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TD15 - Espérance et variance

1 Espérance et variance

Exercice 1. Soit U une urne avec une boule blanche et une boule noire. On joue de la façon suivante : On tire
une boule de l’urne.

• Si elle est blanche, on gagne et le jeu s’arrête.
• Si elle est noire, on remet la boule dans l’urne et on rajoute m boule(s) noire(s), puis on recommence.

Soit X la variable aléatoire réelle qui vaut le numéro du tirage où l’on gagne, si cela arrive, et 0 sinon.
Donner la loi de X lorsque m “ 1, puis lorsque m “ 2. Dans les deux cas, est-ce que X a une espérance finie ? Si
oui, une variance ?

Exercice 2 (pool testing). On se propose d’analyser le sang d’une population de N individus pour déceler la
présence éventuelle (résultat positif) d’une maladie non contagieuse dont on sait qu’elle affecte une personne
donnée avec la probabilité p. On a pour cela deux méthodes :

• Méthode I : on analyse le sang de chacune des N personnes.
• Méthode II : on regroupe les N individus en g groupes de n individus. On met le sang des n individus d’un

même groupe dans une même éprouvette. Si le résultat d’un groupe est positif, on analyse alors le sang des n
individus du groupe.

1. Quelle est la loi de la variable aléatoire réelle X égale au nombre de groupes positifs.
2. Soit Y la variable aléatoire réelle égale au nombre d’analyse dans la deuxième méthode. Calculer en fonction

de N , n et p l’espérance et la variance de Y .
3. Comparer les deux méthodes dans le cas où N “ 1000, n “ 10 et p “ 0, 01.

Exercice 3. On effectue une suite illimitée de lancers d’une pièce de monnaie équilibrée. Xi est la variable de
Bernoulli qui prend la valeur 1 si le i-ème lancer donne un résultat « pile », et 0 si c’est « face ».

1. Pour i P Nzt0, 1u, on désigne par Yi la variable aléatoire qui prend la valeur 1 si l’on obtient 2 « pile » à la
suite, lors des pi´ 1q-ème lancer et i-ème lancer, et 0 sinon. Autrement dit : Yi “ Xi´1 ˆXi. Pour n ě 2, on

pose Sn “

n
ÿ

i“2

Yi.

(a) Quelle est la loi suivie par Xi ? Calculer EpXiq, VpXiq, CovpXi, Xi`1q.
(b) Quelle est la loi suivie par Yi ? Calculer EpYiq, VpYiq et CovpYi, Yi`1q, puis EpSnq, VpSnq.

2. Pour i P Nzt0, 1u, on désigne par Zi la variable aléatoire qui prend la valeur 1 lorsque le pi ´ 1q-ème et
le i-ème tirage donnent des résultats différents (pile puis face ou face puis pile), 0 sinon. Et pour n ě 2, on

pose Tn “

n
ÿ

i“2

Zi. Tn indique le nombre de « changements » dans la suite des résultats des n premiers lancers.

Démontrer que Zi “ Xi ` Xi´1 ´ 2Yi. Calculer EpZiq, VpZiq, CovpZi, Zi`1q et enfin EpTnq et VpTnq.

Exercice 4. Soit X une variable aléatoire réelle suivant la loi binomiale Bpn, pq. On définit deux nouvelles variables
aléatoires par Y “ p1 ` Xq´1 et Z “ AX (avec A ą 0). Calculer EpY q et EpZq.

Exercice 5. Soit p Ps0, 1r et q “ 1 ´ p. Soit X une variable aléatoire discrète vérifiant XpΩq “ N et pour n P

N, PpX “ nq “ pqn. Montrer que X2 a une espérance finie, et la calculer.

Exercice 6 (extrait Centrale MP 2016). Soit S et T deux variables aléatoires réelles discrètes indépendantes
définies sur pΩ,A,Pq. On suppose que T et ´T ont même loi. Montrer que

E
`

cospS ` T q
˘

“ E
`

cospSq
˘

E
`

cospT q
˘

.

Exercice 7. Soient pX,Y q un couple de variables aléatoires, défini sur un espace probabilisé pΩ,A,Pq, et à valeurs
dans N2, dont la loi est donnée par :
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@ pi, jq P N2, PpX “ i, Y “ jq “ α
2i`1j!

1. Déterminer α.

2. Déterminer les lois de X et de Y .

3. (a) Prouver que 1 ` X suit une loi géométrique et en déduire l’espérance et la variance de X.
(b) Déterminer l’espérance et la variance de Y (indication : avant de calculer la variance, regarder E

`

XpX´

1q
˘

).

4. Les variables X et Y sont-elles indépendantes ?

5. Calculer PpX “ Y q.

Exercice 8. Soit p Ps0, 1r, on note q “ 1 ´ p. On considère deux variables aléatoires L1 et L2 à valeurs dans N˚

chacune, de sorte que, pour tout pn, kq P pN˚q2,

PpL1 “ n,L2 “ kq “ pkqn`1 ` qkpn`1

( L1 suit la loi de la variable donnant, dans une infinité de lancers d’une pièce qui donne Pile avec probabilité p,
la longueur de la première série de valeurs consécutives, L2 celle de la deuxième série).
Montrer que L1L2 a une espérance finie, et la calculer.

Exercice 9. Soit p et q deux réels de l’intervalle s0, 1r .

1. Vérifier que l’on définit une probabilité P sur N2 en posant, pour tout pi, jq P N2, P
`

pi, jq
˘

“ p q p1´ pqi p1´

qqj .

2. (a) Déterminer les lois des variables aléatoires discrètes X et Y définies sur
`

N2,PpN2q,P
˘

par : pour
tout pi, jq P N2,

Xpi, jq “ i et Y pi, jq “ j.

(b) Calculer PpX “ Y q et PpX ą Y q .

3. Soit Z la variable aléatoire discrète définie par : pour tout pi, jq P N2,

Zpi, jq “

$

’

&

’

%

1 si i et j sont pairs
´1 si i et j sont impairs
0 si i et j sont de parités différentes

Montrer que Z admet une espérance finie et la calculer.

4. Justifier que la famille
´

Zpi, iqP
`

pi, iq
˘

¯

iPN
est sommable et calculer sa somme.

Exercice 10. Soit X1 et X2 deux variables aléatoires réelles discrètes strictement positives, de même loi et
indépendantes. On pose U “ X1 ` X2, T “ X1 ´ X2, Y1 “ X1

U et Y2 “ X2
U .

1. Montrer que Y1 et Y2 suivent la même loi et, pour tout k P N˚, Y k
1 et Y k

2 ont une espérance finie. Calculer EpY1q

et EpY2q.

2. Soit Z “ T
U , montrer que pour tout k P N˚, Zk a une espérance finie. Déterminer E pZq, puis V pZq en

fonction de VpY1q.

Exercice 11. Soit X une variable aléatoire discrète qui possède une espérance finie. Soit A un évènement de
probabilité non nul. Montrer que la loi conditionnelle de X sachant A possède une espérance finie.

Exercice 12. Soit X une variable aléatoire ayant une variance. Soit e ą 0 et U “ e´X `EpXq. Soit B “ ⊮pUą0q

la variable aléatoire indicatrice de l’évènement pU ą 0q.

1. Justifier que l’on a U ď UB.

2. A l’aide de l’inégalité de Cauchy-Schwarz appliqué aux variables aléatoires U et B, montrer l’inégalité :

P
`

X ´ EpXq ě e
˘

ď
VpXq

VpXq ` e2
.

3. Montrer de même que : P
`

X ´ EpXq ď ´e
˘

ď
VpXq

VpXq`e2
.
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4. Donner un majorant de P
`

|X ´EpXq| ě eq et comparer avec le majorant fourni par l’inégalité de Bienaymé-
Tchebychev.

Exercice 13. Soit pYnqnPN une suite de variables aléatoires ayant une variance, définies sur un même espace
probabilisé

`

Ω,A,P
˘

. On suppose que les limites ℓ “ lim
nÑ`8

EpYnq et lim
nÑ`8

VpYnq “ 0 existent. Montrer que, pour

tout e ą 0, lim
nÑ`8

P
`

|Yn ´ ℓ| ą e
˘

“ 0.

Exercice 14 (CCP PSI 2016 BEOS). Soit X, Y des variables aléatoires vérifiant les hypothèse suivantes :

1. X et Y ont chacune une espé-
rance finie,

2. X et X ´ Y sont indépen-
dantes,

3. Y et X ´ Y sont indépen-
dantes.

Montrer que X´Y est presque sûrement constante. Indication : On montrera l’existence, puis la nullité de VpX´Y q.

Exercice 15 (CCP PC RMS 2016 - exo 2). Soient X et Y deux variables aléatoires indépendantes suivant une
loi de Bernoulli de paramètre p. On pose Z “ X ` Y . Déterminer la loi de Z, son espérance et sa variance.

Exercice 16 (CCP PSI 2015 BEOS). Une machine tire au hasard un nombre dans N˚ : c’est n P N˚ avec
probabilité pn “ 1

2n .
Le jeu : le joueur gagne n points si le nombre tiré n est pair, et perd n points si le nombre tiré n est impair.

1. Quelle est la probabilité que le joueur gagne ?

2. Soit G la variable aléatoire qui est égale au gain du joueur. Calculer l’espérance et la variance de G.

Exercice 17. Soit p Ps0, 1r. Soit X, Y et Z trois variables aléatoires indépendantes suivant la même loi géométrique
de paramètre p. On pose U “ minpX,Y q et V “ maxpX,Y q.

1. Déterminer les lois de U et V . Calculer EpUq, puis EpV q de deux manières différentes.

2. Quelle est la loi de U ` V ?

3. Déterminer la probabilité PpX ` Y ď Zq.

Exercice 18. Soit X une variable aléatoire suivant une loi de Poisson Ppλq. On pose Y “ 1
X`1 . Montrer que Y

admet une espérance finie et la calculer.

Exercice 19. Un commerçant se fournit auprès d’un grossiste pour constituer son stock au début de la saison, lequel
consiste en un certain nombre d’unités d’un produit de consommation. Chaque unité vendue par ce commerçant
lui rapporte un bénéfice net de x euros alors que chaque unité invendue à la fin de la saison engendre une perte
nette de y euros, x et y sont des réels strictement positifs. Ce commerçant doit constituer son stock au début de
la saison et désire déterminer la taille n de ce stock afin de maximiser son espérance de gain.
On admet que le nombre d’unités qui seront commandées à ce commerçant pendant la saison est une variable
aléatoire à valeurs dans N, notée X. On note Yn la variable aléatoire égale au gain (positif ou négatif) de ce
commerçant à la fin de la saison. On désigne par U la variable aléatoire qui vaut 1 si X ď n et qui vaut 0 si X ą n.
On admet que ces variables sont toutes définies sur le même espace probabilisé pΩ,A,Pq.

1. En distinguant deux cas selon la valeur de U montrer que : Yn “
`

xX ´ pn ´ Xqy
˘

U ` nxp1 ´ Uq.

2. (a) Vérifier que la variable XU prend ses valeurs dans t0, 1, . . . , nu.
(b) Exprimer, sous forme de somme, l’espérance de XU à l’aide de la loi de X.
(c) Montrer enfin que

EpYnq “ px ` yq

n
ÿ

k“0

pk ´ nqPpX “ kq ` nx.

Dans la suite, on suppose que px ` yqPpX “ 0q ă x.

3. (a) Exprimer EpYn`1q ´ EpYnq en fonction de x, y et
n
ÿ

k“0

PpX “ kq.

(b) Montrer qu’il existe un unique entier naturel n0 tel que

n0
ÿ

k“0

PpX “ kq ă
x

x ` y
et

n0`1
ÿ

k“0

PpX “ kq ě
x

x ` y
.
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(c) En déduire que ce commerçant maximise son espérance de gain, avec un stock de taille n1 “ n0 ` 1.

4. Une étude statistique faite au cours des saisons précédentes donne que X suit la loi de Poisson Ppαq, α ą 0.

(a) Exprimer PpX “ k ` 1q en fonction de PpX “ kq.
(b) Utiliser ce résultat pour écrire un programme en python permettant de calculer et d’afficher n1 lorsque

l’utilisateur fourni les valeurs de x, y et α.

Exercice 20. Soit X et Y deux variables aléatoires, X de loi de Poisson Ppλq, et Y « de loi de Poisson de
paramètre X », c’est-à-dire que la loi de Y pour la probabilité PpX“nq est une loi de Poisson 1 Ppnq. Déterminer
la loi de Y (en laissant la probabilité sous forme d’une somme) puis l’espérance de Y (sous forme simplifiée).

Exercice 21. Soit X et Y deux variables ayant une variance, et telles que X ` Y et X ´ Y sont indépendantes.
Montrer que VpXq “ VpY q.

2 Fonctions génératrices

Exercice 22. Soit X une variable aléatoire à valeurs dans N, qui a pour fonction génératrice GXptq “ t
2´t2

. Quelle
est la loi de probabilité de X ? Reconnaître la loi de Y “ X`1

2 , et en déduire EpXq et VpXq.

Exercice 23. Soit X une variable aléatoire à valeurs dans N, qui a pour fonction génératrice GXptq “ a exp
`

1`t2
˘

.
Calculer la valeur de a. Quelle est la loi de probabilité de X ? EpXq ? VpXq ?

Exercice 24. Une boîte contient quatre boules numérotées 0, 1, 1, 2. On effectue n tirages avec remise. Soit Sn

la somme des numéros tirés. Déterminer la loi de probabilité de la variable aléatoire Sn (on pourra chercher sa
fonction génératrice).

Exercice 25 (loi de Pascal). On effectue des tirages successifs avec remise dans une urne avec une proportion p
de boule blanches. Pour n P N˚, on note Xn le nombre total de boules tirées au moment où on tire la n-ième boule
blanche.

1. Établir que XnpΩq “ rrn,`8rr et pour k P XnpΩq,

PpXn “ kq “

ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n.

2. En dérivant N fois la série géométrique, montrer que pour N P N, x Ps ´ 1, 1r,

`8
ÿ

k“N

ˆ

k

N

˙

xk´N “
1

p1 ´ xqN`1
.

3. (a) Montrer que Xn possède une espérance finie et donner sa valeur en fonction de n et p.
(b) Montrer que, pour n ě 2, n´1

Xn´1 possède une espérance finie égale à p.

4. Calculer la fonction génératrice de Xn. En déduire que Xn a la même loi que la somme Z1 ` ¨ ¨ ¨ ` Zn où
les Z1 sont des variables aléatoires indépendantes suivant toutes la loi géométrique de paramètre p.

5. Retrouver l’espérance de Xn. Calculer la variance de Xn.

Exercice 26. Dans tout l’exercice, X est une variable aléatoire suivant la loi de Poisson de paramètre λ ą 0.

1. Montrer que P
`

|X ´ λ| ě λ
˘

ď 1
λ . En déduire l’inégalité (‹) :

PpX ě 2λq ď
1

λ
.

2. Première amélioration de l’inégalité (‹).

(a) On considère une variable aléatoire discrète Z, d’espérance nulle et de variance σ2. Montrer que, pour
tout couple pa, xq de s0,`8r ˆ R` :

PpZ ě aq ď P
`

pZ ` xq2 ě pa ` xq2
˘

.

1. Normalement on devrait avoir n ą 0. On garde la même formule pour n “ 0, et on considère que l’image est encore N.
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(b) En appliquant l’inégalité de Markov à la variable aléatoire pZ`xq2, montrer que pour a ą 0, pour x ě 0,

PpZ ě aq ď
σ2 ` x2

pa ` xq2
.

(c) En déduire que pour a ą 0,

PpZ ě aq ď
σ2

σ2 ` a2

(on pourra étudier la fonction f : x P R` ÞÑ σ2`x2

pa`xq2
).

(d) Utiliser cette dernière inégalité pour montrer que :

PpX ě 2λq ď
1

λ ` 1
.

3. Deuxième amélioration de l’inégalité (‹). On note GX la fonction génératrice de X.

(a) Montrer que pour t P r1,`8r et a ą 0,

PpX ě aq ď
GXptq

ta
.

(b) En déduire que :

PpX ě 2λq ď

´e

4

¯λ
.

Cette inégalité est-elle meilleure que celle obtenue en 2d ?

Exercice 27 (CCP PSI 2015 BEOS). Soit a un réel strictement positif. Soit X une variable aléatoire discrète à
valeurs dans N˚ telle que : pour tout n P N˚, PpX “ nq “ a

npn`1q
.

1. Déterminer a.

2. X admet-elle une espérance finie, une variance ?

3. Expliciter la fonction génératrice de X.

Exercice 28. Soit X et Y deux variables aléatoires définies sur un même espace probabilisé pΩ,A,Pq à valeurs
dans N.

1. Soit px, yq P r´1, 1s2. Montrer que la famille
`

xnykPpX “ n, Y “ kq
˘

pn,kqPN2 est sommable. On note
GpX,Y qpx, yq sa somme.

2. Soit px, yq P r´1, 1s2. Montrer que GpX,Y qpx, yq “ E
`

xXyY
˘

.

3. Comment, connaissant GpX,Y q, peut-on déterminer GX (la fonction génératrice de X) ?

4. Montrer que si X et Y sont indépendants, alors pour tout px, yq P r´1, 1s2, GpX,Y qpx, yq “ GXpxq ˆ GY pyq.

5. Justifier que G : x P r´1, 1s ÞÑ
lnp1´pxq

lnp1´pq
est la fonction génératrice d’une variable aléatoire X à valeurs dans N.

6. Soit p Ps0, 1r, Z une variable aléatoire indépendante de X et de loi géométrique Gppq. On pose Y “ X ` Z.
Calculer, pour tout px, yq P r´1, 1s2, GpX,Y qpx, yq.

Exercice 29. Soit X une variable aléatoire à valeurs dans N. Exprimer GX`1 et G2X en fonction de GX .
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Solutions

Exercice 1. 1) XpΩq Ă N car soit X renvoie 0, soit il renvoie un nombre de tirages.
Puis, si l’on tire que des boules noires (ce qui est possible, vu l’expérience que l’on veut modéliser), on aura X “ 0
qui sera réalisé, donc 0 P XpΩq. Et pour n P N˚, si on tire successivement n ´ 1 boules noires, puis une boule
blanche (là encore c’est possible), on aura X “ n de réalisé, donc n P XpΩq. Par conséquent, N Ă XpΩq. Puis, par
double inclusion,

XpΩq “ N .

PpX “ 1q “ 1
2 , que m “ 1 ou m “ 2.

Puis, pour n P N˚, notons Bn l’évènement « obtenir une boule blanche au n-ième tirage ». Alors, pour n P N
avec n ě 2, on a

pX “ nq “ B1 X ¨ ¨ ¨ X Bn´1 X Bn,

et par la formule des probabilités composées,

PpX “ nq “ PpB1q
loomoon

“ 1
2

ˆPB1
pB2q ˆ ¨ ¨ ¨ ˆ PB1X¨¨¨XBn´2

pBn´1q ˆ PB1X¨¨¨XBn´1
pBnq

Ensuite, le calcul des probabilités conditionnelles dépend du protocole.
‹ Cas m “ 1 : on ne remet qu’une boule noire en plus à chaque tirage d’une boule noire. Alors, pour k P N˚,

PB1X¨¨¨XBk
pBk`1q “

k ` 1

k ` 2

car on sait qu’on n’a pas encore eu la boule blanche (donc le jeu continue et il y a un tirage numéro k ` 1), et
comme avant on a eu k boules noires, on en a remis k dedans.
Par conséquent, pour n ě 3,

PpX “ nq “
1

2

˜

n´2
ź

k“1

k ` 1

k ` 2

¸

ˆ

1 ´
n

n ` 1

˙

“
1

2

2

pn ´ 2q ` 2

n ` 1 ´ n

n ` 1
“

1

npn ` 1q

en reconnaissant un produit télescopique, et

PpX “ 2q “
1

2

ˆ

1 ´
2

3

˙

“
1

2 ¨ 3

(donc la même formule reste valable pour n “ 2, et aussi pour n “ 1, puisque PpX “ 1q “ 1
2).

Remarque. Pour n P N˚, PpX “ nq ‰ 0, donc en particulier on retrouve n P XpΩq.

Comme XpΩq Ă N, on peut calculer PpX “ 0q par la formule

PpX “ 0q “ 1 ´

8
ÿ

n“1

PpX “ nq,

ce qui donne :

PpX “ 0q “ 1´

8
ÿ

n“1

1

npn ` 1q
“ 1´

8
ÿ

n“1

ˆ

1

n
´

1

n ` 1

˙

“ 1´ lim
NÑ`8

N
ÿ

n“1

ˆ

1

n
´

1

n ` 1

˙

“ 1´ lim
NÑ`8

ˆ

1 ´
1

N ` 1

˙

“ 0

(par somme télescopique). On a donc la loi complète de X, en disant :

XpΩq “ N , PpX “ 0q “ 0 , @n P N˚, PpX “ nq “
1

npn ` 1q

‹ Cas m “ 2 : on remet deux boules noires en plus à chaque tirage d’une boule noire. Alors, pour k P N˚,

PB1X¨¨¨XBk
pBk`1q “

2k ` 1

2k ` 2

1
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car on sait qu’on n’a pas encore eu la boule blanche (donc le jeu continue et il y a un tirage numéro k ` 1), et
comme avant on a eu k boules noires, on en a remis 2k dedans.
Par conséquent, pour n ě 3,

PpX “ nq “
1

2

˜

n´2
ź

k“1

2k ` 1

2k ` 2

¸

ˆ

1 ´
2n ´ 1

2n

˙

et
PpX “ 2q “

1

2

ˆ

1 ´
3

4

˙

“
1

8
.

Remarque. Pour n P N˚, PpX “ nq ‰ 0, donc en particulier on retrouve n P XpΩq.

Pour simplifier, c’est classique : on multiplie au numérateur et dénominateur par le produit des nombres pairs qu’il
manque pour avoir une factorielle, puis on regroupe au dénominateur les 2 : pour n ě 3,

PpX “ nq “
p2n ´ 3qp2n ´ 5q . . . 3p2n ´ 2qp2n ´ 4q . . . 2

2np2n ´ 2q . . . 2p2n ´ 2qp2n ´ 4q . . . 2
“

1

2n

p2n ´ 2q!

22n´2pn ´ 1q!pn ´ 1q!
“

p2n ´ 2q!

22n´1n!pn ´ 1q!

Remarque. On remarque que cette formule reste valable pour n “ 2 et n “ 1.

Pour simplifier les calculs à venir, on peut remarquer que, pour n P N˚,

PpX “ nq “
p2n ´ 2q!

22n´1n!pn ´ 1q!

p2n ´ 1qp2nq

p2n ´ 1q2n
“

p2nq!

22npn!q2
1

2n ´ 1
.

On a toujours XpΩq Ă N, mais calculer PpX “ 0q par la formule

PpX “ 0q “ 1 ´

8
ÿ

n“1

PpX “ nq

parait plus difficile... Or, par définition,

pX “ 0q “

8
č

k“1

Bk,

donc par continuité décroissante de P ,

PpX “ 0q “ lim
nÑ`8

P
`

B1 X ¨ ¨ ¨ X Bn

˘

“ lim
nÑ`8

1

2

n´1
ź

k“1

2k ` 1

2k ` 2
“ lim

nÑ`8

p2nq!

22npn!q2

Or, par la formule de Stirling, on a n! „
nÑ`8

`

n
e

˘n ?
2πn, donc

p2nq!

22npn!q2
„

nÑ`8

p2nq2n

e2n

?
4πn

e2n

22nn2n2πn
“

1
?
πn

ÝÑ
nÑ`8

0,

donc
PpX “ 0q “ 0.

On a donc la loi complète de X, en disant :

XpΩq “ N , PpX “ 0q “ 0 , @n P N˚, PpX “ nq “
p2n ´ 2q!

22n´1n!pn ´ 1q!

Remarque. On peut vérifier (en connaissant bien ses DSE...) que
8
ÿ

n“1

PpX “ nqzn “ 1 ´
?
1 ´ z, valable pour

tout z Ps ´ 1, 1r.

2) Regardons pour l’espérance finie et la variance.
‹ Cas m “ 1 : pour tout n P N˚,

nPpX “ nq “
1

n ` 1

2
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est le terme d’une série numérique divergente, donc la famille
`

nPpX “ nq
˘

nPN n’est pas sommable. Donc X n’a
pas d’espérance finie, encore moins de variance.
‹ Cas m “ 2 : Avec la formule de Stirling, on a vue

PpX “ nq “
p2nq!

22npn!q2
1

2n ´ 1
„

nÑ`8

1
?
nπ

1

2n
.

Donc
nPpX “ nq „

nÑ`8

1

2
?
πn

,

or la série numérique
ÿ

nPN˚

1

n
1
2

diverge (série de Riemann avec 1
2 ď 1) et est à termes positifs (et 1

2
?
π

ą 0), donc

par critère d’équivalence des séries à termes positifs, on en déduit que la série numérique
ÿ

nPN
nPpX “ nq diverge,

donc la famille
`

nPpX “ nq
˘

nPN n’est pas sommable. Donc X n’a pas d’espérance finie, encore moins de variance.

Exercice 2. 1) Calculons la probabilité r qu’un groupe soit positif. Le nombre U de personnes malades dans
un groupe donné suit une loi binomiale Bpn, pq, car on a n personnes dans un groupe, chacune a la même
probabilité p d’être malade, et ce indépendamment les uns des autres (la maladie étant non contagieuse).
Donc

r “ PpU ě 1q “ 1 ´ PpU “ 0q “ 1 ´ p1 ´ pqn.

Comme chaque groupe a la même probabilité r “ 1 ´ p1 ´ pqn d’être positif, et que l’on suppose que chaque
personne est malade indépendamment les uns des autres, donc que chaque groupe est positif indépendamment les
uns des autres, X suit une loi

Bpg, rq .

2) On a
Y “ g ` nX,

et donc par linéarité de l’espérance finie, comme X et la constante g ont une espérance finie, on obtient que Y a
aussi une espérance finie, et

EpY q “ g ` nEpXq “ g ` ngr “ g ` ng
`

1 ´ p1 ´ pqn
˘

“ N

ˆ

1

n
` 1 ´ p1 ´ pqn

˙

.

On sait que X a une variance, donc par le cours, Y aussi, et

VpY q “ n2VpXq “ n2g
`

1 ´ p1 ´ pqn
˘

p1 ´ pqn “ Nn
`

1 ´ p1 ´ pqn
˘

p1 ´ pqn .

3) Avec la méthode II, on fait donc en moyenne

N

ˆ

1

n
` 1 ´ p1 ´ pqn

˙

« 196

analyses (avec un écart-type d’environ
b

Nn
`

1 ´ p1 ´ pqn
˘

p1 ´ pqn « 29).
Avec la méthode I, on en fait 1000...

Remarque.

1. Ce procédé, nommé « parcours d’arborescence », était déjà mis en œuvre par l’armée américaine lors de
la Seconde Guerre mondiale afin de détecter les malades (IST en l’occurrence) parmi les troupes - chaque
analyse coûtait quelques dollars. La méthode utilisée a été la suivante : on teste d’abord un mélange du sang
de tous les soldats. Quand le résultat est positif (il y a un malade dans les rangs), on divise les effectifs en
deux groupes sur le sang desquels on réitère l’opération, et encore avec le groupe où le test est positif, et
ainsi de suite jusqu’à isoler les soldats malades. (Réf. Dossier Pour la Science, n°66, janvier-mars 2010, p.36).

2. L’espérance de gain du laboratoire, qui, de toutes façons, fait payer 1000 tests, est maximum. Le nombre
moyen de tests gagnés est 1000 ´ 196 “ 804, soit un gain moyen de près de 80%.
Un tel procédé a été interdit par la loi : quiconque demande un test à un laboratoire a droit à un test, et pas
à 20% d’un test !

3
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3. Une étude de la fonction x ÞÑ N
`

1
x ` 1 ´ p1 ´ pqx

˘

(pour les valeurs de N et p considérées) montre que n “ 10
ou n “ 11 donne la valeur de EpXq la plus basse.

Exercice 3. 1a) Soit i P Nzt0, 1u. La variable aléatoire Xi ne peut prendre que deux valeurs, 0 ou 1, donc
la variable aléatoire Xi suit une loi de Bernoulli. Puis, la pièce est équilibrée, la probabilité d’avoir Pile est 1

2 ,
donc PpXi “ 1q “ 1

2 . Donc

Xi „ B
ˆ

1

2

˙

,

et donc

EpXiq “
1

2
, VpXiq “

1

4
.

Xi ne concerne que le tirage i, Xi`1 que le tirage i ` 1, et les tirages sont indépendants, donc Xi et Xi`1 sont
indépendants, et donc

CovpXi, Xi`1q “ 0 .

1b) Soit i P Nzt0, 1u. La variable aléatoire Yi ne peut prendre que deux valeurs, 0 ou 1, donc la variable aléatoire Yi
suit une loi de Bernoulli. Puis,

pYi “ 1q “ pXi´1 “ 1q X pXi “ 1q,

donc par indépendance des lancers,

PpYi “ 1q “ PpXi´1 “ 1qPpXi “ 1q,

et comme la pièce est équilibrée, la probabilité d’avoir Pile est 1
2 , d’où

PpYi “ 1q “
1

4
.

Donc

Yi „ B
ˆ

1

4

˙

,

et donc

EpYiq “
1

4
, VpYiq “

3

16
.

YiYi`1 ne peut prendre que 0 ou 1 comme valeurs (car le produit de 0 ou 1 par 0 ou 1 donnera 0 ou 1), donc la
variable aléatoire YiYi`1 suit une loi de Bernoulli. Puis,

pYiYi`1 “ 1q “ pYi “ 1qXpYi`1 “ 1q “
`

pXi´1 “ 1qXpXi “ 1q
˘

X
`

pXi “ 1qXpXi`1 “ 1q
˘

“ pXi´1 “ 1qXpXi “ 1qXpXi`1 “ 1q,

et comme les variables aléatoires pXi´1, Xi, Xi`1q sont indépendants (puisque les lancers le sont), on a

PpYiYi`1 “ 1q “
1

8
.

Donc YiYi`1 „ B
`

1
8

˘

, et EpYiYi`1q “ 1
8 . Alors,

CovpYi, Yi`1q “ EpYiYi`1q ´ EpYiqEpYi`1q “
1

8
´

1

4
ˆ

1

4
“

1

16
.

Remarque.

1. Ce serait bien de justifier que la covariance existe avant d’en faire le calcul ! C’est le cas ici car Yi et Yi`1 ont
une variance. On peut aussi dire que c’est le cas car YipΩq et Yi`1pΩq sont finis.

2. Pour le calcul, on peut aussi utiliser que Yi “ Xi´1Xi, et donc Yi`1 “ XiXi`1, pour avoir

EpYiYi`1q “ EpXi´1X
2
i Xi`1q “ EpXiqEpX2

i qEpXi`1q

4
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car pXi´1, Xi, Xi`1q sont indépendants, donc pXi´1, X
2
i , Xi`1q aussi (lemme des coalitions).

Puis, EpXi´1q “ EpXi`1q “ 1
2 , et

EpX2
i q “ VpXiq ` EpXiq

2 “
1

4
`

1

22
“

1

2

par la formule de Huygens (sinon, on peut utiliser le théorème de transfert : XipΩq “ t0, 1u, donc

EpX2
i q “ 02 ¨ PpXi “ 0q ` 12 ¨ PpXi “ 1q “

1

2

ou encore remarquer que X2
i “ Xi (car 02 ` 0 et 12 “ 1)), et on retrouve EpYiYi`1q “ 1

8 , puis

CovpYi, Yi`1q “ EpYiYi`1q ´ EpYiqEpYi`1q “
1

8
´

1

4
ˆ

1

4
“

1

16
.

Remarquons par contre (cela servira) que pour j P N avec j ě i ` 2, les variables aléatoires Yi et Yj sont
indépendantes (car Yi concerne les tirages i ´ 1 et i, alors que Yj concerne les tirages j ´ 1 et j, et il n’y en a pas
de commun, puisque j ´ 1 ě i ` 1), et donc

CovpYi, Yjq “ 0

si j ě i ` 2.
Par linéarité de l’espérance, comme les Yi ont une espérance finie, on a Sn qui a une espérance finie et

EpSnq “

n
ÿ

i“2

EpYiq “

n
ÿ

i“2

1

4
“

n ´ 1

4
.

Comme les Yi ont une variance, il en est de même de Sn (par addition), et on a

VpSnq “

n
ÿ

i“2

VpYiq ` 2
ÿ

2ďiăjďn

CovpYi, Yjq

“

n
ÿ

i“2

3

16
` 2

n´1
ÿ

i“2

n
ÿ

j“i`1

CovpYi, Yjq

“
3pn´1q

16 ` 2
n´1
ÿ

i“2

¨

˚

˚

˝

CovpYi, Yi`1q
looooooomooooooon

“ 1
16

`

n
ÿ

j“i`2

CovpYi, Yjq
looooomooooon

“0

˛

‹

‹

‚

“
3pn´1q

16 ` 2n´2
16 “

5n ´ 7

16

2) Quatre cas sont possibles :

• On a Xi “ Xi´1 “ 1, alors Yi “ 1 et Xi ` Xi´1 ´ 2Yi “ 0, puis Zi “ 0.

• On a Xi “ 1 et Xi´1 “ 0, alors Yi “ 0 et Xi ` Xi´1 ´ 2Yi “ 1, puis Zi “ 1.

• On a Xi “ 0 et Xi´1 “ 1, alors Yi “ 0 et Xi ` Xi´1 ´ 2Yi “ 1, puis Zi “ 1.

• On a Xi “ Xi´1 “ 0, alors Yi “ 0 et Xi ` Xi´1 ´ 2Yi “ 0, puis Zi “ 0.

Dans tous les cas, on a bien Zi “ Xi ` Xi´1 ´ 2Yi, ce qui justifie l’égalité de ces variables aléatoires.

Remarque. Comme X2
i “ Xi, X2

i´1 “ Xi´1 et Yi “ XiXi´1, on a Zi “ pXi ´ Xi´1q2. Mais cette écriture ne sert
pas spécialement ici.

‚ Pour le calcul de EpZiq et VpZiq :
Méthode 1 : Zi ne peut prendre que deux valeurs, 0 ou 1, donc Zi suit une loi de Bernoulli. Puis,

pZi “ 1q “
`

pXi´1 “ 0q X pXi “ 1q
˘

Y
`

pXi´1 “ 1q X pXi “ 0q
˘

,

5
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et comme l’union est disjointe (Xi ne peut pas valoir 0 et 1 en même temps), on a alors

PpZi “ 1q “ P
`

pXi´1 “ 0q X pXi “ 1q
˘

` P
`

pXi´1 “ 1q X pXi “ 0q
˘

.

Comme les lancers sont indépendants, on a alors

PpZi “ 1q “ PpXi´1 “ 0qPpXi “ 1q ` PpXi´1 “ 1qPpXi “ 1q “
1

2
.

Donc Zi „ B
`

1
2

˘

, et donc

EpZiq “
1

2

(que l’on aurait pu retrouver à partir de l’égalité Zi “ Xi ` Xi´1 ´ 2Yi et la linéarité de l’espérance), puis

VpZiq “
1

4
.

Méthode 2 : on n’est pas obligé de passer par ce calcul : ZipΩq Ă t0, 1u, donc Zi suit une loi de Bernoulli. Son
paramètre est PpZi “ 1q, mais c’est aussi EpZiq. Or, Xi, Xi´1 et Yi ont une espérance finie, donc par linéarité de
l’espérance (on retrouve que Zi en a une aussi et)

EpZiq “ EpXiq ` EpXi´1q ´ 2EpYiq “
1

2
`

1

2
´ 2

1

4
“

1

2
,

et donc Zi „ B
`

1
2

˘

. Donc

VpZiq “
1

4
.

Méthode 3 : on a Zi “ Xi ` Xi´1 ´ 2Yi, donc par linéarité de l’espérance, on obtient

EpZiq “ EpXiq ` EpXi´1q ´ 2EpYiq “
1

2
`

1

2
´ 2

1

4
“

1

2
.

Comme ZipΩq Ă t0, 1u et que 02 “ 0, 12 “ 1, on a Z2
i “ Zi, donc la formule de Huygens donne

VpZiq “ EpZ2
i q ´ EpZiq

2 “ EpZiq ´ EpZiq
2 “

1

2
´ 2

1

4
“

1

4
.

Méthode 4 : Pour le calcul de VpZiq (une fois que l’on a remarqué que EpZiq “ 1
2), on peut utiliser :

VpZiq “ VpXi ` Xi´1 ´ 2Yiq “ VpXiq ` VpXi´1q ` V
`

´ 2Yi
˘

` 2CovpXi, Xi`1q
looooooomooooooon

“0

`2CovpXi,´2Yiq ` 2CovpXi´1,´2Yiq

“ 1
4 ` 1

4 ` p´2q2VpYiq ´ 4CovpXi, Yiq ´ 4CovpXi´1, Yiq

Puis,

CovpXi´1, Yiq “ E
`

Xi´1Yi
loomoon

“X2
i´1Xi

˘

´ EpXi´1qEpYiq “ E
`

X2
i´1Xiq ´

1

2
ˆ

1

4
“ EpX2

i´1qEpXiq ´
1

8

car les variables Xi et Xi´1 sont indépendantes (donc X2
i´1 et Xi aussi). Et donc, par la formule de König-Huygens,

CovpXi´1, Yiq “
`

VpXi´1q ` EpXi´1q2
˘

EpXiq ´
1

8
“

ˆ

1

4
`

1

22

˙

1

2
´

1

8
“

1

8
.

De même,

CovpYi, Xiq “
1

8
.

Donc, en reportant,

VpZiq “
1

2
` 4

3

16
´ 4

1

8
´ 4

1

8
“

1

4
.

‚ Pour le calcul de CovpZi, Zi`1q :

6
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Méthode 1 : Par bilinéarité,

CovpZi, Zi`1q “ Cov
`

Xi ` Xi´1 ´ 2Yi, Xi`1 ` Xi ´ 2Yi`1

˘

“ CovpXi, Xi`1q
looooooomooooooon

“0

` CovpXi, Xiq
loooooomoooooon

“VpXiq“ 1
4

´2CovpXi, Yi`1q
looooooomooooooon

“ 1
8

` CovpXi´1, Xi`1q
looooooooomooooooooon

“0

` CovpXi´1, Xiq
looooooomooooooon

“0

´2CovpXi´1, Yi`1q
looooooooomooooooooon

“0

´2CovpYi, Xi`1q
looooooomooooooon

“0

´2CovpYi, Xiq
looooomooooon

“ 1
8

`4CovpYi, Yi`1q
looooooomooooooon

“ 1
16

où les 0 proviennent de ce que l’on prend la covariance de deux variables aléatoires indépendantes (car elles
concernent des tirages différents).
Donc

CovpZi, Zi`1q “
1

4
´

1

4
´

1

4
`

1

4
“ 0 .

Méthode 2 : ce n’est pas surprenant, car on peut montrer que Zi et Zi`1 sont indépendants.
Par exemple,

pZi “ 0q X pZi`1 “ 1q “
`

pXi´1 “ 0q X pXi “ 0q X pXi`1 “ 1q
˘

Y
`

pXi´1 “ 1q X pXi “ 1q X pXi`1 “ 0q
˘

est de probabilité
1

4
“ PpZi “ 0qPpZi`1 “ 1q,

et on fait de même pour les trois autres probabilités (on peut sinon faire comme dans la remarque qui suit). On
en déduit bien alors CovpZi, Zi`1q “ 0.
Méthode 3 : on passe par la loi du couple pZi, Zi`1q, puis le théorème de transfert :

pZi “ 1q X pZi`1 “ 1q “
`

pXi´1 “ 0q X pXi “ 1q X pXi`1 “ 0q
˘

Y
`

pXi´1 “ 1q X pXi “ 0q X pXi`1 “ 1q
˘

est de probabilité 1
4 (on a une union de deux évènements incompatibles, et chacun de ces deux évènements est une

intersection de trois évènements indépendants).
On a alors la loi de pZi, Zi`1q qui s’écrit (comme ZipΩq Ă t0, 1u et Zi`1pΩq Ă t0, 1u) :

ZizZi`1 0 1

0 a b

1 c 1
4

Remarque. Sans plus de calcul, on peut déterminer a, b et c, car on a la loi de Zi et Zi`1 : on a

1

2
“ PpZi “ 1q “ c `

1

4
, donc c “

1

4
.

Puis,
1

2
“ PpZi`1 “ 1q “ b `

1

4
, donc b “

1

4
.

Et enfin,
1

2
“ PpZi “ 0q “ a ` b

(ou bien 1
2 “ PpZi`1 “ 0q “ a ` c), et donc

a “
1

4
,

mais on ne s’en servira pas dans cette méthode (remarquons aussi que de là, l’indépendance est directe).

Le théorème de transfert (qui s’applique car ZipΩq et Zi`1pΩq sont finis) donne :

EpZiZi`1q “ 0 ˆ 0 ˆ a ` 0 ˆ 1 ˆ b ` 1 ˆ 0 ˆ c ` 1 ˆ 1 ˆ
1

4
“

1

4

puis

CovpZi, Zi`1q “ EpZiZi`1q ´ EpZiqEpZi`1q “
1

4
´

1

2
ˆ

1

2
“ 0.

7
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‚ Enfin, pour tout j P N, si j ě i` 2, alors les variables aléatoires Zi et Zj sont indépendantes, car ne concernent
pas les mêmes tirages, donc CovpZi, Zjq “ 0.
‚ Pour finir, par linéarité de l’espérance, puisque les Zi ont une espérance finie, Tn a une espérance finie, et

EpTnq “

n
ÿ

i“2

EpZiq “
n ´ 1

2
.

Et, comme les Zi ont une variance, Tn a une variance, et

VpTnq “

n
ÿ

i“2

VpZiq ` 2
ÿ

2ďiăjďn

CovpZi, Zjq
looooomooooon

“0

“
n ´ 1

4
.

Exercice 4. 1) X suit une loi binomiale Bpn, pq, donc XpΩq “ rr0, nss, en particulier X ě 0, donc Y est bien
définie.
X est à image finie, donc Y aussi, donc Y a une espérance finie, et on peut utiliser le théorème de transfert :

comme XpΩq “ rr0, nss (c’est important de le savoir, cela donne sur quoi on somme !),

EpY q “

n
ÿ

k“0

1

1 ` k
PpX “ kq

“

n
ÿ

k“0

1

1 ` k

ˆ

n

k

˙

pkp1 ´ pqn´k

“

n
ÿ

k“0

1

n ` 1

ˆ

n ` 1

k ` 1

˙

pkp1 ´ pqn´k

“
j“k`1

1
n`1

n`1
ÿ

j“1

ˆ

n ` 1

j

˙

pj´1p1 ´ pqn`1´j

“
binôme de Newton

1
ppn`1q

´

`

p ` p1 ´ pq
˘n`1

´ p1 ´ pqn`1
¯

“
1 ´ p1 ´ pqn`1

ppn ` 1q

2) X est à image finie, donc Z aussi, donc Z a une espérance finie, et on peut utiliser le théorème de transfert :
comme XpΩq “ rr0, nss,

EpZq “

n
ÿ

k“0

AkPpX “ kq “

n
ÿ

k“0

Ak

ˆ

n

k

˙

pkp1 ´ pqn´k “

n
ÿ

k“0

pApqkp1 ´ pqn´k “ pAp ` 1 ´ pqn

(toujours par le binôme de Newton).

Exercice 5. Remarquons déjà que
`

n, pqn
˘

nPN définit bien la loi d’une variable aléatoire (grâce à un théorème du
cours, car N est dénombrable, pqn ě 0 pour tout n P N, et par somme géométrique, la série numérique

ÿ

nPN
pqn

converge de somme p
1´q “ 1 puisque q Ps ´ 1, 1r).

Puis, XpΩq “ N étant dénombrable, le théorème de transfert (appliqué avec la fonction

f : x P R ÞÑ x2 P R,

bien défini sur XpΩq) donne que X2 “ fpXq a une espérance finie si et seulement si la famille
`

fpnqPpX “ nq
˘

nPN
est sommable, donc si et seulement si la série numérique

ÿ

nPN
fpnqPpX “ nq “

ÿ

nPN
n2PpX “ nq “

ÿ

nPN
n2pqn

converge absolument.

8
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Remarque. Comme c’est une série à termes positifs, converge suffit.

Enfin, n2pqn
1
n2

“ n4pqn ÝÑ
nÑ`8

0 par croissance comparée, puisque q Ps ´ 1, 1r. Donc

n2pqn “ o
nÑ`8

ˆ

1

n2

˙

.

Or, la série numérique
ř

nPN˚
1
n2 est une série numérique convergente (Riemann avec 2 ą 1) et à termes positifs.

Le critère de domination des séries à termes positifs permet alors de conclure que la série numérique
ÿ

nPN
n2pqn

converge absolument.

Remarque. On peut aussi montrer ceci à partir du critère de D’Alembert : pour tout n P N˚, on a n2pqn ‰ 0, et
ˇ

ˇ

ˇ

ˇ

pn ` 1q2pqn`1

n2pqn

ˇ

ˇ

ˇ

ˇ

“

ˆ

1 `
1

n

˙2

|q| ÝÑ
nÑ`8

|q| ă 1,

donc la série numérique
ÿ

nPN
n2pqn converge absolument.

Enfin, un élève a eu l’idée de faire ainsi :

n2pqn „
nÑ`8

pq2npn ´ 1qqn´2,

or la série numérique
ÿ

ně2

npn ´ 1qqn´2 converge absolument (en tant que série géométrique dérivée deux fois,

de raison q avec q Ps ´ 1, 1r), donc par critère d’équivalence des séries à termes positifs, on a bien que série
numérique

ÿ

nPN
n2pqn converge absolument.

Donc X2 a une espérance finie, et (comme 1 ´ q “ p),

EpX2q “

8
ÿ

n“0

n2pqn

“ 0 `

8
ÿ

n“1

n
`

pn ´ 1q ` 1
˘

pqn

“ 0 ` 0 ` pq2
8
ÿ

n“2

npn ´ 1qqn´2 ` pq
8
ÿ

n“1

nqn´1

“ pq2 2
p1´qq3

` pq 1
p1´qq2

“ pq2 2
p3

` pq 1
p2

“
2q2`pq

p2

“
qp2q`pq

p2
“

p1 ´ pqp2 ´ pq

p2

car q Ps ´ 1, 1r, et car la série géométrique est une série entière de rayon 1, donc sa somme est dérivable terme à

terme sur s ´ 1, 1r (donc, en dérivant une, puis deux fois la fonction x ÞÑ

8
ÿ

n“0

xn “
1

1 ´ x
sur s ´ 1, 1r, on a

8
ÿ

n“1

nxn´1 “

ˆ

1

1 ´ x

˙1

“
1

p1 ´ xq2
et

8
ÿ

n“2

npn ´ 1qxn´2 “

ˆ

1

1 ´ x

˙2

“
2

p1 ´ xq3

pour x Ps ´ 1, 1r).
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Exercice 6. Tout d’abord, S est une variable aléatoire discrète à valeurs dans R et cos est une fonction définie
sur R, donc cospSq est une variable aléatoire discrète. Puis,

ˇ

ˇ cospSq
ˇ

ˇ ď 1,

et la variable aléatoire constante 1 a une espérance finie, donc cospSq aussi. De même pour cospT q et cospS ` T q,
puis pour sinpSq et sinpT q, puis pour cospSq cospT q et sinpSq sinpT q.
Puis,

cospS ` T q “ cospSq cospT q ´ sinpSq sinpT q.

Alors, par linéarité de l’espérance finie,

E
`

cospS ` T q
˘

“ E
`

cospSq cospT q
˘

´ E
`

sinpSq sinpT q
˘

.

Puis, S et T sont indépendantes, donc toute fonction de S est indépendante avec toute fonction de T . Donc cospSq

et cospT q sont indépendantes, et comme de plus ces deux variables ont une espérance, on a alors

E
`

cospSq cospT q
˘

“ E
`

cospSq
˘

E
`

cospT q
˘

.

De même,
E
`

sinpSq sinpT q
˘

“ E
`

sinpSq
˘

E
`

sinpT q
˘

.

Enfin, T et ´T ont même loi, donc sinpT q et sinp´T q aussi. Or, la fonction sin est impaire, donc sinp´T q “ ´ sinpT q.
Donc sinpT q et ´ sinpT q ont même loi, donc même espérance, donc par linéarité de l’espérance finie,

E
`

sinpT q
˘

“ E
`

´ sinpT q
˘

“ ´E
`

sinpT q
˘

.

Par conséquent,
E
`

sinpT q
˘

“ 0.

En mettant tout bout à bout, on a bien

E
`

cospS ` T q
˘

“ E
`

cospSq
˘

E
`

cospT q
˘

.

Exercice 7. 1) N2 est dénombrable, et pour tout pi, jq P N2, 1
2i`1j!

ě 0. Le théorème de Fubini (version famille
dans r0,`8s) donne alors

ÿ

pi,jqPN2

1

2i`1j!
“

8
ÿ

j“0

8
ÿ

i“0

1

2i`1j!
“

8
ÿ

j“0

1

j!

1

2

8
ÿ

i“0

1

2i
“

8
ÿ

j“0

1

j!

1

2

1

1 ´ 1
2

“

8
ÿ

j“0

1

j!
“

8
ÿ

j“0

1j

j!
“ e1,

en reconnaissant une série géométrique de raison 1
2 (donc convergente car 1

2 Ps ´ 1, 1r), puis une série exponentielle
(donc convergente). Par conséquent,

ÿ

pi,jqPN2

PpX “ i, Y “ jq “ αe.

Or, comme N2 est dénombrable, la famille
´

α
2i`1j!

¯

pi,jqPN2
est une distribution de probabilité si et seulement si

ÿ

pi,jqPN2

PpX “ i, Y “ jq “ 1 et @pi, jq P N2,
α

2i`1j!
ě 0, soit α ě 0.

Donc

α “
1

e
“ e´1

convient (la somme fait alors bien 1, et α ě 0).
2) ‚ On a, par définition, XpΩq Ă N et Y pΩq Ă N, et N est bien sûr au plus dénombrable.
‚ En particulier,

`

pX “ iq
˘

iPN est un système complet d’évènements. La formule des probabilités totales donne
alors, pour tout j P N,

PpY “ jq “
ÿ

iPN
PpX “ i, Y “ jq “

8
ÿ

i“0

α

2i`1j!
“

α

j!2

8
ÿ

i“0

1

2i
“

α

j!2

1

1 ´ 1
2

“
α

j!
,

en reconnaissant une série géométrique de raison 1
2 (donc convergente car 1

2 Ps ´ 1, 1r). Donc, pour tout j P N,

PpY “ jq “
e´1

j!
.

10
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Remarque. On a alors, pour tout j P N, PpY “ jq ą 0, donc pY “ jq ‰ H, donc j P Y pΩq. Donc N Ă Y pΩq,
puis Y pΩq “ N .

‚ De même,
`

pY “ jq
˘

jPN est un système complet d’évènements. La formule des probabilités totales donne alors,
pour tout i P N,

PpX “ iq “
ÿ

jPN
PpX “ i, Y “ jq “

8
ÿ

j“0

α

2i`1j!
“

α

2i`1

8
ÿ

j“0

1j

j!
“

α

2i`1
e1,

en reconnaissant une série exponentielle. Puis, αe1 “ 1, donc pour tout i P N,

PpX “ iq “
1

2i`1
.

Remarque. On a alors, pour tout i P N, PpX “ iq ą 0, donc pX “ iq ‰ H, donc i P XpΩq. Donc N Ă XpΩq,
puis XpΩq “ N .

3a) ‚ Pour les 3/2 : On a XpΩq Ă N (on a même l’égalité, mais on n’en a pas besoin), N est (au plus) dénombrable,
la famille

`

nPpX “ nq
˘

nPN est à termes positifs, et est sommable car on reconnaît le terme général d’une série
géométrique dérivée de raison 1

2 avec 1
2 Ps ´ 1, 1r (donc on sait que cette série converge absolument). Donc X a

une espérance finie, et

EpXq “

8
ÿ

n“0

nPpX “ nq “

8
ÿ

n“0

n
1

2n`1
“ 0 `

1

4

8
ÿ

n“1

n
1

2n´1
“

1

4

1
`

1 ´ 1
2

˘2 “ 1 .

On a XpΩq Ă N, N est (au plus) dénombrable, la famille
`

npn ´ 1qPpX “ nq
˘

nPN est à termes positifs, et est
sommable car on reconnaît le terme général d’une série géométrique dérivée deux fois de raison 1

2 avec 1
2 Ps ´ 1, 1r

(donc on sait que cette série converge absolument). Donc le théorème de transfert s’applique, et donne que XpX´1q

a une espérance finie, et

E
`

XpX ´ 1q
˘

“

8
ÿ

n“0

npn ´ 1qPpX “ nq “

8
ÿ

n“0

npn ´ 1q
1

2n`1
“ 0 ` 0 `

1

8

8
ÿ

n“2

npn ´ 1q
1

2n´2
“

1

8

2
`

1 ´ 1
2

˘3 “ 2.

Puis,
X2 “ XpX ´ 1q ` X,

or X et XpX ´ 1q ont une espérance finie, donc par linéarité de l’espérance finie, X2 aussi, donc X a une variance,
et

EpX2q “ E
`

XpX ´ 1q
˘

` EpXq “ 2 ` 1 “ 3.

La formule de Huygens donne alors

VpXq “ EpX2q ´ EpXq2 “ 3 ´ 12 “ 2 .

‚ Pour les 5/2 : On a XpΩq “ N, donc en notant Z “ 1 ` X, on a ZpΩq “ N˚. Puis, pour tout n P N˚,
comme n ´ 1 P N,

PpZ “ nq “ Pp1 ` X “ nq “ PpX “ n ´ 1q “
1

2pn´1q`1
“

1

2

ˆ

1 ´
1

2

˙n´1

.

Donc Z suit une loi géométrique de paramètre 1
2 :

Z „ G
ˆ

1

2

˙

.

Par conséquent, Z a une espérance finie et une variance, et

EpZq “
1
1
2

“ 2, VpZq “
1 ´ 1

2
`

1
2

˘2 “ 2.
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Puis, X “ Z ´ 1, donc par linéarité de l’espérance finie, X a une espérance finie, et

EpXq “ EpZq ´ 1 “ 2 ´ 1 “ 1 ,

et X a une variance, qui vaut
VpXq “ VpZq “ 2 .

3b) ‚ Pour les 3/2 : On a Y pΩq Ă N, N est (au plus) dénombrable, la famille
`

nPpY “ nq
˘

nPN est à termes positifs.
Pour tout n P N,

nPpY “ nq “
n

n!
e´1 “

#

0 si n “ 0
1

pn´1q!e
´1 si n P N˚

,

donc la famille
`

nPpY “ nq
˘

nPN est sommable car on reconnaît le terme général d’une série exponentielle (donc on
sait que cette série converge absolument), à un décalage d’indice près. Donc Y a une espérance finie, et

EpY q “

8
ÿ

n“0

nPpY “ nq “ 0 `

8
ÿ

n“1

1

pn ´ 1q!
e´1 “

k“n´1
e´1

8
ÿ

k“0

1k

k!
“ e´1e1 “ 1 .

On a Y pΩq Ă N, N est (au plus) dénombrable, la famille
`

npn ´ 1qPpX “ nq
˘

nPN est à termes positifs. Pour
tout n P N,

npn ´ 1qPpY “ nq “
npn ´ 1q

n!
e´1 “

#

0 si n “ 0 ou n “ 1
1

pn´2q!e
´1 si n P N avec n ě 2

,

donc la famille
`

npn ´ 1qPpY “ nq
˘

nPN est sommable car on reconnaît le terme général d’une série exponentielle
(donc on sait que cette série converge absolument), à un décalage d’indice près. Donc le théorème de transfert
s’applique, et donne que Y pY ´ 1q a une espérance finie, et

E
`

Y pY ´ 1q
˘

“

8
ÿ

n“0

npn ´ 1qPpY “ nq “ 0 ` 0 `

8
ÿ

n“2

1

pn ´ 2q!
e´1 “

k“n´2
e´1

8
ÿ

k“0

1k

k!
“ e´1e1 “ 1.

Puis,
Y 2 “ Y pY ´ 1q ` Y,

or Y et Y pY ´ 1q ont une espérance finie, donc par linéarité de l’espérance finie, Y 2 aussi, donc Y a une variance,
et

EpY 2q “ E
`

Y pY ´ 1q
˘

` EpY q “ 1 ` 1 “ 2.

La formule de Huygens donne alors

VpY q “ EpY 2q ´ EpY q2 “ 2 ´ 12 “ 1 .

‚ Pour les 5/2 : On reconnaît que Y suit une loi de Poisson de paramètre 1 :

Y „ Pp1q,

donc
EpY q “ VpY q “ 1

4) On a XpΩq Ă N et Y pΩq Ă N. De plus, pour tout pi, jq P N2,

PpX “ iq “
1

2i`1
et PpY “ jq “

e´1

j!
,

donc

PpX “ iqPpY “ jq “
1

2i`1

e´1

j!
“ PpX “ i, Y “ jq.

Donc les variables aléatoires X et Y sont indépendantes.
5) On a

`

pX “ iq
˘

iPN qui est un système complet d’évènements (car XpΩq Ă N), donc la formule des probabilités
totales donne :

PpX “ Y q “

8
ÿ

i“0

PpX “ i,X “ Y q “

8
ÿ

i“0

PpX “ i, Y “ iq “

8
ÿ

i“0

1

2i`1

e´1

i!
“

e´1

2

8
ÿ

i“0

`

1
2

˘i

i!
“

e´1

2
e

1
2 “

1

2
?
e
.
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Exercice 8. ‚ L1pΩq Ă N˚, L2pΩq Ă N˚, et N˚ est (au plus) dénombrable, donc pN˚q2 aussi. Donc le théorème
de transfert donne que L1L2 a une espérance finie si et seulement si la famille

`

nkPpL1 “ n,L2 “ kq
˘

pn,kqPpN˚q2
“
`

nkpkqn`1 ` nkqkpn`1
˘

pn,kqPpN˚q2

est sommable, et dans ce cas EpL1L2q vaut la somme de cette famille :

EpL1L2q “
ÿ

pn,kqPpN˚q2

`

nkPpL1 “ n,L2 “ kq
˘

.

‚ La famille
`

kpk
˘

kPN˚ est sommable, car la série numérique
ÿ

kě1

kpk “ p
ÿ

kě1

kpk´1

est une série géométrique dérivée de raison p, donc absolument convergente car p Ps0, 1rĂs ´ 1, 1r. De plus, sa
somme vaut alors

ÿ

kPN˚

kpk “ p
1

p1 ´ pq2
“

p

q2
.

‚ La famille
`

nqn`1
˘

nPN˚ est sommable, car la série numérique
ÿ

ně1

nqn`1 “ q2
ÿ

ně1

nqn´1

est une série géométrique dérivée de raison q, donc absolument convergente car q Ps0, 1rĂs ´ 1, 1r. De plus, sa
somme vaut alors

ÿ

nPN˚

nqn`1 “ q2
1

p1 ´ qq2
“

q2

p2
.

‚ Par produit, on en déduit que la famille
`

knpkqn`1
˘

pn,kqPpN˚q2
est sommable, et sa somme vaut

ÿ

pn,kqPpN˚q2

knpkqn`1 “

˜

ÿ

kPN˚

kpk

¸˜

ÿ

nPN˚

nqn`1

¸

“
p

q2
q2

p2
“

1

p
.

‚ De même (en échangeant le rôle de p et q), la famille
`

nkqkpn`1
˘

pn,kqPpN˚q2
est sommable, et sa somme vaut

ÿ

pn,kqPpN˚q2

knqkpn`1 “

˜

ÿ

kPN˚

kqk

¸˜

ÿ

nPN˚

npn`1

¸

“
q

p2
p2

q2
“

1

q
.

‚ Par linéarité de la somme finie, on en déduit que la famille
`

nkPpL1 “ n,L2 “ kq
˘

pn,kqPpN˚q2
“
`

nkpkqn`1 ` nkqkpn`1
˘

pn,kqPpN˚q2

est sommable, donc que L1L2 a une espérance finie, et que

EpL1L2q “
ÿ

pn,kqPpN˚q2

knpkqn`1 `
ÿ

pn,kqPpN˚q2

knqkpn`1 “
1

p
`

1

q
“

1

pq

(car p ` q “ 1).

Exercice 9. 1) N et N ˆ N “ N2 sont dénombrables.
La famille

`

pp1 ´ pqi
˘

iPN est sommable car la série numérique
ÿ

iPN
ip1 ´ pqi

converge absolument (on reconnaît une série géométrique de raison 1´ p avec 1´ p Ps0, 1rĂs ´ 1, 1r, multipliée par
la constante p). Sa somme vaut alors

ÿ

iPN
pp1 ´ pqi “ p

1

1 ´ p1 ´ pq
“ 1.

13
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Pour la même raison, la famille
`

qp1 ´ qqj
˘

jPN est sommable de somme 1.
Par produit, on en déduit que la famille

`

pqp1 ´ pqip1 ´ qqj
˘

pi,jqPN2 est sommable, de somme

ÿ

pi,jqPN2

pqp1 ´ pqip1 ´ qqj “

˜

ÿ

iPN
pp1 ´ pqi

¸˜

ÿ

jPN
qp1 ´ qqj

¸

“ 12 “ 1.

Enfin, pour tout pi, jq P N2,
pqp1 ´ pqip1 ´ qqj ě 0

(car p P r0, 1s et q P r0, 1s).
Donc on peut bien définir une probabilité P sur

`

N2,PpN2q
˘

, en posant, pour tout pi, jq P N2,

P
`

pi, jq
˘

“ pqp1 ´ pqip1 ´ qqj .

Remarque. Elle est définie de manière unique par : pour tout A P PpN2q,

PpAq “
ÿ

pi,jqPA

P
`

pi, jq
˘

.

2a) Par définition, XpΩq “ Y pΩq “ N. Puis, pour tout pi, jq P N2,
`

X “ i, Y “ j
˘

“
␣

pi, jq
(

, donc

PpX “ i, Y “ jq “ pqp1 ´ pqip1 ´ qqj .

Comme Y pΩq Ă N,
`

pY “ jq
˘

jPN est un système complet d’évènements, et donc la formule des probabilités totales
donne, pour tout i P N,

PpX “ iq “

8
ÿ

j“0

PpX “ i, Y “ jq “

8
ÿ

j“0

pqp1 ´ pqip1 ´ qqj “ pp1 ´ pqi.

De même, pour tout j P N,
PpY “ jq “ qp1 ´ qqj .

2b) Comme Y pΩq Ă N,
`

pY “ jq
˘

jPN est un système complet d’évènements, et donc la formule des probabilités
totales donne

PpX “ Y q “

8
ÿ

j“0

P
`

pX “ Y q X pY “ jq
˘

“

8
ÿ

j“0

PpX “ j, Y “ jq “

8
ÿ

j“0

pq
`

p1 ´ pqp1 ´ qq
˘j

“
pq

1 ´ p1 ´ pqp1 ´ qq
.

3) Z est une fonction de pX,Y q : en posant

f : pi, jq P N2 ÞÑ

$

’

&

’

%

1 si i et j sont pairs
´1 si i et j sont impairs
0 si i et j sont de parités différentes

,

on a
Z “ fpX,Y q.

De plus, XpΩq Ă N, Y pΩq Ă N, donc pX,Y qpΩq Ă N2, et N2 est dénombrable. Donc, par le théorème de transfert, Z
a une espérance finie si et seulement si la famille

`

fpi, jqPpX “ i, Y “ jq
˘

pi,jqPN2 “
`

fpi, jqpqp1 ´ pqip1 ´ qqj
˘

pi,jqPN2

est sommable. Et dans ce cas, EpZq vaudra la somme de cette famille.
Or, pour tout pi, jq P N2,

ˇ

ˇfpi, jq
ˇ

ˇ ď 1, donc
ˇ

ˇfpi, jqPpX “ i, Y “ jq
ˇ

ˇ ď PpX “ i, Y “ jq,

et la famille
`

PpX “ i, Y “ jq
˘

pi,jqPN2 est sommable (par σ-additivité de P ). Donc, par croissance de la somme
(dans le cas des familles à termes dans r0,`8s), la famille

`

fpi, jqPpX “ i, Y “ jq
˘

pi,jqPN2 est sommable, donc Z

a une espérance finie.
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Remarque. On a aussi, plus simplement, |Z| ď 1 et 1 a une espérance finie, donc par inégalité, Z aussi.

De plus (toujours par le théorème de transfert), on a

EpZq “
ÿ

pi,jqPN2

fpi, jqPpX “ i, Y “ jq “
ÿ

pi,jqPN2

fpi, jqpqp1 ´ pqip1 ´ qqj .

Comme c’est la somme d’une famille à termes positifs, et que N2 est dénombrable, on peut utiliser le théorème de
sommation par paquets (on manipule la somme dans r0,`8s), avec la partition

N2 “
“

p2Nq ˆ p2Nq
‰

\
“

p2Nq ˆ p2N ` 1q
‰

\
“

p2N ` 1q ˆ p2Nq
‰

\
“

p2N ` 1q ˆ p2N ` 1q
‰

,

puis le théorème de Fubini. On a alors

EpZq “
sommation

par
paquets

ř

pi,jqPp2Nqˆp2Nq fpi, jqpqp1 ´ pqip1 ´ qqj `
ř

pi,jqPp2Nqˆp2N`1q fpi, jqpqp1 ´ pqip1 ´ qqj

`
ř

pi,jqPp2N`1qˆp2Nq fpi, jqpqp1 ´ pqip1 ´ qqj `
ř

pi,jqPp2N`1qˆp2N`1q fpi, jqpqp1 ´ pqip1 ´ qqj

“
Fubini

ř

iPN
i pair

ř

jPN
j pair

fpi, jqpqp1 ´ pqip1 ´ qqj `
ř

iPN
i pair

ř

jPN
j impair

fpi, jqpqp1 ´ pqip1 ´ qqj

`
ř

iPN
i impair

ř

jPN
j pair

fpi, jqpqp1 ´ pqip1 ´ qqj `
ř

iPN
j impair

ř

jPN
j impair

fpi, jqpqp1 ´ pqip1 ´ qqj

Puis, par définition de f , on a alors

EpZq “
ř

iPN
i “ 2k

ř

jPN
j “ 2ℓ

pqp1 ´ pqip1 ´ qqj `
ř

iPN
i pair

ř

jPN
j impair

0

`
ř

iPN
i impair

ř

jPN
j pair

0 `
ř

iPN
i “ 2k ` 1

ř

jPN
j “ 2ℓ ` 1

´pqp1 ´ pqip1 ´ qqj

“
ř8

k“0

ř8
ℓ“0 pqp1 ´ pq2kp1 ´ qq2ℓ ´

ř8
k“0

ř8
ℓ“0 pqp1 ´ pq2k`1p1 ´ qq2ℓ`1

“
`
ř8

k“0 pp1 ´ pq2k
˘ `

ř8
ℓ“0 qp1 ´ qq2ℓ

˘

´
`
ř8

k“0p1 ´ pqpp1 ´ pq2k
˘ `

ř8
ℓ“0p1 ´ qqqp1 ´ qq2ℓ

˘

“
p

1´p1´pq2
q

1´p1´qq2
´

pp1´pq

1´p1´pq2
qp1´qq

1´p1´qq2

“ 1
2´p

1
2´q ´

1´p
2´p

1´q
2´q “

p ` q ´ pq

p2 ´ pqp2 ´ qq

car 1 ´ p1 ´ pq2 “ 2p ´ p2 “ pp2 ´ pq et 1 ´ p1 ´ qq2 “ 2q ´ q2 “ qp2 ´ qq (et la troisième égalité provient juste du
produit de la somme de deux familles sommables).
4) On a |Z| ď 1, donc pour tout i P N,

ˇ

ˇZpi, iqP
`

pi, iq
˘ˇ

ˇ ď P
`

pi, iq
˘

.

Or, les évènements
␣

pi, iq
(

pour i P N sont deux à deux incompatibles, N est dénombrable, donc par σ-additivité,
la série numérique

ÿ

iPN
P
`

pi, iq
˘

converge, donc par critère de comparaison des séries à termes positifs, la série numérique
ÿ

iPN
Zpi, iqP

`

pi, iq
˘

converge absolument. Donc la famille
`

Zpi, iqPpi, iq
˘

iPN est sommable.
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Comme N est dénombrable et N “ p2Nq \ p2N ` 1q, le théorème de sommation par paquets donne alors
ř

iPN Zpi, iqP
`

pi, iq
˘

“
ř

iPN
i “ 2k pair

Zpi, iqP
`

pi, iq
˘

`
ř

iPN
i “ 2ℓ ` 1 impair

Zpi, iqP
`

pi, iq
˘

“
ř8

k“0 P
`

p2k, 2kq
˘

`
ř8

ℓ“0p´1qP
`

p2ℓ ` 1, 2ℓ ` 1q
˘

“
ř8

k“0 pqp1 ´ pq2kp1 ´ qq2k ´
ř8

ℓ“0 pqp1 ´ pq2k`1p1 ´ qq2ℓ`1

“
pq

1´p1´pq2p1´qq2
´

pqp1´pqp1´qq

1´p1´pq2p1´qq2

“ pq 1´p1´pqp1´qq
`

1´p1´pqp1´qq

˘`

1`p1´pqp1´qq

˘ “
pq

1 ` p1 ´ pqp1 ´ qq

Exercice 10. On a X1 ą 0 et X2 ą 0, donc U ą 0, donc on peut bien diviser par U .
1) ‹ Montrons que Y1 et Y2 suivent la même loi.
‚ Montrons que pX1, X2q suit la même loi que pX2, X1q : on a

X1pΩq ˆ X2pΩq “ X2pΩq ˆ X1pΩq

car X1 et X2 suivent la même loi (donc X1pΩq “ X2pΩq), et pour tout px, yq P X1pΩq ˆ X2pΩq,

P
`

pX1, X2q “ px, yq
˘

“ P
`

pX1 “ xq X pX2 “ yq
˘

“ PpX1 “ xqPpX2 “ yq “ PpX1 “ xqPpX1 “ yq,

en utilisant que X1 et X2 sont indépendants, puis que X2 suit la même loi que X1.
De même,

P
`

pX2, X1q “ px, yq
˘

“ P
`

pX2 “ xq X pX1 “ yq
˘

“ PpX2 “ xqPpX1 “ yq “ PpX1 “ xqPpX1 “ yq.

On a donc bien, pour tout px, yq P X1pΩq ˆ X2pΩq,

P
`

pX1, X2q “ px, yq
˘

“ P
`

pX2, X1q “ px, yq
˘

.

Donc pX1, X2q suit la même loi que pX2, X1q.
‚ Par conséquent, si on pose

f : px, yq P pR˚
`q2 ÞÑ

x

x ` y
P R,

comme on suppose X1pΩq Ă R˚
` et X2pΩq Ă R˚

`, on a

Y1 “ fpX1, X2q et Y2 “ fpX2, X1q,

et donc le cours permet de conclure que Y1 et Y2 suivent la même loi (ce sont la même fonction de deux variables
aléatoires qui suivent la même loi).
Démonstration plus élémentaire :
‚ Notons X1pΩq “ X2pΩq Ă txnunPN Ă R˚

`.
Soit x P R˚

`, alors la formule des probabilités totales appliquée avec le système complet d’évènements
`

pX1 “

xnq
˘

nPN (c’en est un car X1 est une variable aléatoire avec X1pΩq Ă txnunPN) donne :

PpY1 “ xq “

8
ÿ

n“0

P

ˆˆ

X1

U
“ x

˙

X pX1 “ xnq

˙

“

8
ÿ

n“0

P

ˆˆ

xn
xn ` X2

“ x

˙

X pX1 “ xnq

˙

“

8
ÿ

n“0

P
´´

X2 “
xn
x

´ xn

¯

X pX1 “ xnq

¯

“

8
ÿ

n“0

P
´

X2 “
xn
x

´ xn

¯

PpX1 “ xnq
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(la dernière égalité provenant de ce que X1 et X2 sont indépendantes).
‚ La formule des probabilités totales appliquée avec le système complet d’évènements

`

pX2 “ xnq
˘

nPN (c’en est
un car X2 est une variable aléatoire avec X2pΩq Ă txnunPN) donne

PpY2 “ xq “

8
ÿ

n“0

P

ˆˆ

X2

U
“ x

˙

X pX2 “ xnq

˙

“

8
ÿ

n“0

P

ˆˆ

xn
xn ` X1

“ x

˙

X pX2 “ xnq

˙

“

8
ÿ

n“0

P
´´

X1 “
xn
x

´ xn

¯

X pX2 “ xnq

¯

“

8
ÿ

n“0

P
´

X1 “
xn
x

´ xn

¯

PpX2 “ xnq

(la dernière égalité provenant de ce que X1 et X2 sont indépendantes).
‚ Comme X1 et X2 sont de même loi, on a

P
´

X1 “
xn
x

´ xn

¯

“ P
´

X2 “
xn
x

´ xn

¯

et PpX1 “ xnq “ PpX2 “ xnq

pour tout n P N et pour tout x P R˚
`. On en déduit

PpY1 “ xq “ PpY2 “ xq

pour tout x P R˚
`. Or,

Y1pΩq Ă R˚
` et Y2pΩq Ă R˚

`

(car X1 ą 0 et X2 ą 0), de plus Y1 et Y2 sont des fonctions de la variable aléatoire pX1, X2q, qui est discrète car X1

et X2 le sont, donc sont discrètes aussi. On en déduit bien que Y1 et Y2 suivent la même loi discrète.
‹ Montrons que, pour tout k P N, Y k

1 et Y k
2 a une espérance finie.

On a X1 ą 0 et X2 ą 0, donc X1 ` X2 ą X1 ą 0, donc 1 ą Y1 ą 0.
Ainsi, pour tout entier k P N, on a

0 “ 0k ď Y k
1 ď 1k “ 1, soit

ˇ

ˇY k
1

ˇ

ˇ ď 1.

Or, la variable aléatoire constante 1 a une espérance finie, donc par inégalité, Y k
1 aussi.

Comme Y2 suit la même loi que Y1, on a aussi Y k
2 qui a une espérance finie, et ce pour tout entier k P N.

‹ On a
Y1 ` Y2 “ 1,

donc par linéarité de l’espérance (et car Y1 et Y2 ont une espérance finie),

EpY1q ` EpY2q “ 1.

Comme Y1 et Y2 suivent la même loi, on a
EpY1q “ EpY2q.

Donc

EpY1q “ EpY2q “
1

2
.

2) ‹ Soit k P N. On a

Z “
T

U
“ Y1 ´ Y2.

Donc,
|Z| ď |Y1| ` |Y2| ď 2,

donc pour tout entier k P N,
ˇ

ˇ

ˇ
Zk

ˇ

ˇ

ˇ
“ |Z|

k
ď 2k.
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Or, la variable aléatoire constante 2k a une espérance finie, donc par inégalité, Zk a une espérance finie.
‹ Par linéarité de l’espérance,

E pZq “ EpY1 ´ Y2q “ EpY1q ´ EpY2q “ 0

(car Y1 et Y2 ont une espérance finie).
Puis, Y1 ` Y2 “ 1, donc

0 “ VpY1 ` Y2q “ VpY1q ` VpY2q ` 2CovpY1, Y2q

(la covariance existe car Y1 et Y2 ont une variance, puisqu’elles ont un moment d’ordre 2).
Puis,

V pZq “ VpY1 ´ Y2q “ VpY1q ` VpY2q ´ 2CovpY1, Y2q “ 2VpY1q ` 2VpY2q “ 4VpY1q

(car Y1 et Y2 suivent la même loi, donc VpY1q “ VpY2q).

Exercice 11. On sait donc que la famille
`

xPpX “ xq
˘

xPXpΩq
est sommable. Puis, pour tout x P XpΩq,

ˇ

ˇxPpX “ x|Aq
ˇ

ˇ “ |x|
P
`

A X pX “ xq
˘

PpAq
ď |x|

PpX “ xq

PpAq
“

1

PpAq
|x|PpX “ xq,

car
`

A X pX “ xq
˘

Ă pX “ xq, ce qui par croissance de la probabilité pour l’inclusion donne

P
`

A X pX “ xq
˘

ď PpX “ xq.

Or, 1
PpAq

est une constante, et la famille
`

|x|PpX “ xq
˘

xPXpΩq
est sommable puisque la famille

`

|x|PpX “ xq
˘

xPXpΩq

est sommable (c’est l’hypothèse « X a une espérance finie »).
Alors, par linéarité de la somme finie, la famille

´

1
PpAq

|x|PpX “ xq

¯

xPXpΩq
est sommable.

Donc, par inégalité, on en déduit que la famille
`

|x|PpX “ x|Aq
˘

xPXpΩq
est sommable, donc que la loi conditionnelle

de X sachant A possède une espérance finie.

Exercice 12. 1) Soit ω P Ω. Deux cas sont possibles :

• soit Upωq ą 0, et alors Bpωq “ 1, et donc

pUBqpωq “ Upωq ˆ Bpωq “ Upωq

et l’inégalité voulue est même une égalité,

• soit Upωq ď 0, et alors Bpωq “ 0, et donc

pUBqpωq “ Upωq ˆ Bpωq “ 0 ě Upωq.

Donc, pour tout ω P Ω, on a bien
pUBqpωq ě Upωq.

Donc UB ě U .
2) X a une variance, donc une espérance finie, donc (par addition avec une constante), U aussi et

EpUq “ e ´ EpXq ` EpXq “ e.

X a une variance, donc (par addition avec une constante), U aussi et

VpUq “ VpXq.

B suit une loi de Bernoulli, donc a une espérance finie et une variance, qui valent

EpUq “ PpU ą 0q, et VpUq “ PpU ą 0q
`

1 ´ PpU ą 0q
˘

.

U et B ont une variance, donc U2 et B2 ont une espérance finie, et la formule de Huygens donne alors

EpU2q “ VpUq ` EpUq2 “ VpXq ` e2, EpB2q “ VpBq ` EpBq2 “ PpU ą 0q.
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Remarque. Comme BpΩq Ă t0, 1u et que 02 “ 0, 12 “ 1, on a B2 “ B, et donc

EpB2q “ EpBq “ PpU ą 0q

directement.

Comme U2 et B2 ont une espérance finie, alors l’inégalité de Cauchy-Schwarz s’applique, et donne que UB a une
espérance finie, et que

EpUBq2 ď EpU2qEpB2q “
`

VpXq ` e2
˘

PpU ą 0q.

Puis, de la définition de U , on a

pU ą 0q “
`

e ´ X ` EpXq ą 0
˘

“
`

X ´ EpXq ă e
˘

.

Donc (comme VpXq ` e2 ě e2 ą 0, car une variance est positive),

P
`

X ´ EpXq ă e
˘

ě
EpUBq2

VpXq ` e2
.

Enfin, de la question 1, on a UB ě U , et UB et U ont une espérance finie, donc par croissance de l’espérance,

EpUBq ě EpUq “ e ą 0.

Par croissance de la fonction carrée sur R`, on a alors

EpUBq2 ě e2,

et donc en reportant,

P
`

X ´ EpXq ă e
˘

ě
EpUBq2

VpXq ` e2
ě

e2

VpXq ` e2
.

En passant au complémentaire, on a

P
`

X ´ EpXq ě e
˘

“ 1 ´ P
`

X ´ EpXq ă e
˘

ď 1 ´
e2

VpXq ` e2
“

VpXq

VpXq ` e2
.

3) On pose Y “ ´X, X a une variance donc Y aussi et VpY q “ VpXq. La question précédente donne alors (en
l’appliquant à Y au lieu de X) :

P
`

Y ´ EpY q ě e
˘

ď
VpY q

VpY q ` e2
“

VpXq

VpXq ` e2
.

Puis,
Y ´ EpY q ě e ô ´X ´ Ep´Xq ě e ô ´X ` EpXq ě e ô X ´ EpXq ď ´e,

donc
P
`

Y ´ EpY q ě e
˘

“ P
`

X ´ EpXq ď ´e
˘

,

et en reportant on a l’inégalité voulue.
4) ‚ Comme e ą 0, on a

ˇ

ˇX ´ EpXq
ˇ

ˇ ě e ô X ´ EpXq ě e ou X ´ EpXq ď ´e,

et donc en passant aux évènements,
`

|X ´ EpXq| ě e
˘

“
`

X ´ EpXq ě e
˘

Y
`

X ´ EpXq ď ´e
˘

.

Par sous-additivité de P , on a alors

P
`

|X ´ EpXq| ě e
˘

ď P
`

X ´ EpXq ě e
˘

` P
`

X ´ EpXq ď ´e
˘

ď
2VpXq

VpXq ` e2
.

19



Fauriel - PC - Mathématiques TD15 - Espérance et variance

‚ L’inégalité de Bienaymé-Tchebychev donne (puisque X a une variance) :

P
`

|X ´ EpXq| ě e
˘

ď
VpXq

e2
.

‚ Cherchons le signe de la différence de ces deux majorations :

2VpXq

VpXq ` e2
´

VpXq

e2
“

2e2VpXq ´ VpXq2 ´ e2VpXq

e2
`

VpXq ` e2
˘ “

VpXq

e2
`

VpXq ` e2
˘

`

e2 ´ VpXq
˘

,

cette expression est du signe de e2 ´ VpXq (car une variance est positive), donc la majoration trouvée dans cet
exercice est meilleure que celle de Bienaymé-Tchebychev si et seulement si

VpXq ě e2

(donc dès que e est « assez petit »).

Exercice 13.
Soit n P N et e ą 0. Remarquons d’abord que

`

|Yn ´ ℓ| ą e
˘

Ă
`

|Yn ´ ℓ| ě e
˘

, donc par croissance de la probabilité,

P
`

|Yn ´ ℓ| ą e
˘

ď P
`

|Yn ´ ℓ| ě e
˘

.

Puis, |Yn ´ ℓ| ě e ñ pYn ´ ℓq2 ě e2 (car e ą 0), donc on a l’inclusion d’évènements
`

|Yn ´ ℓ| ě e
˘

Ă
`

pYn ´ ℓq2 ě e2
˘

,

donc par croissance de la probabilité,

P
`

|Yn ´ ℓ| ě e
˘

ď P
`

pYn ´ ℓq2 ě e2
˘

(en fait, il y a égalité ici).
Puis, comme Yn a une variance, Yn ´ ℓ aussi et la formule de Huygens donne

E
`

pYn ´ ℓq2
˘

“ V
`

Yn ´ ℓ
˘

`
`

EpYn ´ ℓq
˘2

“ VpYnq `
`

EpYnq ´ ℓ
˘2
,

en utilisant la formule VpaX ` bq “ a2VpXq si X a une variance, et la linéarité de l’espérance (et le fait qu’une
constante ℓ a pour espérance elle-même). Donc l’inégalité de Markov (qui s’applique car pYn ´ ℓq2 est positive et
a une espérance finie, et car e2 ą 0) donne :

0 ď P
`

|Yn ´ ℓ| ą e
˘

ď P
`

pYn ´ ℓq2 ě e2
˘

ď
E
`

pYn ´ ℓq2
˘

e2
“

VpYnq `
`

EpYnq ´ ℓ
˘2

e2
ÝÑ

nÑ`8
0

et le théorème des gendarmes conclut.
Autre façon : fixons e ą 0. Soit n P N, par inégalité triangulaire,

|Yn ´ ℓ| “
ˇ

ˇYn ´ EpYnq ` EpYnq ´ ℓ
ˇ

ˇ ď
ˇ

ˇYn ´ EpYnq
ˇ

ˇ `
ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ,

donc
ˇ

ˇYn ´ EpYnq
ˇ

ˇ ă e ´
ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ ñ |Yn ´ ℓ| ď
ˇ

ˇYn ´ EpYnq
ˇ

ˇ `
ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ ă e,

et donc en contraposant,
|Yn ´ ℓ| ě e ñ

ˇ

ˇYn ´ EpYnq
ˇ

ˇ ě e ´
ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ,

ce qui donne l’inclusion d’évènements
`

|Yn ´ ℓ| ě e
˘

Ă
`

|Yn ´ EpYnq| ě e ´ |EpYnq ´ ℓ|
˘

,

puis par croissance de la probabilité :

P
`

|Yn ´ ℓ| ě e
˘

ď P
`

|Yn ´ EpYnq| ě e ´ |EpYnq ´ ℓ|
˘

.
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Puis, pour n assez grand on aura
ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ ď e
2 , donc e ´

ˇ

ˇEpYnq ´ ℓ
ˇ

ˇ ě e
2 , ce qui donne l’inclusion

´

|Yn ´ EpYnq| ě e ´ |EpYnq ´ ℓ|
¯

Ă

´

|Yn ´ EpYnq| ě
e

2

¯

,

puis par croissance de la probabilité :

P
`

|Yn ´ ℓ| ě e
˘

ď P
´

|Yn ´ EpYnq| ě e ´ |EpYnq ´ ℓ|
¯

ď P
´

|Yn ´ EpYnq| ě
e

2

¯

.

L’inégalité de Bienaymé-Tchebychev donne alors :

0 ď P
`

|Yn´ℓ| ą e
˘

ď P
`

|Yn´ℓ| ě e
˘

ď P
´

|Yn´EpYnq| ě e´|EpYnq´ℓ|
¯

ď P
´

|Yn ´ EpYnq| ě
e

2

¯

ď
VpYnq
`

e
2

˘2 ÝÑ
nÑ`8

0

et le théorème des gendarmes conclut.

Exercice 14. ‚ X et Y ont chacune une espérance finie, donc par linéarité de l’espérance, X ´ Y aussi et

EpX ´ Y q “ EpXq ´ EpY q.

X et X ´Y sont indépendantes, X et X ´Y ont une espérance finie, donc XpX ´Y q a aussi une espérance finie,
et de plus on a l’égalité

E
`

XpX ´ Y q
˘

“ EpXqEpX ´ Y q.

De même, Y pX ´ Y q a une espérance finie et

E
`

Y pX ´ Y q
˘

“ EpY qEpX ´ Y q.

Donc, par linéarité de l’espérance,

XpX ´ Y q ´ Y pX ´ Y q “ pX ´ Y q2

a une espérance finie, et
E
`

pX ´ Y q2
˘

“ E
`

XpX ´ Y q
˘

´ E
`

Y pX ´ Y q
˘

“ EpXqEpX ´ Y q ´ EpY qEpX ´ Y q

“
`

EpXq ´ EpY q
˘

EpX ´ Y q

“
`

EpX ´ Y q
˘2

Donc, la formule de Huygens donne que X ´ Y a une variance, et

VpX ´ Y q “ E
`

pX ´ Y q2
˘

´
`

EpX ´ Y q
˘2

“ 0.

‚ L’inégalité de Bienaymé-Tchebychev donne alors, pour tout e ą 0,

0 ď P
`

|X ´ Y ´ EpX ´ Y q| ě e
˘

ď
VpX ´ Y q

e2
“ 0,

soit pour tout e ą 0,
P
`

|X ´ Y ´ EpX ´ Y q| ě e
˘

“ 0.

Notons alors pour n P N˚,

En “

ˆ

ˇ

ˇX ´ Y ´ EpX ´ Y q
ˇ

ˇ ě
1

n

˙

.

On a
ď

nPN˚

En “
`
ˇ

ˇX ´ Y ´ EpX ´ Y q
ˇ

ˇ ą 0
˘

“
`

X ´ Y ‰ EpX ´ Y q
˘

,

et comme pour tout n P N˚, on a
En Ă En`1
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(car 1
n ě 1

n`1), par continuité croissante de P , on a

P

˜

ď

nPN˚

En

¸

“ lim
nÑ`8

PpEnq “ lim
nÑ`8

0 “ 0

(mais on peut aussi dire P

ˆ

Ť

nPN˚

En

˙

ď

8
ÿ

n“1

PpEnq “

8
ÿ

n“1

0 “ 0). Par conséquent,

1 “ P
`

X ´ Y ‰ EpX ´ Y q
˘

“ P
`

X ´ Y “ EpX ´ Y q
˘

,

ce qui conclut.

Exercice 15. La fonction génératrice GX de X est

GX : t ÞÑ pt ` p1 ´ pq

et celle de Y est
GY : t ÞÑ pt ` p1 ´ pq.

Comme X et Y sont indépendants, la fonction génératrice GZ de Z “ X ` Y est

GZ : t ÞÑ GXptq ˆ GY ptq “
`

pt ` p1 ´ pq
˘2

“ p2t2 ` 2pp1 ´ pqt ` p1 ´ pq2.

On en déduit

ZpΩq “ t0, 1, 2u , PpZ “ 0q “ p1 ´ pq2 , PpZ “ 1q “ 2pp1 ´ pq , PpZ “ 2q “ p2 .

Remarque. On peut aussi l’obtenir ainsi (pour rester dans le cadre de ce TD) : de manière évidente, on a

ZpΩq Ă t0, 1, 2u,

puis pour k P t0, 1, 2u, la formule des probabilités totales appliquée avec le système complet d’évènements
`

pX “

0q, pX “ 1q
˘

donne :

PpZ “ kq “ P
`

pX ` Y “ kq X pX “ 0q
˘

` P
`

pX ` Y “ kq X pX “ 1q
˘

“ P
`

pY “ kq X pX “ 0q
˘

` P
`

pY “ k ´ 1q X pX “ 1q
˘

En utilisant que X et Y sont indépendants, on a alors

PpZ “ kq “ PpY “ kqPpX “ 0q ` PpY “ k ´ 1qPpX “ 1q

“ p1 ´ pqPpY “ kq ` pPpY “ k ´ 1q

Il n’y a plus qu’à calculer pour k “ 0, puis k “ 1, puis k “ 2, sachant

PpY “ ´1q “ 0, PpY “ 0q “ 1 ´ p, PpY “ 1q “ p, PpY “ 2q “ 0.

On retrouve les valeurs annoncées précédemment.

Par linéarité de l’espérance, comme X et Y ont une espérance finie (car de loi de Bernoulli), Z en a une aussi, et

EpZq “ EpXq ` EpY q “ 2p .

Comme X et Y ont une variance et sont indépendants, V a une variance qui vaut

VpZq “ VpXq ` VpY q “ 2pp1 ´ pq .

Remarque. C’est beaucoup plus rapide qu’en passant par la formule de Huygens et le théorème de transfert...

Exercice 16. 1) Notons G l’évènement « le joueur gagne », c’est-à-dire
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« on tire un nombre pair ».

Notons, pour n P N˚, En l’évènement

« on tire n ».

Pour tout n P N˚, En est un évènement de probabilité

PpEnq “ pn “
1

2n
.

Alors

G “

8
ď

n“1

E2n,

et les évènements E2n sont deux à deux incompatibles (car on ne tire qu’un seul numéro), on a une union dénom-
brable, donc par σ-additivité de la probabilité, on a

PpGq “

8
ÿ

n“1

P
`

E2n

˘

“

8
ÿ

n“1

1

22n
“

8
ÿ

n“1

ˆ

1

4

˙n

“

1
4

1 ´ 1
4

“
1

3

(en reconnaissant une série géométrique de raison 1
4 , convergente car 1

4 Ps ´ 1, 1r).
2) ‹ On a

GpΩq “
␣

2n, n P N˚
(

Y
␣

´ p2n ` 1q, n P N
(

(c’est bien un ensemble dénombrable, comme union de deux ensembles dénombrables).
Puis, pour n P N, pG “ 2nq “ E2n, donc

PpG “ 2nq “
1

22n
“

1

4n
,

et pour n P N,
`

G “ ´p2n ` 1q
˘

“ E2n`1, donc

P
`

G “ ´p2n ` 1q
˘

“
1

22n`1
“

1

2
ˆ

1

4n
.

‹ Ensuite, G a une espérance finie si et seulement si la famille
`

nPpG “ nq
˘

nPGpΩq
est sommable, et dans ce cas,

l’espérance de G vaut la somme de cette famille.
On a GpΩq “

␣

2n, n P N˚
(

Y
␣

´ p2n ` 1q, n P N
(

, union de deux ensembles dénombrables, donc par le théorème
de sommation par paquets, G a une espérance finie si et seulement si les familles

`

2nPpG “ 2nq
˘

nPN˚ et
`

´ p2n `

1qPpG “ 2n ` 1q
˘

nPN sont sommables, autrement dit si les séries numériques
ÿ

nPN˚

2nPpG “ 2nq et
ÿ

nPN
´p2n ` 1qP

`

G “ ´p2n ` 1q
˘

convergent absolument, et dans ce cas,

EpGq “

8
ÿ

n“1

2nPpG “ 2nq `

8
ÿ

n“0

´p2n ` 1qP
`

G “ ´p2n ` 1q
˘

.

Or, c’est le cas, car
ÿ

nPN˚

2nPpG “ 2nq “
ÿ

nPN˚

2n
1

4n
“

1

2

ÿ

nPN˚

n

ˆ

1

4

˙n´1

est une série géométrique dérivée de raison 1
4 avec 1

4 Ps ´ 1, 1r, donc est absolument convergente, de somme

8
ÿ

n“1

2nPpG “ 2nq “
1

2

1
`

1 ´ 1
4

˘2 “
8

9
,

et
ÿ

nPN
p2n ` 1qP

`

G “ ´p2n ` 1q
˘

“
ÿ

nPN
p2n ` 1q

1

2
.
1

4n
“

1

4

ÿ

nPN˚

n

ˆ

1

4

˙n´1

`
1

2

ÿ

nPN

ˆ

1

4

˙n
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est la somme d’une série géométrique dérivée de raison 1
4 et d’une série géométrique de raison 1

4 , avec 1
4 Ps ´ 1, 1r,

donc est absolument convergente, de somme

8
ÿ

n“0

p2n ` 1qP
`

G “ ´p2n ` 1q
˘

“
1

4

1
`

1 ´ 1
4

˘2 `
1

2

1

1 ´ 1
4

“
4

9
`

2

3
“

10

9
.

Donc G a une espérance finie, et

EpGq “

8
ÿ

n“1

2nPpG “ 2nq ´

8
ÿ

n“0

p2n ` 1qP
`

G “ ´p2n ` 1q
˘

“
8

9
´

10

9
“ ´

2

9
.

‹ G a une variance si et seulement si G2 a une espérance finie, donc par le théorème de transfert, si et seulement
si la famille

`

n2PpG “ nq
˘

nPGpΩq
est sommable.

Or, pour tout n P GpΩq,

n2PpG “ nq “ n2PpE|n|q “
n2

2|n|
“

|n|2

2|n|
,

que n soit pair ou impair. Puis, la fonction

n P GpΩq ÞÑ |n| P N˚

induit une bijection, donc on peut faire le changement d’indice k “ |n|, ce qui donne : G2 a une espérance finie
si et seulement si la famille

`

n2PpG “ nq
˘

nPGpΩq
“

`

k2 1
2k

˘

kPN˚ est sommable., autrement dit si et seulement si la
série numérique

ÿ

kPN˚

k2

2k
“ 0 `

1

4

ÿ

kě2

kpk ´ 1q

ˆ

1

2

˙k´2

`
1

2

ÿ

kPN˚

k

ˆ

1

2

˙k´1

est absolument convergente (convergente suffit, puisqu’elle est à termes positifs), et c’est le cas car elle est la somme
d’une série géométrique dérivée deux fois de raison 1

2 et d’une série géométrique dérivée une fois de raison 1
2 ,

avec 1
2 Ps ´ 1, 1r.

On a alors
EpG2q “

1

4

2
`

1 ´ 1
2

˘3 `
1

2

1
`

1 ´ 1
2

˘2 “ 4 ` 2 “ 6.

Remarque. Là aussi, on aurait pu utiliser le théorème de sommation par paquets, mais c’est plus long à rédiger...

La formule de König-Huygens donne alors

VpGq “ EpG2q ´ EpGq2 “ 6 ´
4

81
“

482

81
.

Autre rédaction, beaucoup plus simple : il faut remarquer que

GpΩq “
␣

np´1qn, n P N˚
(

et @n P N˚, P
`

G “ np´1qn
˘

“ pn “
1

2n
.

Alors, par définition, G a une espérance finie si et seulement si la famille
`

np´1qnP
`

G “ np´1qn
˘˘

nPN˚ “
`

np´1qn 1
2n

˘

nPN˚ est sommable, autrement dit si et seulement si la série numérique

ÿ

nPN˚

np´1qn
1

2n

converge absolument, or cette série est une série géométrique dérivée de raison 1
2 , et 1

2 Ps ´ 1, 1r, donc elle converge
bien absolument. Alors

EpGq “

8
ÿ

n“1

p´1qnn
1

2n
“ ´

1

2

8
ÿ

n“1

n

ˆ

´1

2

˙n´1

“ ´
1

2

1
`

1 ´ ´1
2

˘2 “ ´
2

9
,

en utilisant la formule
8
ÿ

n“1

nxn´1 “
1

p1 ´ xq2
,
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valable pour tout x Ps ´ 1, 1r (et ici on prend x “ ´1
2 Ps ´ 1, 1r).

Pour la variance, cela permet aussi d’être plus rapide : par le théorème de transfert, G2 a une espérance finie si et
seulement si la famille

`

pnp´1qnq2P
`

G “ np´1qn
˘˘

nPN˚ “
`

n2 1
2n

˘

nPN˚ est sommable, autrement dit si et seulement
si la série numérique

ÿ

nPN˚

`

np´1qn
˘2 1

2n
“

ÿ

nPN˚

n2 1

2n

converge absolument (comme elle est à termes positifs, converge suffit).
Or, pour tout n P N˚,

n2 1

2n
“

1

4
npn ´ 1q

ˆ

1

2

˙n´2

`
1

2
n

ˆ

1

2

˙n´1

est le terme général d’une série numérique convergente, comme combinaison linéaire des termes d’une série géomé-
trique dérivée deux fois et d’une série géométrique dérivée une fois, toutes deux de raison 1

2 , donc termes d’une série
numérique convergente, puisque 1

2 Ps ´ 1, 1r. Par le théorème de transfert, on en déduit que G2 a une espérance
finie, donc G une variance, et

EpG2q “
1

4

8
ÿ

n“2

npn ´ 1q

ˆ

1

2

˙n´2

`
1

2

8
ÿ

n“1

n

ˆ

1

2

˙n´1

“
1

4

2
`

1 ´ 1
2

˘3 `
1

2

1
`

1 ´ 1
2

˘2 “ 4 ` 2 “ 6,

en utilisant la formule
8
ÿ

n“2

npn ´ 1qxn´2 “
2

p1 ´ xq3
,

valable pour tout x Ps ´ 1, 1r (et ici on prend x “ 1
2 Ps ´ 1, 1r).

La formule de König-Huygens donne alors

VpGq “ EpG2q ´ EpGq2 “ 6 ´
4

81
“

482

81
.

Remarque. Le calcul peut même être plus rapide, si on a l’idée d’utiliser la variante de la formule de Huygens :

VpGq “ E
`

GpG ´ 1q
˘

` EpGq ´ EpGq2.

Exercice 17. 1) ‹ Les variables aléatoires X et Y sont à valeurs dans N˚, donc UpΩq Ă N˚.
Soit k P N˚. On a

pU ě kq “ pX ě kq X pY ě kq,

donc par indépendance de X et Y ,

PpU ě kq “ P
`

pX ě kq X pY ě kq
˘

“ PpX ě kqPpY ě kq.

Or,

PpX ě kq “ P

˜

8
ď

i“k

pX “ iq

¸

“

8
ÿ

i“k

PpX “ iq

par incompatibilité deux à deux des évènements pX “ iq pour i ě k, et σ-additivité de P .

Remarque. On peut aussi obtenir cette égalité à l’aide de la formule des probabilités totales : X est une va-
riable aléatoire avec XpΩq Ă N˚, donc

`

pX “ iq
˘

iPN˚ est un système complet d’évènements, puis la formule des
probabilités totales donne alors

PpX ě kq “
ř8

i“1 P
`

pX ě kq X pX “ iq
˘

“
ř8

i“1 P
`

pi ě kq X pX “ iq
˘

“
řk´1

i“1 P
`

pi ě kq
loomoon

“H

XpX “ iq
˘

loooooooooooomoooooooooooon

“0

`
ř8

i“k P
`

pi ě kq
loomoon

“Ω

XpX “ iq
˘

“
ř8

i“k PpX “ iq
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Donc

PpX ě kq “

8
ÿ

i“k

qi´1p “ p
8
ÿ

i“k

qi´1 “
j“i´k

pqk´1
8
ÿ

j“0

qj “
pqk´1

1 ´ q
“ qk´1

(en notant q “ 1 ´ p). Comme Y a la même loi que X, PpY ě kq “ qk´1, et donc

PpU ě kq “ q2k´2.

Puis, pour tout k P N˚,
pU ě kq “ pU “ kq Y pU ą kq “ pU “ kq Y pU ě k ` 1q

(car U est à valeurs entières, donc pU ą kq “ pU ě k ` 1q), et c’est une union de deux évènements incompatibles,
donc

PpU ě kq “ PpU “ kq ` PpU ě k ` 1q,

soit

PpU “ kq “ PpU ě kq ´ PpU ě k ` 1q “ q2k´2 ´ q2k “ q2k´2p1 ´ q2q “
`

1 ´ p1 ´ q2q
˘k´1

p1 ´ q2q.

Donc
U „ G

`

1 ´ q2
˘

.

Et donc

EpUq “
1

1 ´ q2
.

Remarque. On peut aussi remarquer que la série numérique
ÿ

kPN˚

PpU ě kq

converge (c’est une série géométrique de raison q2 P r0, 1r), et comme U est à valeurs dans N, alors on sait que U
a une espérance finie, et

EpUq “

8
ÿ

k“1

PpU ě kq “

8
ÿ

k“1

q2k´2 “
1

1 ´ q2
.

‹ ‚ Les variables aléatoires X et Y sont à valeurs dans N˚, donc V pΩq Ă N˚.
Soit n P N. Alors

PpV ď nq “ P
`

pX ď nq X pY ď nq
˘

“ PpX ď nqPpY ď nq

car les variables X et Y sont indépendantes. Puis, comme X „ Gppq, pour n P N˚ on a

PpX ď nq “ P

˜

n
ď

k“1

pX “ kq

¸

“

n
ÿ

k“1

PpX “ kq “

n
ÿ

k“1

pqk´1 “ p
1 ´ qn

1 ´ q
“ 1 ´ qn

(par incompatibilité deux à deux des évènements pX “ kq pour k P rr1, nss, et par σ-additivité de P ), en posant q “

1 ´ p.

Remarque. On peut aussi obtenir l’égalité PpX ď nq “

n
ÿ

k“1

PpX “ kq par la formule des probabilités totales, de

la même manière qu’à la remarque 17.

On remarque que cette formule reste vraie pour n “ 0 (car pX ď 0q “ H est de probabilité 0 “ 1 ´ q0). Donc,
pour tout n P N

PpV ď nq “
`

1 ´ qn
˘2
.

Puis, pour n P N˚, on a
pV ď nq “ pV ď n ´ 1q Y pV “ nq

(car V est à valeurs entières), et comme ces deux évènements sont incompatibles, on a

PpV ď nq “ PpV ď n ´ 1q ` PpV “ nq,
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donc (puisque n et n ´ 1 sont dans N, pour pouvoir appliquer la formule précédente),

PpV “ nq “
`

1 ´ qn
˘2

´
`

1 ´ qn´1
˘2

“ qn´1
`

1 ´ q
˘`

2 ´ qn´1 ´ qn
˘

.

Donc, pour tout n P N˚,
PpV “ nq “ pqn´1

`

2 ´ qn´1 ´ qn
˘

.

Cette probabilité est non nulle (car 0 ă q ă 1), donc n P V pΩq pour tout n P N˚, donc

N˚ Ă V pΩq.

Par double inclusion, on a alors
V pΩq “ N˚ .

‚ La variable aléatoire V a une espérance finie car V pΩq “ N˚ et la famille
`

nPpV “ nq
˘

nPN˚ est sommable,
puisque la série numérique

ÿ

nPN˚

nPpV “ nq

est absolument convergente (cette série numérique est une combinaison linéaire de séries géométriques dérivées de
raison q P r0, 1r ou q2 P r0, 1r, qui sont donc absolument convergentes). Puis

EpV q “ p
8
ÿ

n“1

`

2nqn´1 ´ npq2qn´1 ´ nqpq2qn´1
˘

“ p

ˆ

2

p1 ´ qq2
´

1 ` q

p1 ´ q2q2

˙

“
1 ` 2q

1 ´ q2

‚ L’autre façon est de remarquer que
U ` V “ X ` Y,

et donc, comme U , X et Y ont une espérance finie (car suivent des lois géométriques), par linéarité de l’espérance, V
aussi et

EpV q “ EpXq ` EpY q ´ EpUq “
1

p
`

1

p
´

1

1 ´ q2
“

1 ` 2q

1 ´ q2
.

2) On a
U ` V “ X ` Y.

Puis, les variables aléatoires X et Y sont à valeurs dans N˚, donc X`Y est à valeurs dans Nzt0, 1u. Pour tout n P N
avec n ě 2, on a par la formule des probabilités totales appliquée avec le système complet d’évènements

`

pX “

kq
˘

kPN˚ (c’en est un, car X est une variable aléatoire avec XpΩq “ N˚) :

PpX ` Y “ nq “

8
ÿ

k“1

P
`

pX “ kq X pX ` Y “ nq
˘

“

8
ÿ

k“1

P
`

pX “ kq X pY “ n ´ kq
˘

“

8
ÿ

k“1

PpX “ kqPpY “ n ´ kq

(en utilisant que X et Y sont indépendants). Puis, pour tout k P N, si k ě n, on a n ´ k ď 0 et donc

PpY “ n ´ kq “ 0,

donc

PpU ` V “ nq “ PpX ` Y “ nq “

n´1
ÿ

k“1

PpX “ kqPpY “ n ´ kq `

8
ÿ

k“n

0 “

n´1
ÿ

k“1

pqk´1pqn´k´1 “ pn ´ 1qp2qn´2

Cette probabilité est non nulle (car 0 ă p et 0 ă q), donc n P pU ` V qpΩq pour tout n P N avec n ě 2, donc

Nzt0, 1u Ă pU ` V qpΩq.

Par double inclusion, on a alors
pU ` V qpΩq “ Nzt0, 1u .

Autre démonstration : par les fonctions génératrices. On a

U ` V “ X ` Y.
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Donc, pour tout t Ps ´ 1, 1r,
GU`V ptq “ GX`Y ptq “ GXptq ˆ GY ptq,

car X et Y sont indépendants. Puis,
GXptq “ GY ptq “

pt

1 ´ qt

pour t Ps´1, 1r (et même pour t P

ı

´1
q ,

1
q

”

, par le cours, puisque X et Y suivent une loi géométrique de paramètre p),
donc pour tout t Ps ´ 1, 1r,

GU`V ptq “

ˆ

pt

1 ´ qt

˙2

“ p2t2
1

p1 ´ qtq2
.

Or, pour t Ps ´1, 1r, on a |qt| ă q ă 1, donc la formule de la série géométrique dérivée donne, pour tout t Ps ´1, 1r,

GU`V ptq “ p2t2
8
ÿ

k“1

kpqtqk´1 “
n“k`1

8
ÿ

n“2

pn ´ 1qp2qn´2tn.

On en déduit
pX ` Y qpΩq “ pU ` V qpΩq “ Nzt0, 1u ,

et pour tout n P N avec n ě 2,

PpX ` Y “ nq “ PpU ` V “ nq “ pn ´ 1qp2qn´2 .

3) Utilisons la formule des probabilités totales appliquée avec le système complet d’évènements
`

pX `Y “ nq
˘

ně2
(c’en est un, car X ` Y est une variable aléatoire avec pX ` Y qpΩq Ă Nzt0, 1u) :

PpX`Y ď Zq “

8
ÿ

n“2

P
`

pX`Y ď ZqXpX`Y “ nq
˘

“

8
ÿ

n“2

P
`

pn ď ZqXpX`Y “ nq
˘

“

8
ÿ

n“2

Ppn ď ZqPpX`Y “ nq

car X, Y et Z sont indépendants, donc X ` Y et Z sont indépendants (lemme des coalitions).
Puis, à la question 1, on a vu (puisque Z suit la même loi que le X de la question 1), que pour n P N˚,

PpZ ě nq “ qn´1.

Donc

PpX ` Y ď Zq “

8
ÿ

n“2

qn´1pn ´ 1qp2qn´2 “ p2q
8
ÿ

n“2

pn ´ 1qpq2qn´2 “
k“n´1

p2q
8
ÿ

k“1

kpq2qk´1 “
p2q

p1 ´ q2q2
“

q

p1 ` qq2

(en reconnaissant une série géométrique dérivée de raison q2).

Exercice 18. X suit une loi de Poisson, donc X ě 0, donc Y est bien définie. Puis, par le théorème de transfert,
comme 1

1`n ě 0 pour tout n P N, et que XpΩq “ N,

Y a une espérance finie ô la famille
´

1
1`nPpX “ nq

¯

nPN
est sommable

ô la série numérique
ÿ

nPN

1

1 ` n
PpX “ nq converge absolument

et alors EpY q vaudra la somme de cette série.

Remarque. Converge suffit, car la série numérique considérée est à termes positifs.

Or,
ÿ

nPN

1

1 ` n
PpX “ nq “

ÿ

nPN

1

1 ` n
e´λλ

n

n!
“

e´λ

λ

˜

ÿ

ně´1

λn`1

pn ` 1q!
´ 1

¸

“
k“n`1

e´λ

λ

˜

ÿ

kPN

λk

k!
´ 1

¸

et on reconnaît une série exponentielle, donc absolument convergente (donc Y a bien une espérance finie), et

EpY q “
e´λ

λ

`

eλ ´ 1
˘

“
1 ´ e´λ

λ
.
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Exercice 19. 1) U ne prend que deux valeurs : 0 ou 1.
Si U “ 1, alors X ď n, donc le commerçant fait un bénéfice de xX euros pour les X produits qu’il vend, mais
perd pn ´ Xqy euros pour la non vente d’ici la fin de la saison des n ´ X produits restants. Donc, dans ce cas,

Yn “ xX ´ pn ´ Xqy “
`

xX ´ pn ´ Xqy
˘

U
loomoon

“1

`nx p1 ´ Uq
looomooon

“0

.

Si U “ 0, c’est que X ą n, donc le commerçant a pu tout vendre, et donc il a gagné nx euros, et pas de frais du
aux invendus. Donc, dans ce cas,

Yn “ nx “
`

xX ´ pn ´ Xqy
˘

U
loomoon

“0

`nx p1 ´ Uq
looomooon

“1

.

Dans tous les cas, on a bien l’égalité de l’énoncé.
2a) X est à valeurs dans N, U à valeurs dans t0, 1u, donc par produit, UX est à valeurs dans N. Puis, si X ď n,
alors UX ď n, donc dans ce cas, UX est à valeurs dans t0, . . . , nu. Et si X ą n, alors U “ 0, et donc dans ce
cas UX “ 0 est encore à valeurs dans t0, . . . , nu.
On a donc bien

UXpΩq Ă t0, . . . , nu.

2b) Comme XU est d’image finie incluse dans t0, . . . , nu, XU a une espérance finie, et

EpXUq “

n
ÿ

k“0

kPpXU “ kq “ 0 `

n
ÿ

k“1

kPpXU “ kq.

Puis, on applique la formule des probabilités totales avec le système complet d’évènements
`

pX “ iq
˘

iPN (c’en est
un, car X est une variable aléatoire avec XpΩq Ă N) : pour tout entier k P rr1, nss,

PpXU “ kq “

8
ÿ

i“0

P
`

pX “ iq X pXU “ kq
˘

“

8
ÿ

i“0

P
`

pX “ iq X piU “ kq
˘

.

Soit i P N.
Si i ą n, alors pX “ iq Ă pU “ 0q, et donc

pX “ iq X piU “ kq Ă pX “ iq X pi ¨ 0 “ kq “ H

car k ě 1, donc
P
`

pX “ iq X piU “ kq
˘

“ 0.

Si i ď n avec i ‰ k, pX “ iq Ă pU “ 1q, et donc

pX “ iq X piU “ kq Ă pX “ iq X pi “ kq “ H

car i ‰ k, donc
P
`

pX “ iq X piU “ kq
˘

“ 0.

Donc, pour k P rr1, nss,
PpXU “ kq “ PpX “ kq.

Donc

EpXUq “

n
ÿ

k“0

kPpX “ kq

(on a rajouté le terme k “ 0 qui est nul, c’est utile pour la question suivante).
2c) XU et U ont une espérance finie, donc par combinaison linéaire, Yn aussi, et par linéarité de l’espérance, on a

EpYnq “ xEpXUq ´ nyEpUq ` yEpXUq ` nx ´ nxEpUq “ px ` yqEpXUq ` nx ´ npx ` yqEpUq.

Or, comme U suit une loi de Bernoulli de paramètre PpX ď nq, on a

EpUq “ PpX ď nq “ P

˜

n
ď

k“0

pX “ kq

¸

“

n
ÿ

k“0

PpX “ kq
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(car les évènements pX “ kq, pour k P rr0, nss, sont deux à deux incompatibles), et donc

EpYnq “ px ` yq

n
ÿ

k“0

kPpX “ kq ` nx ´ npx ` yq

n
ÿ

k“0

PpX “ kq “ px ` yq

n
ÿ

k“0

pk ´ nqPpX “ kq ` nx.

3a) Soit n P N, alors

EpYn`1q ´ EpYnq “ x ´ px ` yq

n
ÿ

k“0

PpX “ kq

(le terme en k “ n ` 1 de la somme pour EpYn`1q est nul, puis il suffit de regrouper les deux sommes ensembles).
3b) On considère l’ensemble

E “

#

p P N |

p
ÿ

k“0

PpX “ kq ă
x

x ` y

+

.

E est non vide, car 0 P E puisque par hypothèse

PpX “ 0q ă
x

x ` y
.

E est majoré car
p
ÿ

k“0

PpX “ kq ÝÑ
pÑ`8

8
ÿ

k“0

PpX “ kq “ 1 ą
x

x ` y

(la somme de la série fait 1 car XpΩq Ă N, et l’inégalité est stricte car y ą 0), donc il existe un entier p0 P N tel
que pour tout p ě p0, on a

p
ÿ

k“0

PpX “ kq ě
x

x ` y
,

soit p R E. Donc E est majoré par p0.
Comme E est un ensemble d’entiers, E est alors fini, et donc il existe n0 “ maxpEq, et par définition de « n0 P E »
et de « n0 ` 1 R E », on aura bien

n0
ÿ

k“0

PpX “ kq ă
x

x ` y
et

n0`1
ÿ

k“0

PpX “ kq ě
x

x ` y
.

Montrons l’unicité : soit n ă n0 “ maxpEq, alors

n
ÿ

k“0

PpX “ kq ď

n
ÿ

k“0

PpX “ kq `

n0
ÿ

k“n`1

PpX “ kq
loooomoooon

ě0

“

n0
ÿ

k“0

PpX “ kq ă
x

x ` y
,

donc n P E. Donc
E “ rr0,maxpEqss.

Donc, si n ă n0, on a n ` 1 P E, donc n ne peut convenir pour n0.
Et si n ě n0 ` 1, alors n R E (car n0 “ maxpEq), c’est-à-dire

n
ÿ

k“0

PpX “ kq ě
x

x ` y
,

donc n ne peut convenir pour n0.
Donc seul n0 “ maxpEq est possible. D’où l’unicité.
3c) Pour tout n P N,

EpYn`1q ´ EpYnq ą 0 ô

n
ÿ

k“0

PpX “ kq ă
x

x ` y
ô n P E.

Donc la suite
`

EpYnq
˘

nďn0`1
est strictement croissante.
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Puis, pour n ě n0 ` 1, on a

x

x ` y
ď

n0`1
ÿ

k“0

PpX “ kq ď

n0`1
ÿ

k“0

PpX “ kq `

n
ÿ

k“n0`2

PpX “ kq
loooomoooon

ě0

“

n
ÿ

k“0

PpX “ kq,

donc
EpYn`1q ´ EpYnq ď 0.

Donc la suite
`

EpYnq
˘

něn0`1
est décroissante.

On en déduit bien que EpYnq sera maximal pour

n “ n1 :“ n0 ` 1.

4a) Pour tout k P N,

PpX “ k ` 1q “ e´α αk`1

pk ` 1q!
“

α

k ` 1
e´αλ

k

k!
“

α

k ` 1
PpX “ kq .

4b) On utilise le résultat de la question précédente pour calculer les valeurs successives de PpX “ kq de manière
« optimale ».

def stock_ideal(x, y, alpha) :
test = x / ( x + y) # La valeur que la somme doit franchir
n = 0
proba = exp(- alpha) # Contient \P(X=0)
som = proba # Contient le terme k=0 de la somme
while som < test : # A cette étape, som contient la somme jusqu’à k=n
# et proba contient \P(X=n)
# Si le test est vrai, alors n est dans E
n = n + 1 # La valeur de n change, donc maintenant, som contient la somme jusqu’à k=n-1
# et proba contient \P(X=n-1)
proba = proba * alpha / n # proba passe de \P(X=n-1) à \P(X=n)
som = som + proba # On rajoute à som le terme k=n, donc som contient la somme jusqu’à k=n
return n # Quand on sort de la boucle, c’est que som >= test pour la première fois,
# et donc n contient le premier indice ou n n’est pas dans E,
# donc à cette étape, n vaut n_0+1 soit n_1, la valeur qu’on veut renvoyer.

Exercice 20. ‚ Pour tout n P N˚,
Y pX “ nq “ N

car sachant pX “ nq, Y suit une loi de Poisson de paramètre n.
Pour n “ 0 : une loi de Poisson de paramètre 0 n’existe pas. Ceci dit, si on adapte la formule d’une loi de Poisson
dans le cas d’un paramètre nul, on obtient une variable aléatoire presque sûrement égale à 0. L’énoncé dit qu’on
garde Y pX “ 0q “ N.
Puis, XpΩq “ N, donc Ω “

Ť

nPN
pX “ nq, puis

Y pΩq “ Y

˜

ď

nPN
pX “ nq

¸

“
ď

nPN
Y pX “ nq “

ď

nPN
N “ N .

‚ Pour tout k P N, la formule des probabilités totales avec le système complet d’évènements
`

pX “ nq
˘

nPN (c’en
est un, car X est une variable aléatoire avec XpΩq “ N) donne :

PpY “ kq “

8
ÿ

n“0

PpX “ nqPpX“nqpY “ kq “

8
ÿ

n“0

λn

n!
e´λn

k

k!
e´n
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Pour calculer l’espérance, on utilise le théorème de Fubini : comme la famille
´

k λn

n! e
´λ nk

k! e
´n

¯

pn,kqPN2
est positive

et indexée sur N2, qui est dénombrable, on a

EpY q “

8
ÿ

k“0

k
8
ÿ

n“0

λn

n!
e´λn

k

k!
e´n

“

8
ÿ

n“0

8
ÿ

k“0

k
λn

n!
e´λn

k

k!
e´n

“ e´λ
8
ÿ

n“0

λn

n!
e´n

8
ÿ

k“0

k
nk

k!

“
j“k´1

e´λ
8
ÿ

n“0

λn

n!
e´n

˜

0 `

8
ÿ

j“0

nj`1

j!

¸

“ e´λ
8
ÿ

n“0

n
λn

n!
e´nen

“
ℓ“n´1

e´λ

˜

0 `

8
ÿ

ℓ“0

λℓ`1

ℓ!

¸

“ e´λλeλ “ λ

Exercice 21. X et Y ont une variance, donc

CovpX,Xq “ VpXq, CovpX,Y q “ CovpY,Xq et CovpY, Y q “ VpY q

existent.
Comme X et Y ont une variance, X ´ Y et X ` Y aussi comme somme et différence, puis CovpX ´ Y,X ` Y q

existe. De plus, X ` Y et X ´ Y sont indépendantes, donc

0 “ CovpX ´ Y,X ` Y q.

Par bilinéarité de la covariance, on a alors

0 “ CovpX ´ Y,X ` Y q “ CovpX,Xq ` CovpX,Y q ´ CovpY,Xq
loooooooooooooomoooooooooooooon

“0

´CovpY, Y q “ VpXq ´ VpY q,

ce qui conclut.
Autre démonstration (sur idée d’un élève) : partir du fait que X ´ Y et X ` Y sont indépendants en utilisant
qu’alors

V
`

pX ` Y q ` pX ´ Y q
˘

“ VpX ` Y q ` VpX ´ Y q.

C’est en effet possible : X et Y ont une variance, donc par somme (et soustraction), X ` Y et X ´ Y aussi, et
comme X ` Y et X ´ Y sont indépendants, la formule du cours donne bien

VpX ` Y q ` VpX ´ Y q “ V
`

pX ` Y q ` pX ´ Y q
˘

,

autrement dit
VpX ` Y q ` VpX ´ Y q “ Vp2Xq “ 22VpXq “ 4VpXq.

Mais, toujours par le cours, comme X et Y ont une variance,

VpX ` Y q “ VpXq ` VpY q ` 2CovpX,Y q et VpX ´ Y q “ VpXq ` VpY q ´ 2CovpX,Y q.

Par conséquent,

4VpXq “ VpXq ` VpY q ` 2CovpX,Y q ` VpXq ` VpY q ´ 2CovpX,Y q “ 2VpXq ` 2VpY q,

ce qui donne bien (après simplification) :
VpXq “ VpY q.
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Exercice 22. ‹ La fonction GX est développable en série entière sur s ´
?
2,

?
2r (pour que

ˇ

ˇ

ˇ

t2

2

ˇ

ˇ

ˇ
ă 1), car on

reconnaît une série géométrique de raison t2

2 , et pour tout t Ps ´
?
2,

?
2r, on a :

GXptq “
t

2

1

1 ´ t2

2

“
t

2

`8
ÿ

n“0

ˆ

t2

2

˙n

“

`8
ÿ

n“0

1

2n`1
t2n`1

Donc

XpΩq est l’ensemble des entiers positifs impairs ,

soit
XpΩq “

␣

2n ` 1, n P N
(

(XpΩq est formé de l’ensemble des indices k P N tels que le coefficient devant tk n’est pas nul), et pour n P N on a

P pX “ 2n ` 1q “
1

2n`1

(par unicité du développement en série entière).

Remarque.
␣`

2n ` 1, 1
2n`1

˘(

nPN définit bien la loi d’une variable aléatoire (car pour tout n P N, 1
2n`1 ě 0 et car

`8
ÿ

n“0

1

2n`1
“ 1) à valeurs dans N (car 2n ` 1 P N pour tout n P N), dont GX est la fonction génératrice.

‹ ‚ Y “ X`1
2 suit alors

une loi géométrique de paramètre 1
2 .

En effet, X ne prend que des valeurs impaires, donc Y ne prend que des valeurs entières non nulles, soit

Y pΩq Ă N˚,

et pour n P N˚,

PpY “ nq “ P pX “ 2n ´ 1q “ P
`

X “ 2pn ´ 1q ` 1
˘

“
1

2pn´1q`1
“

1

2

ˆ

1 ´
1

2

˙n´1

(car n ´ 1 P N)
Autre méthode : Y est à valeurs dans N. Puis, pour tout t P r0, 1s, par linéarité de l’espérance,

GY ptq “ E
`

tY
˘

“ E
´

t
X`1

2

¯

“ E
´?

t
?
t
X
¯

“
?
tE
`
?
t
X˘

“
?
tGX

`
?
t
˘

“
?
t

?
t

2 ´
?
t
2 “

t

2 ´ t
“

1
2 t

1 ´
`

1 ´ 1
2

˘

t
,

donc GY est égale à la fonction génératrice d’une loi géométrique de paramètre 1
2 sur r0, 1s. Comme la fonction

génératrice caractérise la loi, on peut bien conclure que

Y suit une loi géométrique de paramètre 1
2 .

‚ On en déduit que Y a une espérance finie, qui vaut

EpY q “
1
1
2

“ 2,

et une variance qui vaut

VpY q “
1 ´ 1

2
`

1
2

˘2 “ 2.

Or, X “ 2Y ´ 1, et Y et 1 ont une espérance finie et une variance, donc par combinaison linéaire, X aussi, et par
linéarité de l’espérance,

EpXq “ 2EpY q ´ 1 “ 3 ,

et (par la formule VpaX ` bq “ a2VpXq valable dès que X a une variance), on a

VpXq “ 22VpY q “ 8 .
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Exercice 23. Puisque GX est la fonction génératrice d’une variable aléatoire, on doit avoir

GXp1q “ 1, donc a “ expp´2q ,

et donc, pour tout t P r´1, 1s (en fait, pour tout t P R),

GXptq “ exp
`

t2 ´ 1
˘

“ e´1
`8
ÿ

n“0

t2n

n!
.

Donc
XpΩq “ 2N

(XpΩq est formé de l’ensemble des indices k P N tels que le coefficient devant tk n’est pas nul), et pour tout
entier n P N,

P pX “ 2nq “
e´1

n!
.

Remarque.
!´

2n, e
´1

n!

¯)

nPN
définit bien la loi d’une variable aléatoire (car pour tout n P N, e´1

n! ě 0 et car
`8
ÿ

n“0

e´1

n!
“ 1) à valeurs dans N (car 2n P N pour tout n P N), dont GX est la fonction génératrice (pour a “ e´2).

La fonction GX est dérivable sur R, donc en 1, donc X a une espérance finie. Pour tout réel t P R,

G1
Xptq “ 2t exp

`

t2 ´ 1
˘

,

donc
EpXq “ G1

Xp1q “ 2 .

La fonction GX est deux fois dérivable sur R, donc en 1, donc X a une variance. Pour tout réel t P R,

G2
Xptq “ 2 exp

`

t2 ´ 1
˘

` 4t2 exp
`

t2 ´ 1
˘

,

donc
E
`

XpX ´ 1q
˘

“ G2
Xp1q “ 2 ` 4 “ 6.

La formule de Huygens donne alors :

VpXq “ E
`

XpX ´ 1q
˘

` EpXq ´ EpXq2 “ 6 ` 2 ´ 4 “ 4 .

Remarque. De la loi, on reconnaît que X
2 „ Pp1q.

Exercice 24. Si on effectue qu’un seul tirage, la loi de S1 est directe (c’est le numéro obtenu lors d’un seul tirage
dans une boîte, dont le contenu est connu) :

k 0 1 2

P pX “ kq 1
4

1
2

1
4

On en déduit que, pour tout t P r´1, 1s (en fait pour tout t P R),

GS1ptq “
1

4
t0 `

1

2
t1 `

1

4
t2 “

ˆ

1 ` t

2

˙2

.

Les tirages étant avec remise, Sn est la somme de n variables aléatoires indépendantes et de même loi que S1.
D’après le théorème du cours, on a donc, pour tout t P r´1, 1s (là encore, en fait c’est pour tout t P R),

GSnptq “

ˆ

1 ` t

2

˙2n

.

En développant avec la formule du binôme de Newton, pour tout t P r´1, 1s, on a

GSnptq “

2n
ÿ

k“0

ˆ

2n

k

˙ˆ

t

2

˙k ˆ1

2

˙2n´k

“

2n
ÿ

k“0

ˆ

2n

k

˙

1

22n
tk.
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On déduit immédiatement
SnpΩq “ rr0, 2nss

et, pour 0 ď k ď 2n,

P pSn “ kq “
1

22n

ˆ

2n

k

˙

.

Exercice 25. 1) ‚ Déterminons l’image de Xn. La variable aléatoire Xn est mal définie dans l’énoncé : que se
passe-t-il si la n-ième boule blanche n’est jamais tirée ? On va dire que dans ce cas Xn prend la valeur 0.
Xn prend comme valeur soit 0, soit une valeur entière car c’est un nombre de tirages, et plus précisément

XnpΩq Ă t0u Y tn, n ` 1, . . . u

car pour obtenir n boules, il faut au moins n tirages (et 0 est présent pour tenir compte du fait qu’on puisse ne
jamais avoir n boules blanches).
De plus,

t0u Y tn, n ` 1, . . . u Ă XnpΩq,

car si, pour k P N˚, on note Bk l’évènement « on a une boule blanche au k-ième essai », alors on a l’inclusion

B1 X ¨ ¨ ¨ X Bn´1 X Bn X ¨ ¨ ¨ X Bn`i´1 X Bn`i Ă pXn “ n ` iq,

et donc par indépendance des Bk pour k P N˚ (car les tirages sont indépendants puisqu’avec remise) et croissance
de la probabilité,

PpXn “ n ` iq ě P pB1q ˆ ¨ ¨ ¨ ˆ P pBn´1q ˆ P pBnq ˆ ¨ ¨ ¨ ˆ P pBn`i´1q ˆ P pBn`iq “ pnp1 ´ pqi ą 0.

Donc pour tout i P N,
pXn “ n ` iq ‰ H, donc n ` i P XnpΩq.

Pour 0,
`8
č

i“1

Bi Ă pXn “ 0q,

ce qui justifie que
0 P XnpΩq

(mais cela ne justifie pas que PpXn “ 0q ą 0, d’ailleurs on verra que c’est faux). Donc

XnpΩq “ t0u Y rrn,`8rr .

‚ Soit k P N avec k ě n. Les k ´ 1 premiers tirages sont une répétition d’épreuves identiques et indépendantes,
donc le nombre de boules blanches obtenu (qui arrive à chaque tirage avec probabilité p), suit une loi binomiale
de paramètre k ´ 1 et p. D’où, la probabilité de l’évènement Ek “ « il y a eu n ´ 1 boules blanches lors des k ´ 1
premières épreuves » vaut

PpEkq “

ˆ

k ´ 1

n ´ 1

˙

pn´1p1 ´ pqk´1´pn´1q

(c’est la probabilité qu’une loi binomiale Bpk ´ 1, pq vaille n ´ 1).
L’évènement pXn “ kq est l’évènement : « le tirage numéro k amène une boule blanche (il faut que ce soit la n-ième)
et il y a eu n´ 1 boule blanche obtenues lors des k ´ 1 premiers tirages ». Le « et » se traduit par une intersection
d’évènements :

pXn “ kq “ Bk X Ek,

et Bk et Ek sont indépendants car concernant des tirages différentes (et que les tirages sont indépendants car il y
a remise), donc

PpXn “ kq “ P pBkqP pEkq.

Comme PpBkq “ p, on a bien le résultat voulu :

P pXn “ kq “

ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n .
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On fait le calcul de PpXn “ 0q plus loin, et l’on constatera que PpXn “ 0q “ 0, ce qui explique pourquoi dans
l’énoncé on « enlève » la valeur 0 de XnpΩq.
2) La série entière

ÿ

kPN
xk

est de rayon 1, donc sa somme

x ÞÑ

`8
ÿ

k“0

xk “
1

1 ´ x

est de classe C8 sur s ´ 1, 1r, et sur cet intervalle, on peut dériver terme à terme. Ainsi, pour tout x Ps ´1, 1r, pour
tout N P N,

`8
ÿ

k“0

pxkqpNq “

˜

`8
ÿ

k“0

xk

¸pNq

“

ˆ

1

1 ´ x

˙pNq

.

Or, pour tout x Ps ´ 1, 1r, pour tout N P N,

`8
ÿ

k“0

pxkqpNq “

N´1
ÿ

k“0

0 `

`8
ÿ

k“N

kpk ´ 1q . . . pk ´ N ` 1qxk´N “

`8
ÿ

k“N

k!

pk ´ Nq!
xk´N “

`8
ÿ

k“N

N !

ˆ

k

N

˙

xk´N .

Puis, par récurrence directe sur N P N, pour tout x Ps ´ 1, 1r et pour tout N P N,
ˆ

1

1 ´ x

˙pNq

“
N !

p1 ´ xqN`1
,

et l’égalité de ces deux expressions conclue (en simplifiant par N !).

Remarque. On n’a pas calculé PpXn “ 0q. Comme XnpΩq “ t0u Y
␣

k P N, avec k ě n
(

, on a :

P pXn “ 0q “ 1 ´

`8
ÿ

k“n

P pXn “ kq

“ 1 ´

`8
ÿ

k“n

ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n

“
j“k´1

1 ´ pn
`8
ÿ

j“n´1

ˆ

j

n ´ 1

˙

p1 ´ pqj´pn´1q

“ 1 ´ pn
`8
ÿ

j“N

ˆ

j

N

˙

p1 ´ pqj´N

en notant N “ n ´ 1 P N. Comme 1 ´ p Ps ´ 1, 1r, la formule établie à cette question s’applique avec x “ 1 ´ p, et
donne

PpXn “ 0q “ 1 ´ pn
1

`

1 ´ p1 ´ pq
˘N`1

“ 1 ´ pn
1

pn
“ 0 .

3a) Pour tout k P N avec k ě n, on a

kP pXn “ kq “ k pk´1q!

pn´1q!
`

pk´1q´pn´1q

˘

!
pnp1 ´ pqk´n

“ n
n

k!
pn´1q!pk´nq!p

np1 ´ pqk´npnp1 ´ pqk´n

“ n
k!

n!pk ´ nq!
pnp1 ´ pqk´n

“ npn
ˆ

k

n

˙

p1 ´ pqk´n
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Or, d’après la question précédente (qui s’applique avec x “ 1 ´ p, car 1 ´ p Ps ´ 1, 1r), la série numérique

ÿ

kěn

ˆ

k

n

˙

p1 ´ pqk´n

converge, de somme
1

`

1 ´ p1 ´ pq
˘n`1 .

Donc la série numérique
ÿ

kěn

kP pXn “ kq

converge, et comme elle est à termes positifs, elle converge absolument.
Donc la famille

`

kP pX “ kq
˘

kěn
est sommable (et rajouter 0 ¨P pX “ 0q ne change rien, puisque c’est nul), donc X

a une espérance finie (puisque XnpΩq “ t0u Y
␣

k P N, avec k ě n
(

), et

EpXq “ 0 ¨ P pXn “ 0q `

`8
ÿ

k“n

kP pXn “ kq “ npn
`8
ÿ

k“n

ˆ

k

n

˙

p1 ´ pqk´n “ npn
1

`

1 ´ p1 ´ pq
˘n`1 “ npn

1

pn`1
“

n

p
.

3b) Pour n ě 2, on a
PpXn ě 2q “ 1

(car pXn ě 2q Ă pXn ě nq et que PpXn ě nq “ 1´P pXn “ 0q “ 1), et donc avec probabilité 1 on aura Xn ´1 ‰ 0,
ce qui permet de définir

n ´ 1

Xn ´ 1

(au moins sur un ensemble de probabilité 1).
Pour tout k P N avec k ě n ě 2,

n ´ 1

k ´ 1
P pXn “ kq “

n ´ 1

k ´ 1

ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n “

ˆ

k ´ 2

n ´ 2

˙

pnp1 ´ pqk´n

(après simplifications).
Comme Xn est à valeurs positives et dénombrable, le théorème de transfert s’applique et donne (les égalités
suivantes ayant lieu dans R` Y t`8u) :

E
´

n´1
Xn´1

¯

“ n´1
0´1 P pXn “ 0q

looooomooooon

“0

`

`8
ÿ

k“n

n ´ 1

k ´ 1
P pXn “ kq

“

`8
ÿ

k“n

n ´ 1

k ´ 1

ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n

“

`8
ÿ

k“n

ˆ

k ´ 2

n ´ 2

˙

pnp1 ´ pqk´1´pn´1q

“ p
`8
ÿ

k“n

P pXn´1 “ k ´ 1q

“
j“k´1

p
`8
ÿ

j“n´1

P pXn´1 “ jq

Cette dernière écriture assure que la série converge, donc n´1
Xn´1 a une espérance finie (pour n ě 2). Et, comme

`8
ÿ

j“n´1

P pXn´1 “ jq “ 1
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(puisqu’on a l’égalité Xn´1pΩq “ t0u Y rrn ´ 1,`8rr et que PpXn´1 “ 0q “ 0), on a

E
ˆ

n ´ 1

Xn ´ 1

˙

“ p .

4) Notons Gn la fonction génératrice de Xn, alors pour tout t P r´1, 1s, on a

Gnptq “ t0P pXn “ 0q `

`8
ÿ

k“n

tkP pXn “ kq

“ 0 `

`8
ÿ

k“n

tk
ˆ

k ´ 1

n ´ 1

˙

pnp1 ´ pqk´n

“ pntn
`8
ÿ

k“n

ˆ

k ´ 1

n ´ 1

˙

`

tp1 ´ pq
˘k´n

“
j“k´1

pntn
`8
ÿ

j“n´1

ˆ

j

n ´ 1

˙

`

tp1 ´ pq
˘j´pn´1q

“ pntn 1
`

1´tp1´pq

˘pn´1q`1

“

´

pt
1´tp1´pq

¯n

en appliquant (à l’avant dernière égalité) la formule de la question 2, prise pour N “ n ´ 1 P N et x “ tp1 ´ pq (et
on a bien x Ps ´ 1, 1r puisque |t| ď 1 donne |x| ď 1 ´ p ă 1).
Or, la fonction

t ÞÑ
pt

1 ´ tp1 ´ pq

est la fonction génératrice d’une loi géométrique de paramètre p, et la fonction génératrice d’une addition de lois
indépendantes est le produit des fonctions génératrices, donc Xn a la même fonction génératrice que Z1 ` ¨ ¨ ¨ `Zn

où les Z1 sont des variables aléatoires indépendantes suivant toutes la loi géométrique de paramètre p. Comme la
fonction génératrice caractérise la loi, on en déduit que Xn a la même loi que Z1 ` ¨ ¨ ¨ ` Zn.
5) L’espérance ne dépend que de la loi, donc par linéarité de l’espérance, comme les Zi ont une espérance finie (cf.
cours sur la loi géométrique), Xn en a une aussi, et

EpXnq “ EpZ1 ` ¨ ¨ ¨ ` Znq “ EpZ1q ` ¨ ¨ ¨ ` EpZnq “
1

p
` ¨ ¨ ¨ `

1

p
“

n

p
.

Puis, les Zi ont une variance (cf. cours sur la loi géométrique), donc par addition Z1 ` ¨ ¨ ¨ ` Zn aussi, et par
indépendance,

VpZ1 ` ¨ ¨ ¨ ` Znq “ VpZ1q ` ¨ ¨ ¨ ` VpZnq “
1 ´ p

p2
` ¨ ¨ ¨ `

1 ´ p

p2
“

p1 ´ pqn

p2
.

Enfin, comme la variance ne dépend que de la loi, Xn a une variance, et

VpXnq “ VpZ1 ` ¨ ¨ ¨ ` Znq, et donc VpXnq “
p1 ´ pqn

p2
.

Exercice 26. 1) ‚ Comme X a une variance, et que EpXq “ λ et VpXq “ λ, l’inégalité de Bienaymé-Tchebychev
donne, pour tout e ą 0,

P
`

|X ´ EpXq| ě e
˘

ď
VpXq

e2
,

soit pour tout e ą 0,

P
`

|X ´ λ| ě e
˘

ď
λ

e2
.

38



Fauriel - PC - Mathématiques TD15 - Espérance et variance

On prend e “ λ, on a alors l’inégalité désirée.
‚ Montrons pX ě 2λq Ă

`

|X ´ λ| ě λ
˘

:
Méthode 1 : comme

|X ´ λ| ě λ ô

´

X ď 0 ou X ě 2λ
¯

,

on a
`

|X ´ λ| ě λ
˘

“
`

X ď 0q Y pX ě 2λ
˘

“ pX “ 0q Y
`

X ě 2λ
˘

(car XpΩq “ N, et donc pX ď 0q “ pX “ 0q). Par conséquent,

pX ě 2λq Ă
`

|X ´ λ| ě λ
˘

,

et donc, par croissance de la probabilité pour l’inclusion,

PpX ě 2λq ď P
`

|X ´ λ| ě λ
˘

ď
1

λ
.

Méthode 2 : soit X ě 2λ, alors X ´ λ ě λ ą 0, donc |X ´ λ| “ X ´ λ ě λ. On a donc

X ě 2λ ñ |X ´ λ| ě λ,

ce qui donne l’inclusion d’évènements
pX ě 2λq Ă

`

|X ´ λ| ě λ
˘

,

et donc
PpX ě 2λq ď P

`

|X ´ λ| ě λ
˘

ď
1

λ

par croissance de la probabilité pour l’inclusion.
2a) Montrons pZ ě aq Ă

`

pZ ` xq2 ě pa ` xq2
˘

.
Méthode 1 : comme a et x sont positifs,

pZ ` xq2 ě pa ` xq2 ô |Z ` x| ě |a ` x| “ a ` x

ô

´

Z ` x ě a ` x ou ´ pZ ` xq ě a ` x
¯

ô

´

Z ě a ou a ` Z ` 2x ď 0
¯

Donc
Z ě a ñ pZ ` xq2 ě pa ` xq2, soit pZ ě aq Ă

`

pZ ` xq2 ě pa ` xq2
˘

.

Par conséquent, par croissance de la probabilité pour l’inclusion,

PpZ ě aq ď P
`

pZ ` xq2 ě pa ` xq2
˘

.

Méthode 2 : soit Z ě a, alors Z ` x ě a ` x. Or, a ` x ě 0, et la fonction

t ÞÑ t2

est croissante sur R`, donc
pZ ` xq2 ě pa ` xq2.

Et donc
Z ě a ñ pZ ` xq2 ě pa ` xq2, soit pZ ě aq Ă

`

pZ ` xq2 ě pa ` xq2
˘

.

Par conséquent, par croissance de la probabilité pour l’inclusion,

PpZ ě aq ď P
`

pZ ` xq2 ě pa ` xq2
˘

.

2b) pZ ` xq2 est une variable aléatoire discrète positive. On a

pZ ` xq2 “ Z2 ` 2Zx ` x2,
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or Z a une variance, donc Z et Z2 ont une espérance finie, et une constante a une espérance finie, donc par linéarité
de l’espérance, pZ `xq2 a une espérance finie. Enfin, pa`xq2 ą 0 (car a ą 0 et x ě 0). Donc l’inégalité de Markov
donne

P
`

pZ ` xq2 ě pa ` xq2
˘

ď
E
`

pZ ` xq2
˘

pa ` xq2
.

De plus, comme pZ ` xq2 “ Z2 ` 2Zx ` x2, par la linéarité de l’espérance, on a

E
`

pZ ` xq2
˘

“ EpZ2q ` 2xEpZq ` x2Ep1q.

Comme Z est d’espérance nulle, et que

EpZ2q “ VpZq ` EpZq2 “ VpZq

par la formule de Huygens, on obtient

E
`

pZ ` xq2
˘

“ VpZq ` x2 “ σ2 ` x2.

D’où

P
`

pZ ` xq2 ě pa ` xq2
˘

ď
σ2 ` x2

pa ` xq2
,

et l’inégalité de la question précédente conclut.
2c) Ceci étant vrai pour tout x P R`, il suffit de prendre x qui réalise min

xPR`

´

σ2`x2

pa`xq2

¯

(si c’est possible).

Étudions donc la fonction suivante :

f : x P R` ÞÑ
σ2 ` x2

pa ` xq2
P R.

Elle est dérivable sur R` et pour tout x P R`,

f 1pxq “
2xpa ` xq2 ´ 2pa ` xqpσ2 ` x2q

pa ` xq4
“

2ax ` 2x2 ´ 2σ2 ´ 2x2

pa ` xq3
“ 2

ax ´ σ2

pa ` xq3
,

donc f 1pxq est du signe de ax ´ σ2, donc f 1 est négatif sur
”

0, σ
2

a

ı

, positif sur
”

σ2

a ,`8

”

, donc la fonction f a un

minimum global en x “ σ2

a .
Pour ce x, l’inégalité de la question précédente devient :

PpZ ě aq ď
σ2 ` σ4

a2
´

a ` σ2

a

¯2 “
σ2pa2 ` σ2q

pa2 ` σ2q2
“

σ2

σ2 ` a2
.

2d) Appliquons ceci à Z “ X ´ λ (pour que Z soit bien d’espérance nulle ! ! !), qui a pour variance σ2 “ λ (car la
variance est inchangée quand on translate par une constante).
Alors, pour a “ λ, on a

PpX ě 2λq “ P pX ´ λ ě λq ď
λ

λ ` λ2
“

1

λ ` 1
.

3a) Pour t Ps1,`8r et a P R˚
`,

pX ě aq “ ptX ě taq,

car la fonction
x ÞÑ tx

est strictement croissante sur R˚
`. Si t “ 1, on a juste

pX ě aq Ă ptX ě taq,

car la fonction
x ÞÑ tx “ 1

est croissante sur R˚
`. Dans tous les cas, on a pour t P r1,`8r, par croissance de la probabilité pour l’inclusion,

PpX ě aq ď P
`

tX ě ta
˘

.
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Comme tX ě 0 et que la variable aléatoire tX a une espérance finie pour tout réel t P r1,`8r (c’est là qu’on utilise
que X suit une loi de Poisson, entre autre !), l’inégalité de Markov donne

P
`

tX ě ta
˘

ď
E
`

tX
˘

ta
“

GXptq

ta
.

Donc on a bien

PpX ě aq ď
GXptq

ta
“

eλpt´1q

ta
.

Une démonstration plus élémentaire : la série numérique

ÿ

kPN
P pX “ kqtk “ e´λ pλtqk

k!

converge sans condition sur t, car la série numérique

ÿ

kPN

pλtqk

k!

converge de somme eλt, sans condition sur t ou λ (c’est une série exponentielle). Donc GXptq existe pour tout
réel t P R et vaut

GXptq “ e´λeλt “ eλpt´1q.

On veut montrer que
GXptq ě taP pX ě aq

pour tout t P R vérifiant t ě 1. Comme on a une série à terme positif, et que, pour tout k P N avec k ě a, on
a tk ě ta (car t ě 1), alors

GXptq “

`8
ÿ

k“0

P pX “ kqtk “
ÿ

kăa

P pX “ kqtk
loooooomoooooon

ě0

`
ÿ

kěa

P pX “ kqtk ě
ÿ

kěa

P pX “ kqtk ě
ÿ

kěa

P pX “ kqta “ taP pX ě aq.

3b) Pour a “ 2λ, l’inégalité de la question précédente donne : pour tout t P r1,`8r,

PpX ě 2λq ď
eλpt´1q

t2λ
“
`

gptq
˘λ

en posant

g : t ÞÑ
et´1

t2
.

La fonction g est une fonction dérivable sur r1,`8r, et pour tout t P r1,`8r,

g1ptq “
et´1pt2 ´ 2tq

t4
,

donc g1ptq est du signe de t2 ´2t, donc est négatif sur r1, 2s et positif sur r2,`8r, donc la fonction g a un minimum
global en 2, qui vaut

gp2q “
e

4
.

Prenons donc t “ 2 (cela donnera la meilleure minoration), on a alors

PpX ě 2λq ď
`

gp2q
˘λ

“

´e

4

¯λ
.

Puis,

pλ ` 1q

´e

4

¯λ
ÝÑ

λÑ`8
0

par croissance comparée, car
ˇ

ˇ

e
4

ˇ

ˇ ă 1. Donc si λ est assez grand, on aura

pλ ` 1q

´e

4

¯λ
ă 1, soit

´e

4

¯λ
ď

1

λ ` 1
,
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et donc pour ces λ, la dernière inégalité est meilleure que celle de la question 2.
Par contre,

´e

4

¯λ
“ eλ lnp e

4q “ 1 ` λ ln
´e

4

¯

` o
λÑ0`

pλq et
1

λ ` 1
“ 1 ´ λ ` o

λÑ0`
pλq,

et
ln
´e

4

¯

“ 1 ´ 2 lnp2q ą ´1 ô 1 ą lnp2q ô e ą 2,

ce qui est vrai, donc pour λ proche de 0`, on a
´e

4

¯λ
ą

1

1 ` λ
,

et donc pour λ assez proche de 0, la dernière inégalité sera moins bonne que celle de la question 2.

Remarque. Une étude de fonction (et des résolutions numériques d’équations) montrent que c’est pour λ ě

4, 3335054 (approximativement), que la deuxième inégalité est meilleure, et qu’avant c’est la première.

Exercice 27. 1) Une loi à valeurs dans N˚ est caractérisée par PpX “ nq ě 0 pour tout entier n P N˚ (ce qui

équivaut ici à a ě 0) et
`8
ÿ

n“1

P pX “ nq “ 1. Or, pour tout N P N˚,

N
ÿ

n“1

P pX “ nq “

N
ÿ

n“1

a

npn ` 1q
“ a

N
ÿ

n“1

ˆ

1

n
´

1

n ` 1

˙

“ a

ˆ

1 ´
1

N ` 1

˙

ÝÑ
NÑ`8

a

(car on a reconnu une somme télescopique). Donc

a “ 1

(qui est bien ě 0).
2) X a une espérance finie si et seulement si la famille

`

nP pX ` nq
˘

nPN˚ est sommable, autrement dit, si et
seulement si la série numérique

ÿ

nPN˚

nP pX “ nq “
ÿ

nPN˚

1

n ` 1
“

k“n`1

ÿ

kě2

1

k

converge absolument (ici converge suffit, puisque c’est une série à termes positifs). Or, c’est la série harmonique,
qui diverge, donc

X n’a pas d’espérance finie .

Pour que X ait une variance, il faut que X ait une espérance finie. Ce n’est pas le cas ici, donc

X n’a pas de variance .

3) On sait que la fonction génératrice est une série entière de rayon au moins 1, et qu’elle converge pour t P r´1, 1s.
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Mais ici, on va commencer par faire le calcul pour t Ps ´ 1, 1r non nul (on verra pourquoi au cours du calcul) 2 :

GXptq “

`8
ÿ

n“1

tnP pX “ nq

“

`8
ÿ

n“1

tn

npn ` 1q

“

`8
ÿ

n“1

ˆ

tn

n
´

tn

n ` 1

˙

“

`8
ÿ

n“1

tn

n
´

`8
ÿ

n“1

tn

n ` 1
(car ces séries convergent, car |t| ă 1)

“

`8
ÿ

n“1

tn

n
´

1

t

˜

`8
ÿ

n“0

tn`1

n ` 1
´ t

¸

“
k“n`1

`8
ÿ

n“1

tn

n
´

1

t

˜

`8
ÿ

k“1

tk

k
´ t

¸

“ ´ lnp1 ´ tq ´
1

t

`

´ lnp1 ´ tq ´ t
˘

(en reconnaissant un DSE usuel). Donc, pour tout t Ps ´ 1, 1rzt0u,

GXptq “
p1 ´ tq lnp1 ´ tq

t
` 1 ,

or on sait que la fonction GX est continue sur r´1, 1s, donc

GXp0q “ lim
tÑ0

GXptq “ 0, GXp1q “ lim
tÑ1´

GXptq “ 1 et GXp´1q “ lim
tÑ´1`

GXptq “ 1 ´ 2 lnp2q.

Remarque. Une application du critère de D’Alembert donne directement que la série entière
ÿ

nPN˚

tn

npn ` 1q
a 1

comme rayon. Donc GX n’est défini que sur r´1, 1s.

Exercice 28. Commençons par remarquer que, pour tout x P R, pour tout n P N, xn existe (même 0n). En
particulier, pour tout px, yq P r´1, 1s2, pour tout pn, kq P N2, l’expression xnykP pX “ n, Y “ kq existe.
1) Soit px, yq P r´1, 1s2, alors |x| ď 1 et |y| ď 1.
Pour tout pn, kq P N2, on a alors

0 ď
ˇ

ˇxnykP pX “ n, Y “ kq
ˇ

ˇ ď
ˇ

ˇP pX “ n, Y “ kq
ˇ

ˇ “ P pX “ n, Y “ kq.

Or, la famille
`

P pX “ n, Y “ kq
˘

pn,kqPN2 est sommable (car N2 est dénombrable, et pX,Y q est une variable aléatoire
avec pX,Y qpΩq Ă N2. On peut même préciser que la somme de cette famille vaut 1), donc par inégalité, la famille

`

xnykP pX “ n, Y “ kq
˘

pn,kqPN2

est sommable.
2) Soit px, yq P r´1, 1s2. La fonction pa, bq P N2 ÞÑ xayb est bien définie (on peut prendre la puissance entière
positive de n’importe quel réel), la famille

`

xnykP pX “ n, Y “ kq
˘

pn,kqPN2 est sommable, donc le théorème de
transfert s’applique : la variable aléatoire xXyY a une espérance finie, et

EpxXyY q “
ÿ

pn,kqPN2

xnykP pX “ n, Y “ kq “ GpX,Y qpx, yq.

2. On peut s’en douter, puisque X n’ayant pas d’espérance finie, on sait que le rayon de convergence de la série entière de somme GX

vaut 1, donc le calcul en ˘1 risque d’être compliqué...
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Remarque. Comme px, yq P r´1, 1s2, on a |x| ď 1 et |y| ď 1, donc pour tout pa, bq P N2,
ˇ

ˇxayb
ˇ

ˇ ď 1, donc
ˇ

ˇxXyY
ˇ

ˇ ď 1. Comme 1 a une espérance finie, on retrouve par inégalité que xXyY a une espérance finie.

3) Pour tout x P r´1, 1s, on a

GXpxq “ EpxXq “ EpxX1Y q “ GpX,Y qpx, 1q .

4) X et Y sont indépendants, donc pour tout pn, kq P N2,

PpX “ n, Y “ kq “ P pX “ nqP pY “ kq.

Soit px, yq P r´1, 1s2. Alors

GpX,Y qpx, yq “
ÿ

pn,kqPN2

xnykP pX “ n, Y “ kq “
ÿ

pn,kqPN2

xnP pX “ nqykP pY “ kq.

Puis, la famille
`

xnP pX “ nq
˘

nPN est sommable. En effet :

• N est dénombrable,

• |x| ď 1, donc pour tout n P N, |xn| ď 1, ce qui donne
ˇ

ˇxnP pX “ nq
ˇ

ˇ ď
ˇ

ˇP pX “ nq
ˇ

ˇ “ P pX “ nq,

• et enfin la famille
`

P pX “ nq
˘

nPN est sommable (par σ-additivité de P , car les évènements pX “ nq

pour n P N sont deux à deux incompatibles),

donc par inégalité, on bien l’affirmation.
De même, la famille

`

ykP pY “ kq
˘

kPN est sommable.
Alors, par produit de sommes de familles sommables, on a

GpX,Y qpx, yq “

`8
ÿ

n“0

`8
ÿ

k“0

xnP pX “ nqykP pY “ kq “

˜

`8
ÿ

n“0

xnP pX “ nq

¸˜

`8
ÿ

k“0

ykP pY “ kq

¸

“ GXpxq ˆ GY pyq.

5) On sait, pour tout u Ps ´ 1, 1r,

lnp1 ´ uq “ ´

`8
ÿ

n“1

un

n
.

Or, pour tout x P r´1, 1s, comme p Ps0, 1r, on a

|px| ď p ă 1,

on peut donc poser u “ px dans l’égalité précédente.
Donc, pour tout x P r´1, 1s,

Gpxq “ ´
1

lnp1 ´ pq

`8
ÿ

n“1

ppxqn

n
“

`8
ÿ

n“1

´
1

lnp1 ´ pq

pn

n
xn.

Analyse : supposons que G soit la fonction génératrice d’une variable aléatoire X à valeurs dans N. Alors pour
tout x P r´1, 1s,

GXpxq “

`8
ÿ

n“0

P pX “ nqxn.

On a donc l’égalité
`8
ÿ

n“0

P pX “ nqxn “

`8
ÿ

n“1

´
1

lnp1 ´ pq

pn

n
xn

pour tout x P r´1, 1s. Comme r´1, 1s est un intervalle non trivial contenant 0, l’unicité des coefficients donnent

PpX “ 0q “ 0 et @n P N˚, P pX “ nq “ ´
1

lnp1 ´ pq

pn

n
.
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Synthèse : réciproquement, N est dénombrable, pour tout n P N˚, ´ 1
lnp1´pq

pn

n ě 0 (car 1 ´ p Ps0, 1r), et

0 `
ÿ

nPN˚

´
1

lnp1 ´ pq

pn

n
“

lnp1 ´ pq

lnp1 ´ pq
“ 1,

donc il existe bien X variable aléatoire de loi donnée par

XpΩq Ă N, P pX “ 0q “ 0, @n P N˚, P pX “ nq “ ´
1

lnp1 ´ pq

pn

n
.

De plus, pour tout x P r´1, 1s, on a alors

GXpxq “

`8
ÿ

n“0

P pX “ nqxn “ 0 `

`8
ÿ

n“1

´
1

lnp1 ´ pq

pn

n
xn “ ´

1

lnp1 ´ pq

`8
ÿ

n“1

ppxqn

n
“

lnp1 ´ pxq

lnp1 ´ pq
“ Gpxq.

Donc G est la fonction génératrice de X.
6) On sait, pour tout t P r´1, 1s,

GZptq “
pt

1 ´ p1 ´ pqt
.

Puis, pour tout px, yq P r´1, 1s2,

GpX,Y qpx, yq “ EpxXyY q “ EpxXyZ`Xq “ E
`

pxyqXyZ
˘

.

Puis, X et Z sont indépendantes, donc toute fonction de X est indépendante de toute fonction de Z, ce qui
donne pxyqX et yZ indépendantes.
De plus, on a

ˇ

ˇpxyqX
ˇ

ˇ ď 1 et
ˇ

ˇyZ
ˇ

ˇ ď 1 (car |xy| ď 1 et |y| ď 1), avec 1 qui est d’espérance finie, donc par
inégalité, pxyqX et yZ sont d’espérance finie.
Donc on a

GpX,Y qpx, yq “ E
`

pxyqXyZ
˘

“ E
`

pxyqX
˘

E
`

yZ
˘

“ GXpxyqGZpyq “ GpxyqGZpyq “
lnp1 ´ pxyq

lnp1 ´ pq

py

1 ´ p1 ´ pqy
.

Exercice 29. Pour tout t P r´1, 1s, par linéarité de l’espérance (et car on sait que tX a une espérance finie),

GX`1ptq “ E
`

tX`1
˘

“ E
`

t ¨ tX
˘

“ tE
`

tX
˘

“ tGXptq .

Pour tout t P r´1, 1s,
G2Xptq “ E

`

t2X
˘

“ E
`

pt2qX
˘

“ GXpt2q .

Une démonstration à partir des sommes : pour tout t P r´1, 1s,

GX`1ptq “

8
ÿ

n“0

PpX ` 1 “ nqtn “

8
ÿ

n“0

PpX “ n ´ 1qtn “
k“n´1

8
ÿ

k“´1

PpX “ kqtk`1 “ t
8
ÿ

k“0

PpX “ kqtk “ tGXptq

(en utilisant que PpX “ ´1q “ 0 car X est à valeurs dans N).
Pour tout t P r´1, 1s,

G2Xptq “

8
ÿ

n“0

Pp2X “ nqtn “
ÿ

nPN
n “ 2k pair

Pp2X “ nqtn `
ÿ

nPN
n “ 2k ` 1 impair

Pp2X “ nqtn “

8
ÿ

k“0

Pp2X “ 2kqt2k ` 0

(car p2X “ 2k ` 1q “ H pour tout entier k P N), et donc

G2Xptq “ GXpt2q .
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