(1—p) " =np" — =np" =|—|
2 2 (L=(=p)™t (e

3b) Pour n > 2, on a
P(X, >2) =1

(car (X, = 2) c (X, =n)et que P(X,, = n) =1—P(X, =0) =1), et donc avec probabilité¢ 1 on aura X, —1 # 0,

ce qui permet de définir
n—1

Xp—1

(au moins sur un ensemble de probabilité 1).
Pour tout k e N avec k = n > 2,

n—1 n—1/k—1 k—2
P(X,=k)= —— (1 — )" = n(| _ p)k—n
12 ( ) k_1<n_1>p( p) (n_2>p( p)

(aprés simplifications).
Comme X,, est a valeurs positives et dénombrable, le théoréme de transfert s’applique et donne (les égalités
suivantes ayant lieu dans R u {4+0}) :

i)

L 1 Ln-1
E(;?}l) = 01 (X":0)+£k—1P(X":k)

|

I
s
]
o]
i
I
oy
|

= b Z P(anlzj)
j=n—1

Cette derniére écriture assure que la série converge, donc )?__11 a une espérance finie (pour n = 2). Et, comme
n

Z P(Xn—1:j>:1

j=n—1
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(puisqu’on a l'égalité X,,_1(2) = {0} U [[n — 1, +o[ et que P(X,,—; =0) =0), on a

n—1
E =7l
(Xn_1> P

4) Notons G,, la fonction génératrice de X, alors pour tout t € [—1,1], on a

+00
Gu(t) = P(X,=0)+ ) t*P(X, =k)
k=n
+00
k—1
— k ni1 . \k—n
= 0+ )t (nl)p (1-p)

[
3
3
~
3
D15
8
N
3 =
[
= =
N~
—
=
—
|
3
SN—
T
3

I
i

pt "
1-t(1-p)
en appliquant (& avant derniére égalité) la formule de la question 2, prise pour N =n—1€ Net z = t(1 —p) (et
on a bien z €] — 1, 1] puisque [¢| < 1 donne |z| <1 —p < 1).
Or, la fonction
pt

—

1—(1-p)
est la fonction génératrice d’une loi géométrique de paramétre p, et la fonction génératrice d’une addition de lois
indépendantes est le produit des fonctions génératrices, donc X, a la méme fonction génératrice que Z1 + - -- + Z,
ou les Z; sont des variables aléatoires indépendantes suivant toutes la loi géométrique de paramétre p. Comme la
fonction génératrice caractérise la loi, on en déduit que X, a la méme loi que Z; + - - - + Z,,.
5) L’espérance ne dépend que de la loi, donc par linéarité de 'espérance, comme les Z; ont une espérance finie (cf.
cours sur la loi géométrique), X,, en a une aussi, et

t

1 1
B(Xn) = B(Z1 4o+ Z) = E(Z1) 4+ + B(Za) = o+ =

+ S 1S

Puis, les Z; ont une variance (cf. cours sur la loi géométrique), donc par addition Z;
indépendance,

-+« + Z, aussi, et par

1- 1-p (1-
V(Zl+~-+zn):V(Zl)+-~+V(Zn):7p+---+ pzp:( Zp)".

Enfin, comme la variance ne dépend que de la loi, X,, a une variance, et

V(Xn) =V(Z1+ - + Zy), et donc V(X)) = ——

Exercice 26. 1) ¢ Comme X a une variance, et que E(X) = X et V(X)) = A, I'inégalité de Bienaymé-Tchebychev

donne, pour tout e > 0,
V(X)
2 9y

P(|X —E(X)|=e) < .

soit pour tout e > 0,
P(|X — Al =e) <

CDM‘ S~
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On prend e = A, on a alors 'inégalité désirée.
e Montrons (X = 2\) < (|[X = A| = \) :
Méthode 1 : comme
X A=\ < (X<OouX>2)\>,

on a

(X =A=2X)=(X<0)u(X=2)\)=(X=0)u(X=>2))
(car X(©2) = N, et donc (X < 0) = (X = 0)). Par conséquent,

(X =20 € (IX - A > ),

et donc, par croissance de la probabilité pour 'inclusion,

P(X = 2)\) <P(|IX — )| = )\) <

>

Meéthode 2 : soit X > 2, alors X — A > A >0, donc |[X —A\| =X — A >\ On a donc
X>20=|X - A=)\

ce qui donne l'inclusion d’événements
(X =2\ c (X =)A= )),
et donc )
P(X =22)) <P(|IX - A= )) < X
par croissance de la probabilité pour I'inclusion.
2a) Montrons (Z = a) ¢ ((Z + z)? = (a + z)?).
Méthode 1 : comme a et x sont positifs,

(Z+2)?=2(a+2)? o |Z4z|=latz|=a+x
< <Z+$>a+:v ou —(Z+x)2a+g:>

= <Z>a ou a+Z+2§c<O)

Donc
Zza= (Z+x)>=(a+1x) soit (Zza)<= ((Z+2)* = (a+1)?).

Par conséquent, par croissance de la probabilité pour 'inclusion,
P(Z = a) <P((Z +2)* = (a +2)?).
Méthode 2 : soit Z > a, alors Z +x > a+ x. Or, a + x = 0, et la fonction
t— t?

est croissante sur R,, donc

(Z+2)* = (a+2z)

Et donc
Zza= (Z+x)>=(a+1x) soit (Z}a)c((Z+a:)2>(a+x)2).

Par conséquent, par croissance de la probabilité pour I'inclusion,
P(Z = a) <P((Z +2)* = (a+1)?).
2b) (Z + x)? est une variable aléatoire discréte positive. On a

(Z +2)*=2Z%+2Zx + 22,
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or Z a une variance, donc Z et Z2 ont une espérance finie, et une constante a une espérance finie, donc par linéarité
de 'espérance, (Z + x)? a une espérance finie. Enfin, (a +x)? > 0 (car a > 0 et = > 0). Donc I'inégalité de Markov
donne

E((Z + z)?)

P((Z +2)* = (a+2)?) < (a1 2)?

De plus, comme (Z + x)? = Z? + 2Zx + 2?2, par la linéarité de 'espérance, on a
E((Z +2)?) = E(Z%) + 22E(Z) + 2°E(1).
Comme Z est d’espérance nulle, et que
E(Z?) =V(Z) +E(Z2)* =V(Z)
par la formule de Huygens, on obtient
E((Z +2)%) =V(Z) + 2* = 0° + 2°.
D’ou

02+:1:2

P((Z +2)* = (a+2)?) < (a+ )2

et I'inégalité de la question précédente conclut.

2c¢) Ceci étant vrai pour tout x € Ry, il suffit de prendre z qui réalise mﬂi{n (&?ﬁ;) (si c’est possible).
TER 4

Etudions donc la fonction suivante :
fixeRy —» —€eR.

Elle est dérivable sur Ry et pour tout z € R,

f’(x) _ 2z(a + a:)2 —2(a + m)(a2 + a:2) _ 2ax + 222 — 202 — 222 _ an — o2

(a+z)* (a+z)3 (a+x)3’

donc f'(x) est du signe de ax — 02, donc f’ est négatif sur [O, %2], positif sur [%2, +oo[, donc la fonction f a un

minimum global en x = %2
Pour ce z, 'inégalité de la question précédente devient :
4
o’ + % o2(a® + 0?) o?

P(Z > a) < 2 _ _ ,
( a) <a+ (ﬁ>2 (a2 + o2)2 o2 + a2
a

2d) Appliquons ceci & Z = X — A (pour que Z soit bien d’espérance nulle!!!), qui a pour variance o2 = X (car la
variance est inchangée quand on translate par une constante).

Alors, pour a = A, on a
A 1

< = .
A+A2 0 A+1

P(X =22\)=P(X —-)A=))
3a) Pour ¢ €]1, +[ et a € RY,

car la fonction
z — tr

est strictement croissante sur R%. Si ¢ = 1, on a juste
(X >a) < (t° =19,

car la fonction
z—tr =1

est croissante sur R*%. Dans tous les cas, on a pour t € [1,400[, par croissance de la probabilité pour Iinclusion,

P(X = a) <P(t* >t%).
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Comme t* > 0 et que la variable aléatoire t* a une espérance finie pour tout réel ¢ € [1, +00[ (c’est 1a qu’on utilise
que X suit une loi de Poisson, entre autre!), I'inégalité de Markov donne

E(tY) _ Gx(t)

P(t* >t%) < = pran

Donc on a bien
_ Gx(t) 6A(t—l)

te te
Une démonstration plus élémentaire : la série numérique

P(X > a)

A (AB)F
k!

Y P(X =kt =e”
keN

converge sans condition sur ¢, car la série numérique

VAL
>

keN

At

converge de somme e, sans condition sur ¢ ou A (c’est une série exponentielle). Donc Gx(t) existe pour tout

réel t € R et vaut
GX(t) _ e—)\e)\t _ 6)\(t_1).

On veut montrer que
Gx(t) =t"P(X > a)

pour tout ¢t € R vérifiant ¢ > 1. Comme on a une série & terme positif, et que, pour tout k € N avec k > a, on
ath >t (car t > 1), alors

+00
Gx(t)= Y. PX =k)tF = Y. P(X = k)tF + D P(X = k)t" = D P(X = k)t" = ) P(X = k)t* = t°P(X > a)
k=0 k<aj/0_/ k>a k>a k>a

3b) Pour a = 2), I'inégalité de la question précédente donne : pour tout ¢ € [1, +00],

e)\(t—l) N

en posant
el—1
2

La fonction g est une fonction dérivable sur [1, +oo[, et pour tout ¢ € [1, +0o0],

g:t—

el =112 — 2t)
gl(t) = a4

donc ¢'(t) est du signe de t? —2t, donc est négatif sur [1,2] et positif sur [2, +00[, donc la fonction g a un minimum
global en 2, qui vaut

Puis,
e\ A
A+ 1) (7) —
4 A—+00
par croissance comparée, car ‘i‘ < 1. Donc si A est assez grand, on aura

e A e A 1
— 1 — g -
(A+1) (4) <1, soit (4) P
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et donc pour ces A, la derniére inégalité est meilleure que celle de la question 2.
Par contre,

e\t _ am(g) _ e Lo
(4) — (s —1+)\ln(4>+A_?0+()\) et g l-A+ o (),

et
ln(z>=1—21n(2)>—1 e 1>W2) = e>2

ce qui est vrai, donc pour A proche de 07, on a
(D) =1
4 L+
et donc pour A\ assez proche de 0, la derniére inégalité sera moins bonne que celle de la question 2.

Remarque. Une étude de fonction (et des résolutions numeériques d’équations) montrent que c’est pour A >
4,3335054 (approximativement), que la deuxiéme inégalité est meilleure, et qu’avant c’est la premiére.

Exercice 27. 1) Une loi & valeurs dans N* est caractérisée par P(X = n) > 0 pour tout entier n € N* (ce qui

+0
équivaut ici & a = 0) et 2 P(X =n) = 1. Or, pour tout N € N*|
n=1

N A N1 1 1

P(X =n) = v Z_ —al1- N
2 ( ") Z:n(nJrl) aZ(n n+1> a< N+1>N—>+ooa
n=1 n=1 n

=1
(car on a reconnu une somme télescopique). Donc
a=1

(qui est bien > 0).
2) X a une espérance finie si et seulement si la famille (nP(X + n))neN* est sommable, autrement dit, si et
seulement si la série numérique

1 1
Z nP(X =n) = Z n+1k—?+1]§2k

neN* neN*

converge absolument (ici converge suffit, puisque c’est une série a termes positifs). Or, c’est la série harmonique,
qui diverge, donc

‘X n’a pas d’espérance finie ‘

Pour que X ait une variance, il faut que X ait une espérance finie. Ce n’est pas le cas ici, donc

‘X n’a pas de variance ‘

3) On sait que la fonction génératrice est une série entiére de rayon au moins 1, et qu’elle converge pour ¢t € [—1, 1].
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Mais ici, on va commencer par faire le calcul pour ¢ €] — 1, 1[ non nul (on verra pourquoi au cours du calcul) ? :

Gx(t) = D t"P(X =n)

= — (car ces séries convergent, car [t| < 1)

(en reconnaissant un DSE usuel). Done, pour tout ¢ €] — 1, 1[\{0},

(1—t)In(1 —t)
t

+ 1}

Gx(t) =

or on sait que la fonction Gy est continue sur [—1,1], donc

Gx(O) = }I_I)I(l)Gx(t) =0, Gx(l) = lim Gx(t) =1 et Gx(—l) = lim Gx(t) =1- 2111(2).

t—1— t——11

tn
Remarque. Une application du critére de D’Alembert donne directement que la série entiére Z ﬁ al
n(n
neN*

comme rayon. Donc Gx n’est défini que sur [—1,1].

Exercice 28. Commengons par remarquer que, pour tout z € R, pour tout n € N, z" existe (méme 0"). En
particulier, pour tout (x,%) € [~1,1]%, pour tout (n, k) € N2, I'expression z"y*P(X = n,Y = k) existe.

1) Soit (z,y) € [—1,1]?, alors |z| < 1 et |y| < 1.

Pour tout (n, k) € N2, on a alors

0<[z"y"P(X =nY =k)|<|P(X =nY =k)| = P(X =n,Y = k).

Or, la famille (P(X =n,Y = k)) (.2 Ot sommable (car N2 est dénombrable, et (X,Y') est une variable aléatoire

avec (X,Y)(Q2) = N2, On peut méme préciser que la somme de cette famille vaut 1), donc par inégalité, la famille

(x”ykP(X =n,Y = k))(n,k)eN2

est sommable.
2) Soit (x,5) € [~1,1]?. La fonction (a,b) € N? — 2% est bien définie (on peut prendre la puissance entiére
positive de n’importe quel réel), la famille (a:”ykP(X =n,Y = k:))(n F)en? est sommable, donc le théoréme de

transfert s’applique : la variable aléatoire 2XyY a une espérance finie, et
(n,k)eN2

2. On peut s’en douter, puisque X n’ayant pas d’espérance finie, on sait que le rayon de convergence de la série entiére de somme G x
vaut 1, donc le calcul en +1 risque d’étre compliqué...
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Remarque. Comme (z,y) € [-1,1]%, on a |z| < 1 et |y| < 1, donc pour tout (a,b) € N?, |z%°| < 1, donc
‘xX yy‘ < 1. Comme 1 a une espérance finie, on retrouve par inégalité que zXyY a une espérance finie.

3) Pour tout x € [—1,1], on a

Gx(x) = E(xX) = IE(:Ule) =|Gxy)(z, 1)

4) X et Y sont indépendants, donc pour tout (n, k) € N2,
P(X =n,Y = k) = P(X = n)P(Y = k).
Soit (z,y) € [-1,1]2. Alors

Gixy)(7,y) = Z "y P(X =n,Y = k) = Z 2"P(X = n)y*P(Y = k).
(n,k)eN? (n,k)eN?
Puis, la famille (z"P(X = n)), _ est sommable. En effet :
o N est dénombrable,

|z| <1, donc pour tout n € N, |z"| < 1, ce qui donne
|2"P(X =n)| <|P(X =n)| = P(X =n),

e et enfin la famille (P(X = n))neN est sommable (par c-additivité de P, car les événements (X = n)
pour n € N sont deux & deux incompatibles),

donc par inégalité, on bien 'affirmation.
De méme, la famille (y*P(Y = k)) reny €St sommable.
Alors, par produit de sommes de familles sommables, on a

400 +00
Gx Z n)y*P(Y (2 " )) (Z yrP(Y = k)) = Gx(z) x Gy (y).
n=0 k=0

5) On sait, pour tout u €] — 1, 1],

i M+

+
u™
In(1 — —
Or, pour tout x € [—1, 1], comme p €]0, 1[, on a

lpz| <p <1,

on peut donc poser u = px dans 1’égalité précédente.
Donc, pour tout x € [—1, 1],

p) n=1 n=1

Analyse : supposons que G soit la fonction génératrice d’une variable aléatoire X a valeurs dans N. Alors pour
tout x € [—1, 1],

+00
— Z P(X =
n=0
On a donc I'égalité
> T
P(X =n)z" = —z"
n=0 n=1 In (1_ )

pour tout = € [—1,1]. Comme [—1, 1] est un intervalle non trivial contenant 0, I'unicité des coefficients donnent

P(X=0)=0 e  VneN* P(X=n)=—-— "
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Synthése : réciproquement, N est dénombrable, pour tout n € N*, —m% >0 (car 1 —p€]0,1]), et
p"  In(1-—
0+ > — =7 (1 p) _ 1
ot n In(l-p)

donc il existe bien X variable aléatoire de loi donnée par
1
X@cN, P(X=0=0 VYneN* P(X=n)=—— "

De plus, pour tout x € [—1, 1], on a alors

G JrOOP)( n - 1 pn n = pﬂ? lnl—p:c) G
X(x):ZO (X =ne :O+Z_:1_ln(1—p); - 1— Zl In(1 —p) (=)

Donc G est la fonction génératrice de X.
6) On sait, pour tout t € [—1,1],

Puis, pour tout (z,y) € [—1,1]?,

Gixy)(z,y) = E(z*y") = E(@*y” ™) = E((zy)*y?).

Puis, X et Z sont indépendantes, donc toute fonction de X est indépendante de toute fonction de Z, ce qui
donne (zy)* et y# indépendantes.

De plus, on a)J(:L‘y)X| < 1et |yZ’ < 1 (car |zy| < 1 et Jy| < 1), avec 1 qui est d’espérance finie, donc par
inégalité, (zy)X et y# sont d’espérance finie.

Donc on a

G (.0) = B0 v7) = B((an) V() = Gx(o)Cely) = Gla)CGao) = | o P M

Exercice 29. Pour tout ¢ € [—1, 1], par linéarité de l'espérance (et car on sait que tX a une espérance finie),

Gxy1(t) =Bt ) = E(t-+¥) = tB(£X) = [tGx () |

Pour tout ¢t € [—1, 1],

Gox(t) = E(t*Y) = E((*)¥) =|Gx () |

Une démonstration a partir des sommes : pour tout t € [—1, 1],

e 6} e 6} 0 o0
Gx41(t) = Y P(X +1=n)t Z —n—1t" = > PX =k)t" =t Y P(X = k)tF =|tGx(t)
n=0 n=0 h=n—1, 70 k=0
(en utilisant que P(X = —1) = 0 car X est a valeurs dans N).
Pour tout ¢t € [—1,1],
0 a0
Gox(t Z (2X = n)t D PRX =n)t" + > P2X = n)t" = ) P(2X = 2k)t** + 0
n=0 neN neN k=0
n = 2k pair n = 2k + 1 impair

(car (2X =2k + 1) = ¢J pour tout entier k € N), et donc

Gox(t) = Gx(t?)|

45



