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TD16 - FONCTIONS DE PLUSIEURS VARIABLES

Exercice 1. Soient ¢ : R — R de classe C! et 1, 11, 15 : R? — R trois fonctions de classe C'. Déterminer les
dérivées partielles d’ordre 1 des fonctions suivantes :
L f(z,y) = ¢(z°y + 2y?)
2. g(z,y) = ¥(cos(xy),ye”)
3. h(w,y) = (v1(2*, ¢(xy)), o (a?y, y?e?)).
_z’y

Exercice 2. Soit f : R? — R définie par f(x,y) = { 84+y2 o (@
siox

Y

9

) # (0,0)

y=20

1. La fonction f posséde-t-elle en (0,0) des dérivées partielles ?

2. Plus généralement, pour h € R? non nul, est-ce que f a une dérivée en (0,0) selon h?

3. La fonction f est-elle continue en (0,0) ?
zt+yt .
Exercice 3. Soit f : R? — R définie par f(x,y) = { 2°+v° o (@.y)
0 si x=y=0
1. Etudier la continuité de f sur R2.

2. f est-elle de classe C! sur R??

Exercice 4. Soit f la fonction définie sur R? par : f(z,y) = % si (x,y) # (0,0) et £(0,0) =0.
1. Vérifier que f est continue en (0,0).
2. (a) Montrer que f est de classe C! sur R2.

(b) Calculer aa;gy (0,0) et aa;a]; (0,0). Que peut-on en conclure ?

Exercice 5. Soit f : R* — R de classe C?, et g(r,0) = f(r cos(f), rsin(d)). On pose :

2 2
ap=1+%d

= St 5 = A + B0,

2 2 . Lo, .
1. Calculer g—g, %, %, % en fonction des dérivées partielles de f.

2. Exprimer A(f) en fonction des dérivées partielles de g.

Exercice 6. Déterminer les fonctions f de classe C! sur un ouvert Q convexe telles que : pour tout (x,y,2) € Q,

0
1. %(:c,y,z)zO
2. ‘;—Z(x,y,z)zx—l—y—i-z
0 0 0
3. (w,y,2) =3, d(ey2) =y +zet Lla,y,2) =y +=

Exercice 7. A I'aide du changement de variable = u — v et y = v, trouver toutes les fonctions f € C2(R?,R)
vérifiant
0% f
o0x?

0% f 0% f

(z,y) —2 (x,y) =0

Exercice 8. Soit U l'ouvert U = {(ZE, y)eR?: x> ()}. A T’aide d’un passage en coordonnées polaires trouver les
fonctions f de classe C! sur U telles que :

xa—f(x )+ a—f(x )—L
5s W) T Y5, @) = s

Exercice 9. Soit f : (z,y) € R? — (22 —y)(32% —y) € R2. Montrer que la restriction de f a toute droite contenant
(0,0) atteint un minimum strict en 0 mais que f n’atteint pas d’extremum en (0, 0).
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Exercice 10. Montrer que ces fonctions sont de classe C? sur leur ensemble de définition, puis étudier les extrema
locaux :

L. f:(z,y) — 2* + y* — 2(x — y)? sur R?

T 2
2. g: (.'If,y) —> W sur (Ri)
3. £ (z,y) — zyIn(z? + y?) sur R2\{(0,0)}

Exercice 11. Déterminer les extrema locaux des fonctions qui suivent :
1. f:R? — R est définie par : (z,y,2) — 22 + y — 22 + Szyz.
2. f:R3 — R est définie par : (z,y, 2) — z* + 222 + y? + 422 — 22y + 2yz + 82 + 2y — 1.

n n 2 n
Exercice 12. Pour n > 2 donné, soit f : (z1,...,2,) € R" — Z Th+ (Z xk> — Z Tk
k=1 k=1 k=1

1. Justifier que f est de classe C? sur R™ et calculer ses dérivées partielles premiéres.
2. Montrer que f admet un unique point critique A = (ay,...,a,) que on déterminera.

3. (a) Déterminer la matrice hessienne de f en A en fonction de la matrice J € M,,(R) dont tous les coefficients
sont égaux a 1.

(b) Déterminer rg(.J) et calculer JU ou U € M, 1(R) a tous ses coefficients égaux a 1. En déduire Sp(J).
(c) Montrer que f admet en A un extremum local dont on précisera la nature et la valeur.
(d) Veérifier que 'extremum précédent est global.

Exercice 13. On considére la fonction f : (z,y) — 222 + y? — 22y + 2z — 2y + 1.
1. Déterminer le point critique a de f.

2. Quel est le signe de q(hi, ha) = 2h? — 2h1he + h3? (On pourra transformer Uezpression a l'aide de l'identité
remarquable a® + 2ab = (a + b)? — b?).

3. Soit h = (h1, ho) € R2. En considérant la fonction ¢ : t € R — f(a +th), montrer qu’il existe @ €]0, 1] tel que
fla+h) = fla) +{Vf(a+0h),h)
(c’est le produit scalaire usuel de R?). En déduire que f posséde un minimum global strict en a.

Exercice 14. Soit f: (z,y) e R* —» -3z + Iy +ay + 2% —y? e R.
1. Justifier existence d’un maximum et d’un minimum global sur [0, 1]2.

2. Les déterminer.

Exercice 15. Soit D = {(z,y) e R* : 2> +3* < 1}, B = {(z,y) e R? : 2 + y*> < 1} et f: (w,y) € D
V1—22—9y2eR.
1. Montrer que D est un fermé borné de R? et B un ouvert de R2.

2. Montrer que f est continue sur D. En déduire I'existence d’'un maximum global et d’un minimum global de
fsur D.

3. Montrer que f est de classe C! sur B, et étudier ses points critiques sur B. En déduire I'un de ses extremums
globaux.

4. En faisant I’étude sur le bord de D, déterminer lautre (ou les autres) extremum global de f.

Exercice 16 (maximum de vraisemblance).
1. Une urne contient une proportion p de boules blanches, p’ = 1 — p de boules noires, avec p €]0, 1[.
On effectue n tirages successifs d’une boule avec remise dans cette urne. Soit (ni,ng) € N2, ni 4+ ng = n.
Quelle est la probabilité d’obtenir n; boules blanches (et ng noires) 7 On note f(p) cette probabilité.
Pour quelle(s) valeur(s) de p cette probabilité est-elle maximale ?

2. On effectue a présent n tirages successifs d’une boule avec remise, dans une urne contenant des boules de k

k
couleurs différentes (avec k > 2), en proportion p1, pa, ..., P, telle que Z p; = 1, et pour tout i € {1,...,k},
i=1
p; €]0,1[. (n1,...,nk) est un k-uplet d’entiers strictement positifs dont la somme vaut n.
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(a) Quelle est la probabilité f(pi,...,pr) d’obtenir la répartition (n1,...,ny) en n tirages?

k
(b) On étend f a F = [0,1]* n {(pl, ...,pE) ERE: Zpi = 1} par la méme formule. Justifier que f a un
i=1
maximum global a sur F', et que ses coordonnées sont toutes dans |0, 1[.
k—1
(c) Soit ouvert Q =]0, 1[F~1n {(3:1, ey Th—1) Z x; < 1} de R¥=1 et H la fonction
i=1
H:(x1,...,25-1) EQ+—1In (f(xl,...,xk_l,l -y — - —ﬂUk—l))-
Montrer que si a = (ay, ..., a) est un maximum global de f sur F', alors (aq,...,ar—1) est un maximum

global de H sur ().

(d) Déterminer les points critiques de H sur 2. Conclusion ?

Exercice 17 (CCP 2011 Officiel de la Taupe).
1. Montrer que I'ensemble E, des applications f de classe C! sur R? a valeurs dans R et vérifiant :
VieRY, V(z,y,2) e R  f(tw,ty,tz) = t*.f(z,y,2)
est un sous-espace vectoriel de C!(R3).
2. Montrer que, si f € F, est C2, % eF, 1.
3. Montrer que pour tout f € Fy, f(x,y,z) = f(0,0,0). Que peut-on en déduire sur Ey?
4. Soit f de classe Ct, telle que pour tout (z,vy,2) € R3,

0 0 0
ﬂ:afi(fc,y, z) + ya‘;(w,yv z) + Z{%(ﬂ:,y, z) = af(z,y,2).

Montrer que g, donnée par g(t) = f(tx,ty,tz) —t® f(x,y, z) est dérivable sur R et que tg’ = ag. En déduire
que f e E,.
La réciproque est-elle vraie ?

Exercice 18 (CCP 2009 Officiel de la Taupe - exo 2). Déterminer toutes les fonctions de R? dans R, de classe C!,

vérifiant 5 5
o L of

ox 5yf

(on pourra utiliser le changement de variables u =z + y, v =  — y).

Exercice 19 (CCP 2014 (ODLT) - exo 2). Trouver les extrema, s’ils existent, de f(z,y) = 22 + y®> + 2y — bz —y
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Solutions

Exercice 1.
1. L’application
(z,y) e R* - 2%y + 2 e R
est de classe C! sur R? car polynomiale. De plus Iapplication ¢ est de classe C* sur R, donc par composition,
I'application f est de classe C! sur R? et, pour tout (x,y) € R?,

of of

5o (@y) = 2oy + y*) e (2%y + zy?) et afy(x, y) = (2% + 3zy?) ¢ (2°y + 2y°)

2. Les applications
(z,y) e R* > z e R, (z,y)eR* > yeR et (z,y) e R* > zyeR

sont de classe C' sur R? car polynomiales.
Puis, les fonctions cos et exp sont de classe C! sur R, donc par composition, les fonctions

(z,y) e R* > cos(zy) et (z,y) —€”

sont de classe C! sur R?.
Puis, par produit de fonctions de classe C!, la fonction

(z,y) — ye”

est de classe C! sur R2.

Puis, la fonction 1 est de classe C! sur R?, donc par composition (régle de la chaine), la fonction g est de
classe C! sur R?, et pour tout (z,y) € R?,

g g

ox oy

0 0 0
2 (o) = —ysinlay) 5 (cos(a) ye”) + e 5 (costan). )| et | 54w, y) = —wsinfay) 5 (cos(an). ) + e

. Les applications

(1,9) e R >aeR,  (r,y)eR2oyeR,  (0,p)eR2—y?cR,  (2,9)eR>>a?cR,  (z,9) R

et
(z,y) e R? - zy e R

sont de classe C! sur R? car polynomiales.
Puis, les fonctions exp et ¢ sont de classe C' sur R, donc par composition, les fonctions

(r,y) eR? > e” et (2,y) e R? > (ay)
sont de classe C! sur R?.
Alors, par produit de fonctions de classe C' sur R?, 'application
(z,y) € R? > g

est de classe C! sur R2.
Comme les fonctions 11 et 19 sont de classe C! sur R?, par composition (régle de la chaine), les applications

(z,y) e R? > 1 (2%, d(zy)) et (z,y) € R? > o2y, y’e")

sont de classe C1 sur R2.
Les fonctions coordonnées de h sont donc de classe C! sur R2. Donc la fonction h est de classe C! sur R2.
Puis, pour tout (z,y) € R?,

oh 0 0 0 0

S = (2050 o) + 0/ an) G 0lon) 200 32 e 2 )
oh 0 0 0
o) = (20 o) S ) 2 S ) 4 2 T e )
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Exercice 2.

1. «On a F(h0) — £(0.0)
h—0 =00

donc la fonction f a une dérivée partielle suivant la premiére variable en 0, et

of
a—x(0,0) =0
none F(0.1) - £(0.0)
h—0 =0
donc la fonction f a une dérivée partielle suivant la deuxiéme variable en 0, et
of
—(0,0) =01
ay( Y )
2. Soit h = (a,b) € R? avec h # (0,0).
eSib#0,0na
f(th) = f(0,0)  2a2tb  a% a?
t—20 Ct(that +1202)  t2at + b2 >0 b
Donc la fonction f a une dérivée en (0,0) selon h, qui vaut
2
a
th(0,0) = ? .
e Sib=0,alorsa#0etona
f(tn) = f0,0) o

t—0 t—0

Donc la fonction f a une dérivée en (0,0) selon h, qui vaut

| D1f(0,0) = 0},

3. NON. On a vu « qu’on est dérivable (donc continue) en (0,0) si on se déplace sur les droites ». Mais si on se
déplace sur une parabole bien choisie, c’est faux : on a

2

F0,)=0—0 et  fvee)=— =

e—0 - 262 7 0.

1 1
2 e—0 2
Donc la fonction f n’a pas de limite en (0,0) (si la limite existait, alors

lim f(0,e) et lim f(+/e,e)

e—0 e—0
devraient étre égales (et égales a cette limite)...), donc la fonction f n’est pas continue en (0, 0).

Exercice 3.

1. La fonction f est continue sur (I'ouvert) R*\{(0,0)} comme quotient de deux polynémes (donc continus)
dont le dénominateur qui ne s’annule pas sur R?\{(0,0)}.
Etude en (0,0) : On a pour tout (z,y) :
f <t byt 4+ 2277 = (2F )2
Donc, pour (z,y) € Rz\{(0,0)},

0<|f@y) < @+ =) - 00—
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(en effet, dire (z,y) — (0,0), c’est par définition dire |(z,y) — (0,0)|| — 0 pour n’importe quelle norme (car
R? est de dimension finie), en particulier pour la norme |.|z).
Donc le théoréme des gendarmes donne

flz,y)  — 0= f(0,0),

(z,y)—(0,0)

autrement dit, la fonction f est continue en (0,0).

Donc la fonction f est continue sur R?.

Remarque. On peut aussi passer en polaire : pour (x,y) # (0,0), on pose

x = rcos(h), y = rsin(6) avec r=/x%+y?,

alors
f(z,y) = r*(cos*(0) + sin(0)), et donc 0 < |f(z,y)| < 2r?,

or (z,y) — (0,0) équivaut & r — 0 (car r = /22 + y? = \/(x — 0)2 + (y — 0)% = |(x,y) — (0,0)|,), et donc
par le théoréme des gendarmes,

r—

et on retrouve que la fonction f est continue en (0,0).

2. e La fonction f est de classe C! sur (I'ouvert) R*\{(0,0)} comme quotient de deux polynémes (donc de classe
C') dont le dénominateur qui ne s’annule pas sur R*\{(0,0)}.

e Calcul de %(0,0) :
f((O, 0) + (1, 0)) — f(0,0)

t =t
Donc of
0.0 =
e Calcul de %(0,0) :
£((0,0) + (0, 1)) — £(0,0) _ f o
t t—0
Donc of
a—y(0,0) = 0.
e Pour (z,y) # (0,0),
of 423 (2% + %) — 2z(2* + y)
%(l‘ay) = (@2 + 42)2 )
donc (en réutilisant 'inégalité trouvée a la premiére question) :
2
0| L] < 5l v el < loal | o

(car 22 < 22 + y?). Donc le théoréme des gendarmes donne

of of
ar — 0=%(0,0
oz (@) (z,y)—(0,0) 830( 0),

autrement dit, la fonction % est continue en (0,0).

Remarque. La aussi, on peut passer en polaire si on préfére (c’est plus simple & manipuler), comme illustré
ci-dessous.



Fauriel - PC - Mathématiques TD16 - FONCTIONS DE PLUSIEURS VARIABLES

e Pour (z,y) # (0,0),

Of (g = W@ +0) ~ 2y(z* +y*)

oy (2% +y?)? ’
donc en posant z = rcos(f), y = rsin(f) avec r = 1/2% + y2, on a :
of .3 . 4 .4
a—(m,y) = 4rsin®(#) — 2rsin(9) (cos* () + sin*(0)),
Y
et donc, par inégalité triangulaire (et car [cos| <1, |sin| < 1) :
0< ‘gi(:c y)‘ <4r+2r><2=8r30.
Donc le théoréme des gendarmes donne
0 0
T — 0=Zw00
oy (:y)=(0.0) 0y

of

, est continue en (0,0).

(car « (z,y) — (0,0) » est la méme chose que «r — 0 »), autrement dit, la fonction 3
e Donc, par définition, la fonction f est de classe C* en (0,0), et donc sur R2.

Exercice 4. 1) On passe en polaire : pour (z,y) # (0,0), on pose

x = rcos(6), y = rsin(6) avec r =22+ y>?,

alors :

f(z,y) = 1% cos(0) sin(6) ( cos®(0) — sin*(0)),

donc, par inégalité triangulaire (et car [cos| < 1, |sin| < 1) :

0 < |f(z,y)| < 2r* —0,
r—0

donc

f x,y N 0= f Oa 0

(.9) (z,y)—(0,0) (0.0)

(car T=y 2 ty = \/(x _0)2 + (y _0)2 = H(«fﬂ,y> - (O7O>
«r — 0»), donc la fonction f est continue en (0, 0).
2a) La fonction f est de classe C! sur (Iouvert) R*\{(0,0)} comme quotient de deux polynémes (donc de classe
C') dont le dénominateur qui ne s’annule pas sur R?\{(0,0)}.
e Calcul de %(0,0) :

5 donc « (x,y) — (0,0) » est la méme chose que

£((0,0) +¢(1,0)) — f(0,0)

=0—0.
t t—0
Donc of
%(070) =
e Calcul de & (0 0) :
f((0,0> +t(071)) —f(0,0) =0—0
t B t—0 )
Donc of
@(0,0) = 0.

e Pour (z,) # (0,0),
o (2 (32%y — y°)(2® + y*) — 2z(2® — y*)ay
“(x,y) =

oY (22 +y?)?

donc en passant en coordonnées polaires (comme a la premiére question), on a par inégalité triangulaire (et car
|cos| <1, |sin| <1):

I

of
ox

r—0

—(x y)‘<8r—>0,
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donc of
- — 0= 0,0
0 (fIJ, y> (z,y)—(0,0) ox ( )

Donc la fonction ﬂ est continue en (0,0).

e Pour (z,y) # (0 O)

g(l’,y) _ (=3zy® 4+ 2%)(2? + y?) — 2y(2® — yP)ay

o @+ P /
donc en passant en coordonnées polaires, on a par inégalité triangulaire (et car |cos| < 1, |sin| < 1) :
of
'l < — 0,
‘é’y (x, y)‘ 8r B 0
donc of of
= (z,y) — =-(0,0).
oy @—00 Y

Donc la fonction % est continue en (0,0).

e Donc la fonction f est de classe C! en (0,0), et donc sur R?.
2b) Pour tout x € R*, g—g(x,O) =z, donc

2 f of Lo -0 ¢
8:176y(0’0) ox <6y> (0,0) = hH(l) t—0 B lg%i =1

t—

Pour tout y € R*, gf:((), y) = —y, donc

% f of do,y-Lo0 ¢
ooz 0 = 3, <ax)(0 0) = lim t—0 = lim — =[]

Donc
*f *f
oxdy 0yox
contredit la conclusion du théoréme de Schwarz. On peut en conclure (en contraposant le théoréme de Schwarz)
que la fonction f n’est pas de classe C? en (0,0).

(0,0) #

(0,0),

Exercice 5.

1. Par composition, la fonction g est de classe C? sur R?, et pour tout (r,0) € R?, en utilisant le théoréme de
Schwarz

* g—f(r,ﬁ) = COS(Q)%(T’ cos(6),rsin(0)) + sin(&)%(r cos(6), 7 sin(6))
* 55(r,0) = —rsin(0) &L (r cos(6), rsin(6)) + r cos(0) &L (r cos(6), r sin(6))

2

a—g(r 0) = cos%@)%(r cos(6),rsin(0))+2 cos(6) sin(@)%(r cos(0), rsin(@))+sin2(9)%(r cos(0), 7 sin(6))

* gzg (rcos(f),rsin(f)) = —rcos(d) % (r cos(6),rsin(F)) — rsin(6) % (r cos(6),rsin(f)) + r?sin*(6) gi]; (r cos(0

52 2
&"Uﬁfy (rcos(9),rsin()) + r2 cos?(# )8 J;

—2r2 cos(6) sin(6) (r cos(6),rsin(6))

Remarque. Pour plus de lisibilité, on peut éviter d’écrire les arguments des fonctions :

N 99 _ oy
8y 20 = rsin(f) o + rcos(f) ==

of
oy
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029 o, O%f N A PPNl |

52 = Cos (9)$ + 2 cos(f) sm(@)axay + sin (H)a—y2
&g of . of 2 i2 >f 2 : *f 2 a2 *f
2 =" COS(@)% — rsin(0) 2 + r“sin (9)@ — 2r° cos(#) sin(0) 220y + 1< cos (H)a—y2

2. Donc, afin d’exploiter la relation cos? +sin? = 1, on calcule :

%9 %y PPf | ,0°f 0y
2Y J I 2Y J 2v J YT
Tt T e T e T o

ce qui donne

Py 17 10

A(f)

T oz 2002 T ror|

Exercice 6. Sur un ouvert quelconque, on peut avoir % = 0, bien que f(z,y,z) dépende de z! L’hypotheése

« convexe » est 1a pour éliminer ce probléme (car les raisonnements fait s’appliquent en se ramenant a I’étude de
la fonction sur un segment, ce qui est possible car le segment reste ici inclus dans  par convexité).

1)
of
or
g étant une fonction quelconque de classe C! (défini sur I'ensemble des (y, z) € R? tels qu’il existe un = € R avec
(z,y,2) € Q, c’est bien un ouvert de R2...) puisque l'on veut f de classe C' sur Q. Montrons ceci & I'aide d'un
raisonnement par analyse/synthése.

Analyse : en effet, pour une fonction f qui vérifie ’équation, pour tout (zo,yo, 20) € 2 et (21, Yo, 20) € 2 fixés, si
I’on considére

0swr Qe 3g:V(m,y,2) e Q: fwy,2) = gy, 2),

¢:tel0,1] — f(two + (1 —t)z1, Y0, 20)

(bien défini car € est convexe et car

(tzo + (1 — t)z1, 0, 20) =t (w0, Y0, 20) + (1 —t) - (x1,0, 20)

avec t € [0,1], ce qui assure que (two + (1 —t)x1, yo, zo) est un élément d’un segment entre deux points de ), alors
la fonction ¢ est de classe C! par la régle de la chaine, et pour tout t € [0, 1],

& (1) = (e —0) 2 (2 + (1~ 1), 0, 20) = 0

donc la fonction ¢ est constante sur I’intervalle [0, 1]. Donc

f(z1,90, 20) = $(0) = ¢(1) = f(0, Yo, 20)-

Donc la fonction f est constante sur {(z, yo, 20) tel que z € R et (x, o, 20) € U}. On note alors cette valeur g(yo, 20).
g est alors C!, car f I'est (pour le justifier proprement, cela nécessiterait d’exploiter la définition d’ouvert, et le fait
qu’une boule ouverte est un convexe...).

Synthése : il est direct que si f ne dépend pas de z, alors % = 0 sur ...

2) La fonction f vérifie ’équation si et seulement si f est de la forme

2
Fiey,2) = ay+ 5+ 2y + (o, 2),
g étant une fonction quelconque de classe C! (défini sur 'ensemble des (z,2) € R? tels qu'il existe un y € R avec
(z,y,2) € Q, c’est bien un ouvert de R2...).
En effet, en considérant la fonction
y?
¢ (x,y,2) = f(2,y,2) — 2y — 5 Y

(de classe C! sur Q), on a :
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f vérifie I’équation sur §2 = % = 0 sur €2,
et on se raméne a une situation similaire au premier cas (puisque 2 est convexe).
3) La fonction f vérifie I'équation si et seulement si f est de la forme

y? 22
f:(m,y,z)v—>3x+?+yz+?+0,

C étant une constante quelconque.

En effet, en considérant
Y2 52
6 (,2) = Sy ) =30 =L —ye - 2
(de classe C* sur Q), on a

fri troig é f NS 9% _ 9 _ 9% _ (g
f vérifie les trois équations sur €2 = o = oy~ 0n = 0 sur le convexe €2,

ce qui est équivalent &
¢ = constante

d’aprés le cours.

Exercice 7. Pour tout (z,y,u,v) € R,

r=u—"v u=x+Yy
=
y=v v=Y

Soit f une fonction de classe C? sur R?, a valeurs dans R. On veut définir une fonction g de sorte que

«g(u,v) = f(z,y) ».
On pose donc
g:(u,v) e R?* - f(u—wv,v) eR.
Comme les fonctions
(u,v) »u—v et (u,v) — v

sont de classe C% sur R? (car polynomiales), par composition, la fonction g est aussi de classe C2 sur R2.
De plus, pour tout (z,y) € R?, on a
flzy) =g(z+y,y),

donc la régle de la chaine donne :

of _ 9% _ 9% of _ % & _ 9% 99
ax(%‘,y) = au(wﬂ/,y) = au<“’”) et ay(%,y) = au(w+y,y)+ av(“y,y) = au(u,v)Jr 3 (u,v)

En appliquant & nouveau la régle de la chaine, on a :

o%f %g o f %g %g 0% f 0%g 0%g 0%g
Ox? (z,9) ou? (w,0), oyox (z,9) ou? (u,0)+ ovou (u,v) ¢ Oy? (z,v) ou? (1, 0)+ ovou (u,0)+ ov? (,
Remarquons que la fonction
(z,y) € R? = (u,0) = (z +y,y) € R?
est bijective (de bijection réciproque (u,v) € R? — (u —v,v) = (z,y) € R?), donc
(x,7) parcourt R? = (u,v) parcourt R2
En réinjectant, on a :
f est solution de 'EDP sur R? < %(x,y) — Qaa;gy (z,y) + g%g(x, y) = 0 pour tout (z,y) € R?
%g 0%g 0%g 0%g 0%g 0%g
< W(u,v) - 2m(u,v) - 2avau(u,v) + w(u,v) + Qavau(u,v) + w(u,v) = (
pour tout (u,v) € R?
< g%g(u, v) = 0 pour tout (u,v) € R

7
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Comme R? est convexe, on en déduit
f est solution de 'EDP sur R? <« il existe A € C}(R,R) avec S—g : (u,v) — A(u)
< il existe A € CY(R,R) et e CH(R,R) avec g : (u,v) — A(u)v + pu(u).
Comme on veut f et donc g de classe C2, on veut
AeCYR,R) et pe C*(R,R)

(car la fonction
s g(u,0)
est de classe C? par composition, puis la fonction
At glu, 1) — p(u)

est de classe C? par composition puis soustraction). Ainsi

f est solution de 'EDP sur R? < il existe A € C?(R,R) et p € C?(R,R) avec ‘ fi(z,y) = NMe+y)y+ ple+y) ‘

Exercice 8.
On veut passer en coordonnées polaires, donc écrire

« f(z,y) =g(r,0)»

si (r,0) sont les coordonnées polaires de (z,y).
Pour (x,y) € U, on pose 1 = y/22 +y?, onar >0 (car r > Va2 = |z| =z > 0 car (z,y) € U) et on veut 6 tel que

cos(0) = 7
sin(f) = £
Comme x > 0 (car (z,y) € U), on peut prendre
T
oe =33l

Réciproquement, si 6 € ]—g, %[, alors pour tout r > 0,
(z,y) = (rcos(d),rsin(9)) € U.
On peut donc noter V = R x ]—%, g[, et poser
g:(r,0)eV — f(r cos(@),rsin(@)),
ainsi si (z,y) = (rcos(d),rsin(f)), on a bien

« f(z,y) =g(r,6) ».

Puis, les fonctions
(r,0) — rcos(f) et (r,0) — rsin(f)

sont de classe C! sur V (par composition et produit...), donc pour f fonction de classe C! sur U, par composition,
on aura la fonction g de classe C! sur V, et par la régle de la chaine : pour tout (r,0) € V,

g of of g

) ) . . of of
%(r, 0) = COS(@)%(T cos(@),rsm(@))—l—sm(ﬁ)@(r cos(0),rsin(9)), soit S

(r,0) = fC%(w, y)ﬂ/@(%y)-

Puis, on a remarqué que, pour (r,0) € V, on a (z,y) = (7“ cos(&),rsin(@)) € U, et que réciproquement, pour tout
(z,y) € U, il existe (r,0) € V avec (z,y) = (rcos(d),rsin(f)) € U. On en déduit que

8
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« (z,y) parcourt U » < « (r,0) parcourt V' »

(avec la relation (z,y) = (rcos(d),rsin(d)), qui donne en particulier cos(d) = £ = \/%) Donc
a2ty

f est solution de 'EDP sur U < pour tout (x,y) € U, x%(w, y) + y%(m,y) = z§+y2

< pour tout (r,0) eV, r%(r, 0) = cos(6)

cos(0) '

< pour tout (r,0) e V, g—g(r,H) =
Posons alors
h:(r,0)eV i g(r,0)— cos(d)In(r).
La fonction h est de classe C! sur V (par opérations usuelles...), et pour tout (r,6) € V, on a

oh dg

cos(0)
E(T,@) = g(r, 0) — .

r

Ainsi (car R% x |—Z, Z[ est convexe), on a :

f est solution de 'EDP sur U < pour tout (r,0) € V, %(T, 0) =0

< ilexisteveC! (]-%,%[,R) (quelconque) avec h : (r,0) € V > v(6)

ISIE

< ilexiste veC! (]-%,5[,R) (quelconque) avec g : (r,8) — cos(d) In(r) + v(6).

Le programme officiel demande de s’arréter ici. On peut cependant revenir facilement a f dans ce cas précis :
Soit (r,8) € V, alors si on note (z,y) = (rcos(d), rsin(f)), on a

x>0 et v_ tan(6).
x

Comme 6 € ]—g, g[, on conclut :

0 = arctan (%) .
Alors

f est solution de FEDP sur U < il existe v € C* (]—g, g[,R) (quelconque) avec

fi(z,y) elUw— \/xngzﬂ x In <«/9:2 +y2) + v o arctan (%)

x 1

Wxiln(ﬂ%—gﬂ)%—w

< il existe w € C}(R,R) (quelconque) avec f : (z,y) —

(car v e Ct (]—%, g[,R) — w = v o arctan € C}(R, R) est bijective, de bijection réciproque w + w o tan).

Exercice 9.
* Soit D une droite passant par (0,0) et de vecteur directeur (a,b) avec b # 0 : alors, pour tout (z,y) € R?,

(x,y) e D < JteR: (x,y) = (0,0) +t(a,b).

On pose
¢:teR— f((0,0)+t(a,b)) = (ta® — tb)(3t%a® — tb) = 3t'a" — 4t3a®b + 7.

Alors la fonction ¢ est dérivable sur R et
¢'(0) =0, et ¢"(0) = 20> > 0.

Donc la fonction ¢ atteint un minimum strict en 0 (si ¢’est pas clair, faire le tableau de variations des fonctions ¢
et ¢’ au voisinage de 0 : ¢”(0) > 0 donne par continuité de ¢” en 0 que ¢” > 0 sur un voisinage de 0 de la forme
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| —e,e[ avec e > 0, donc ¢’ est strictement croissante sur | — e, e[, et comme ¢/(0) = 0, c’est que ¢’ < 0 sur | —e,0[
et ¢’ > 0 sur ]0,e[, ce qui donne ¢ strictement décroissante sur | — e, 0] et strictement croissante sur [0, e[, d’on
affirmation). Donc la fonction f atteint un minimum strict sur D, en (0,0).

Pour la droite D(, ) avec a # 0, on pose alors

¢ :t— f((0,0) +t(a,0)) = 3t*a’,

et sous cette forme, il est direct que la fonction ¢ atteint un minimum strict en 0, donc la fonction f atteint bien
un minimum strict sur Dy, o) en (0,0).
* Montrons que la fonction f n’atteint pas d’extremum en (0,0) : pour tout e > 0 (aussi proche que 'on veut de
0),

f(e,0) = 3e* > 0= £(0,0),

donc (0,0) ne peut pas étre un maximum local de f, et
fle,2¢?) = —e* < 0= £(0,0),

donc (0,0) ne peut pas étre un minimum local de f.
Donc f n’atteint pas de minimum en (0, 0).

Remarque. La fonction f est polynomiale, donc de classe C2 sur R2. Puis, pour tout (z,y) € R?,

f(xvy) = 3334 - 4532:1/ + y2a

donc 5 5
&—i(az, y) = 122% — 8y et a‘;(aj,y) = —4a® + 2,
et )
(362" —8y —8x
donc
00 .
H = H¢(0,0) = 0 92)° puis det(H) =0,

donc le cours ne permet pas de conclure quand a la nature de (0,0).

Exercice 10. 1) e La fonction f est polynomiale donc de classe C? sur R?. Or, R? est un ouvert, donc un point
extrémal de f sera un point critique.
e Or, pour (z,y) € R?,

gi(x, y) =42’ —d(x—y) et Zi(x, y) = 4y° + 4(z — y),
donc
of =0 o — 3 Qr = 3
(x,y) est un point critique de f < g? (@,y) = x3 y ;C 5 PN r=a
& (@y) =0 y' = —a° = (—x) y=-x

(car la fonction t — 3 est injective sur R).
Donc la fonction f a trois points critiques :

(070)7 (\/57 _\/5) et ( - \/57 \/5)
e Pour tout (x,%) € R?, la hessienne de f en (z,y) vaut

1222 — 4 4
Hf(x’y:( 1 12y2—4)
* Donc
Hf(07 0) = <_44 _44> s donc det (Hf(O, 0)) =0,

10
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donc le cours ne permet pas de conclure quand a la nature de (0,0).
Mais, pour tout z € R* (aussi petit que I'on veut),

f(z,z) =22 > 0= £(0,0),

donc (0,0) ne peut pas étre un maximum local.
Pour tout y € R* (aussi petit que 'on veut),

£(0,y) =y* —2y* < 0 = £(0,0),

donc (0,0) ne peut pas étre un minimum local.
Donc (0,0) est un point col (ce n’est pas un extremum).
% Puis,

H:=Hp(vV2,-V2) = <240 240> donc det(H) =384>0 et tr(H) = 40 > 0,

comme on est sur R?, on en déduit que f atteint un minimum local strict en (\/5, —\/5)
* Comme, pour tout (z,y) € R?,

f(_xv _y) = f(mvy)a
il en est de méme pour ( — /2, \/5)
2)e La fonction g est le quotient de deux fonctions polynomiales, le dénominateur ne s’annule pas sur l'ouvert

U = (Ri)Q, donc la fonction g est de classe C? sur U. Un point extrémal de g sera donc un point critique.
e Pour tout (z,y) e U,

@(m y): y(y_lz) ot @(w y): x(x_yQ)
ox "’ (14 2)2(1 + y)(x + y)? oy’ 1+ 2)1+y)2%(x+y)?
donc
2
—22) =0
(z,y) € U est un point critique de g = y(y )
z(x—y?) =0
et comme on se place sur U, = # 0 et y # 0, donc
_ 2 _ 2
(z,y) € U est un point critique de g = {y a:2 = {y x4 = r=y=1
x=y r=ux

(car on est sur U).
e Pour tout (z,y) € U,

@@ o v —22(1+2)%(z +y)? = (y —2*) 201 + =) (z + y)* + 2(1 + 2)*(z + y))
R 1+ ) @ 1)
et
LQ( P 2y —2?) 1+ )z +y)? —yly—22)((z +y)* + 201 + y)(x +y))
oyox P T T )2 (1+y)2(x +y)
donc
02g 1-32-0 1 02g 18—0 1
V== ¢ FabtV-iw ~xm

Puis, le théoréme de Schwarz donne
"=y - L
oxoy T oyox: T 32

Enfin, remarquons que, pour tout (x,y) € R?, f(z,y) = f(y,z). Alors

0%g 0%g 1
Tyg(lal) = W(l,l) =16

11
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Donc

1 /- 1 4
H = Hg(lv 1) = 39 ( 12 _12> ) puis det(H) = 3?3 >0 et tr(H) = —— < 0.

comme on est sur R?, on en déduit que g atteint en (1,1) un maximum local strict.
3) o Sur louvert V = R*\{(0,0)}, la fonction

(z,y) = 2* + 3

est polynomiale, donc de classe C2, & valeurs strictement positives. Comme la fonction In est de classe C? sur R%,
par composition, la fonction
(z,y) = In(2® + y?)

est de classe C? sur V. Puis, par produit avec un polynéme, la fonction £ est de classe C? sur V. Un point extrémal
de ¢ sera donc un point critique.
e Pour tout (z,y) e V,

ol 9 9 2z ol 9 9 2y
a—x(x,y)zyln(x +y )+alcyx27+y2 et a—y(x,y)len(ac +y )+xym
Donc
2,2 2 .
e+ In(z* +
o y(@? +y?) In(a? + y?) = —22%y " 2 y2) ( .o
(x,y) € V est un point critique de { < < z(z® 4+ y°) In(x” +
2 2 2 2 2 Y Y
z(z® +y°) In(z® + y°) = —2y°z Ls—yLy—zLi PR
2zy(a® —y*) =0
Si x = 0, alors Ly devient 3 In(y?) = 0, donc In(y?) = 0 (car (z,y) # (0,0)), donc
y = =1
Si y =0, de méme,
r=*1.
Si x =y, on a 22°In(22?) = —223, donc
.
r=y=F\ 5
Si x = —y, on a la méme équation que pour x = y.
Réciproquement, ces valeurs sont bien solutions du systéme précédent.
Donc la fonction £ a 6 points critiques.
e Comme, pour tout (z,y) € V, on a
(_:1;7 _y) eV et E(_‘rv _y) = E('Ia y)
alors
(0,1) est de méme nature que (0, —1), (1,0) est de méme nature que (—1,0),
et

(ﬁ, ﬁ) est de méme nature que <—\/§, _\/§>

(en tant qu’extremum ou non-extremum).
Enfin, pour tout (z,y) € V, on a
(y,x) eV et lz,y) =y, @),

donc

(1,0) est de méme nature que (0,1)

12
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(en tant qu’extremum ou non-extremum).
On a donc plus que deux points a regarder.
e Pour tout (z,y) e V,

ﬂ(x - 2y day(x? + y?) — 22%y2x
g2 Y= 2 12 (@2 + 42)2
et o2/ 2 2 2,2
2y 2x 4x*y
— n(2? 4 o2 _ _
Puis, le théoréme de Schwarz donne
™ (o) = L@y
oxdy Y= oyox Yo
Enfin, pour tout (z,y) € V, on a ¢(x,y) = ¢(y,x), donc
0%l 0%
Tyg(%y) = @(ya z).
* Donc
H = Hy(1,0) = ((2) g) , donc det(H) = —4 < 0,

donc (1,0) n’est pas un extremum de f.
Remarque. En effet, pour tout y €]0, +0o[ (aussi petit que 'on veut),
{(1,y) = yIn(1 +y°) > 0 =£(1,0),

donc (1,0) n’est pas un maximum local de /.
Pour tout y €] — o0, 0[ (aussi petit que 'on veut),

((1,y) = yIn(1 + y?) <0 = £(1,0),

donc (1,0) n’est pas un minimum local de /.

[em1  [e—l 2 -1

2 2 . . —1
Remarque. On peut remarquer que aaz ;y (z,z) et g—yﬁ(x, x) se calculent bien, et remplacer ensuite x par \/g , le

calcul est ainsi plus facile...

Donc (q / %, A/ e;) est un minimum local strict de h.

Exercice 11. 1) La fonction f est polynomiale sur R3, donc de classe C2 sur R3. Donc, si la fonction f a un
extremum en un point, ce point est un point critique de f (car R3 est un ouvert).
Pour tout (z,y,2) € R3,

* Puis

%(m,y, z) = 2x + 8yz, g‘;(a:,y, z) =1+ 8zxz et %(m,y, z) = —2 + 8xy.

Puis, pour (x,y,2) € R3,

2z 4+ 8yz =0 237—1—8(&)(—8%):0 x3:% m:%
Vf(r,y,2) =0 < 1+8x2=0 < z=—8% < z=—8% < z=—
—2+8xy=0 yzﬁ y:ﬁ y:%

Donc la fonction f a un unique point critique :
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Puis, pour tout (z,v,2) € R3,

2 8z 8y
H¢(x,y,2) =8 0 8z,
8y 8x 0
donc
1 2 -2 4
H—Hf<,,—4>: -2 0 4
4 4 0
1
Puis, si X = | 1|, alors
0
I XHX = -2 <0,
1
et si X = | 0|, alors
0

EXHX =2>0.
Donc H n’est ni positive, ni négative, donc f n’a pas d’extremum local en (%, %, —i).
Remarque. Autre fagon : on a
xr =X —2X? — 36X + 96,

donc Xy =3X? —4X — 36

donc o = %ﬁ et B = %ﬁ sont racines de x’;. Le tableau de variations de x g est alors
x —o0 « 15} 400
X () + 0 - 0 +
xg(z) | o /7 >0 N\, <0 /7 ¥

xm(a) < 0 et xg(B) > 0 peuvent s’obtenir a la calculatrice, ou alors en faisant un calcul exact a la main, qui
donne

8 8
xu(e) = oo (241+112V7) >0 et xu(B) = 5 (241 - 112V7) <0
(pour la derniére inégalité, c’est directe une fois que I'on remarque /7 > 2, 5).
Comme y g est continue sur | — 00, o], xg(a) > 0 et lim g = —o0, le théoréme des valeurs intermédiaires donne
—a0
qu’il existe A €] — o0, a] racine de x g, donc
A< a<0.

Comme xp est continue sur [3,4+0[, xg(5) < 0 et 1Jirm XH = +00, le théoréme des valeurs intermédiaires donne
o¢]
qu’il existe p € [, +0o[ racine de x g, donc
w=p>0.

Donc H a une valeur propre strictement négative, une valeur propre strictement positive, et H est symétrique

réelle. Donc H n’est ni positive, ni négative, donc f n’a pas d’extremum local en (%, %, 411)

Donc f n’a pas d’extremum local

2) La fonction f est polynomiale sur R?, donc de classe C? sur R?. Donc, si la fonction f a un extremum en un
point, ce point est un point critique de f (car R3 est un ouvert).

Pour tout (z,y,2) € R3,

g‘i(az, y, z) = 4a® + 4o — 2y,

a—f(x,y,z) =2y —2x+2z+2
oy

14

et Z“j(:c,y,z)—8z+2y+8.
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Puis, pour (z,y, 2) € R3,

4a3 44z —2y =0
20 —2x+22+2=0
824+2y+8=0

Vf(z,y,2)=0 <

4a3 4+ 4z —2y =0
6y —8x =0
8z+2y+8=0

4x3—|—4x—§x:0
= 6y —8x =0

82+4+2y+8=0

3

>0

6y —8x =0
8z2+2y+8=0

$<4x2+%) =0
—_—

Donc la fonction f a un unique point critique :

(0,0,-1)
Puis, pour tout (z,y, z) € R3,

1222 +4 -2 0
Hy(x,y,2) = —2 2 21,
0 2 8

donc
4 -2 0
H=Hi0,0,-1)=[-2 2 2
0 2 8

Puis,

xi = X3 —14X? + 48X — 16, X = 3X? — 28X 4 48.

Donc, pour tout = €] — 00, 0],
Xp(z) =3 _ 2? +28 (—x) +48 =48 > 0,
>0 >0

donc la fonction polynomiale xz est strictement croissante sur | — 00, 0]. Comme 7 (0) = —16 < 0, on en déduit
xu < xu(0) <0

sur | — o0, 0]. Donc x g n’a aucune racine réelle négative.

Donc, les racines réelles de xy sont dans R%. Or, la matrice H est symétrique réelle, donc diagonalisable dans
M3(R), et donc toutes ses valeurs propres sont dans R, donc dans R* par ce qui précéde.

Donc H € 8§ 7 (R), et donc f atteint un minimum local strict en (0,0, —1), et c’est le seul extremum local de f.

Exercice 12. 1) La fonction f est polynomiale, donc de classe C? sur I'ouvert R".
Puis, pour tout i € [1,n]], pour tout (z1,...,z,) € R™,

of
ﬁxi

n
(ml,...,azn):2mi—1+22xk.
k=1

15
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n
2) Analyse : soit (z1,...,2,) € R", supposons qu’il soit un point critique de la fonction f. Notons alors o = Z T
k=1
Alors, pour tout i € [[1,n]], on a

0 af( ) =2 1+2i d L i L
= ——(21,...,%Tp) = 2z; — x onc Ty = - — Tp=— — Q.
axi 1, yn 7 k> i 5 k 5
k=1 k=1
Donc toutes les coordonnées du point (z1,...,z,) sont égales a % — «. Puis,
azzﬂfk=2<2— >=2—na,
k=1 k=1
et donc
(n+1) n it n . 1 1
n a=— soi o=— uis ——a=
2’ m+2 P 2 2n + 2

Donc, si la fonction f a un point critique, il est unique, et c’est

1 1
n+2""""2m+2)°

Synthése : pour tout ¢ € [[1,n]],

0 1 1 & 1 2 on + 2
! —2— —1+42) - Y S
Ox; \2n + 2 2n + 2 2n + 2 k:12n+2 2n+2 2n+2 2n + 2

Donc (ﬁ, ey Tl”) est bien un point critique de la fonction f.

Conclusion : la fonction f a un et un seul point critique sur R?, a savoir

1 1
A= ey .
2n + 2 2n + 2

3a) Pour tout (z1,...,z,) € R™ pour tout i € [1,n],

0% f
(971:7‘2(:(:1,...,%”):24—2: s
et pour tout j € [[1,n]], si j # 1,
i )=
xT =
axjaxz 1, s 4n
Donc
4 2 2
2
H¢(z1,...,2n) =
o
2 2 4
En particulier,
4 2 2
2
H¢(A) = =|2I,+2J|
g
2 2 4
3b) e La matrice J est non nulle, donc
rg(J) > 1.

Puis, toutes les colonnes de J sont égales entre elles, donc

rg(J) < 1.

16



Fauriel - PC - Mathématiques TD16 - FONCTIONS DE PLUSIEURS VARIABLES

Par double inégalité,

rg(J) =1|

e Comme la matrice J est de taille n avec n = 2, et que rg(J) < n, on en déduit que 0 est valeur propre de J, et
le théoréme du rang donne alors
dim(Ep) =n—rg(J) =n—1.

1
e Enfin, U = | : | est une matrice-colonne non nulle, et
1
n 1
JU=|:]=n
n 1

(la somme des coefficients de chaque ligne de J fait toujours n), donc n est une valeur propre de J et U en est un
vecteur propre associé. En particulier,
dim(E,) > 1.

e La matrice J est symétrique réelle, donc diagonalisable dans M,,(R). Donc

Z dim(E)) = n.

AeSp(J)

Or, on a vu que 0 € Sp(J) et n € Sp(J), donc (comme une dimension est positive)

n= > dim(Ex) > dim(Ep) + dim(E,) = n — 1 + dim(E,) > n.
AeSp(J)

Pour que égalité soit possible, cela force dim(E,) = 1 et pour tout A € Sp(J)\{0,n},
dim(Ey) = 0.

Mais la dimension d’un espace propre n’est jamais nul, donc Sp(J)\{0,n} = &.
Donc

Sp() = {0,n}]

3c) Comme la matrice J est diagonalisable avec Sp(J) = {0,n}, dim(Ey) = n — 1 et dim(E,,) = 1, il existe
P e GL,(R) avec

P7LAP = diag(n,0,...,0)

(on peut méme supposer P orthogonale par le théoréme spectral, mais on ne s’en servira pas ici). Alors
P'Hy(A)P = P71(2I, + 2J)P = 2P '[P + 2P~ ' JP = 2], + 2diag(n,0,...,0) = diag(2 + 2n,2,...,2).

Donc Hf(A) est semblable a la matrice diagonale diag(2+2n,2,...,2), donc ces deux matrices ont le méme spectre,
donc
Sp(Hy(A)) = {2,2 + 2n}.

La matrice H¢(A) est alors symétrique réelle, ses valeurs propres sont toutes strictement positives (car 2 > 0 et
2+ 2n > 0), donc H¢(A) € ST (R), et donc

i

‘ f atteint un minimum local strict en A
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et ce minimum vaut

n 1 2 n 1 2o 1
) = 1;<2n+2> +<2 2n+2> _22n+2

= (2n+2)2 +

n
(2n+2) T 2n+2

n+n?—n(2n+2)
(2n+2)?

—n—1

= "@nt2)2

4(n+1)

3d) Soit u = (u1,...,u,) € R™ non nul, notons U = | : ) e M,,,1 (R). Notons

p:te|0,1] » f(A+tu) e R.
[

(
Alors, par composition, la fonction ¢ est de classe C? sur [0,1], et la régle de la chaine donne, pour tout t € [0, 1],

¢’(t)=2ui§£(A+tu) et d)”(t):ZulZu]aI (At tu) = WUH(A + tu)U
i=1 v jO0Xg

i=1  j=1

(en identifiant M;(R) avec R).
Or, on a vu

Hy(A + tu) = Hy(4) € SHH(R),
donc puisque U € M,, 1 (R) et U # 0,1, on a pour tout t € [0, 1],
¢"(t) ="UH (A + tu)U > 0.

La formule de Taylor avec reste intégral donne alors

1 1

F(A+ ) — F(A) = 6(1) — $(0) = #/(0) + j (1 - )¢/ (t)dt = f (1 - )¢ (1),

0 0
car
/ 0
#0) = Y ui - (4) =0
i=1 !
=0

(puisque A est un point critique de f). Puis, la fonction
h:tel0,1]— (1—-t)¢"(t)eR

est continue sur [0, 1] (car la fonction ¢ est de classe C2 sur [0,1]), positive et n’est pas la fonction nulle, car pour
tout t € [0,1[, 1 — ¢ > 0 et ¢"(¢) > 0, donc
h(t) >0

(par produit), et
h(1) = 0.

Enfin, « 0 < 1 », donc « les bornes de 'intégrale sont dans le bon sens ». Donc, par stricte positivité de 'intégrale,

Jl(l —t)¢"(t)dt = fl h(t)dt > 0.

0 0

Donc, pour tout u € R™ non nul, on a
f(A+u) > f(A).

Donc
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‘ f atteint un minimum global strict en A ‘

Exercice 13. 1) La fonction f est polynomiale sur R?, donc de classe C? sur R2. Puis, pour tout (x,y) € R?,
(z,y) est un point critique de f < ﬁf(x,y) = (0,0)

< (4o —2y+2,—2x+2y—2) = (0,0)
dr — 2y = =2
—2x+2y =2

e (x,y) = (071)

=01}

q(h1,ha) = 2h3 — 2h1hg + h3 = b} + (hy — ha)* > 0

si (hi,h2) # (0,0) (et nul en (0,0)).
3) Notons

Donc la fonction f a un seul point critique :

2) Pour tout (hy, hg) € R2,

¢:teR > fla+th),

par composition la fonction ¢ est de classe C? sur R, et par application du théoréme des accroissements finis, il
existe 6 €]0, 1] tel que
¢(1) — ¢(0) = (1 = 0)¢'(0) = ¢'(0).

Puis, )
¢(1) = #(0) = fla+h) — fla), et ¢'(0) = (Vfa+0h),h).
Enfin,
(Vf(a+0h),hy = {O(4h1 — 2ha, —2h1 + 2h), (h1, h2)y = 20(2h} — 2h1hs + h3) = 20q(h1, h2) = 0,
et
Q(h17h2) =0 = h1 = hy =0.
Donc

fla+h) = f(a), et fla+h)=f(a) < h=0.

Donc a est un minimum global strict.

Exercice 14.

1. e L’application f est continue (car polynomiale) sur R?, [0,1]? est un fermé borné de R? et R? est un
espace vectoriel normé de dimension finie, donc par le théoréme des bornes atteintes, la fonction f admet
un maximum et un minimum global sur [0,1]? : il existe (a,b) € [0,1]? et (c,d) € [0,1]? avec, pour tout
(z,y) € [0,1]%,

fa,b) < flz,y) < fle,d).

o Justifions que [0,1]2 est un fermeé borné : pour tout (z,) € [0,1]%, on a
|z =2 <1 et lyl=y <1, donc H(f”vy)”oo <L

Donc [0, 1]? est borné ([0, 1] est inclus dans la boule unité de centre (0,0) pour la norme |.|s).
Puis, soit

fii @y eR—»1-2, fo:(z,y)eR? >z,  fy:(z,y) eR®—1-y et  fi:(z,y) eR—y.
Ce sont des fonctions continues sur R?, car polynomiales. Donc, pour i € [1, 4],
E; = {(z,y) e R*: fi(z,y) = 0} = f; ([0, +oo[)

est un fermé de R2. Donc
[0,1]> = E1 n E> n B3 n By

est un fermé de R?, comme intersections de fermés de R2.
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2. e Cherchons les extrema locaux sur 'ouvert  =]0, 1[2. Comme la fonction f est de classe C! (car polynomiale)
sur R2, et que € est un ouvert, un extremum local est un point critique. Puis, pour (z,y) € R?,

2z +y
r—2y =

| moles

D=

0
a—ﬁ(m,y) = —%+y+2x=0
(z,y) est un point critique de f < {

0
Gy =3+a-2=0
Donc (%, %) est I'unique point critique de f sur R?, et il est bien dans Q. On a

11 1
f<2’2) vy

Remarque. On peut pousser I’étude, pour voir si ce point critique est un extremum local ou non : pour

tout (x,y) € Q,
2 1

11 2 1
H=Hy <2,2> = <1 _2>, donc det(H) = -5 <0,

donc

donc (%, %) n’est pas un extremum local de f.

* Etude des extrema sur les bords du carré [0,1]? (on fera le tableau de variation de chacune des fonctions
ci-aprés) : pour tout z € [0, 1], pour tout y € [0, 1], on pose :

3 1 1
g(x) = f(z,0) = 5% + 22, h(z) = f(z,1) = —3% + 2% — 2
1 1 3
u(y) = FO.y) = gy —v*  wly) = FLy) = -5+ 5y -y
Faisons les tableaux de variations de g, h, u, v :

z |0 3 1 z |0 1 1
J'(x) - 0 + B (x) - 0 +
g(@) [0 N\ —5% / —3 h@) -3 N\ —15 /O

z |0 1 1 z |0 3 1

u'(x) + 0 - V' (z) + 0 -

w@) [0/ 55 N\ —3 v@) | -3 / 15 N0

Des quatre tableaux, on obtient que la fonction f a un minimum sur le bord en

G« (o)

(qui vaut —-%), et un maximum sur le bord en

(qui vaut ).

Or, d’aprés la question 1, la fonction f a un maximum global sur [0, 1]2. Deux cas sont possibles :
e soit c’est en un point de ]0, 1[2,
e soit c¢’est en un point du bord.

Mais, si c’est en un point de ]0,1[?, alors ce point est un point critique, et donc c’est (%, %), et alors le

maximum vaut
f 11 B 1
2°2) 4
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mais c’est impossible car

1 1 1 11
f(0’4>:16>_4: (2’2)

Donc le point est sur le bord, et donc f atteint un maximum global sur [0,1]? en

G« ()

1

16

91 (11
16 - 4 “\2°2)°
le minimum global de f sur [0,1]? est atteint sur le bord, donc en
3 1
(20) = ()

9
16’

et ce maximum vaut

De méme, comme

et il vaut

Exercice 15. 1) D est la boule fermée de centre (0,0) et de rayon 1 pour la norme euclidienne standard, donc est
un fermé borné de R2.
B est la boule ouverte de centre (0,0) et de rayon 1 pour la norme euclidienne standard, donc est un ouvert de R2.
2) La fonction

est une fonction polynomiale, donc continue sur R?, donc sur D. De plus, pour tout (z,y) € D,

(z,y) — 1 — 2% —

1—2%—y2>0.

Or, la fonction

t— A\t

est continue sur Ry . Par composition, on en déduit que la fonction f est continue sur D.
La fonction f est alors continue sur D qui est un fermé borné de R?, et R? est de dimension finie, donc par le

théoréme des bornes atteintes, il existe un maximum global et un minimum global de f sur D.

3) La fonction

est une fonction polynomiale, donc de classe C* sur R?, donc sur I'ouvert B. De plus, pour tout (z,y) € B,

(z,y) — 1 — 2% =y

1—22—y*>0.

Or, la fonction

est de classe C! sur R% . Par composition, on en déduit que la fonction f est de classe C! sur l'ouvert B.

Puis,

(z,y)

Donc

t— /t

pour tout (z,y) € B,

of o —— 2z __ —
==(z,y) =0 1—w2—
est un point critique de f = {g;ﬁ( y) = ! 52 v?
xy) =0 ~ iy 0
la fonction f a un seul point critique sur B, qui est (0,0).

(z,y) = (0,

De plus, f(0,0) = 1, et pour tout (z,y) € D, on a 1 —22 —y? < 1, donc par croissance de la fonction racine carrée,

Donc

flz,y) =+/1—22 —y2 <1 =1= f(0,0).
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’f a un maximum global sur D en (0,0) ‘

4) Remarquons que, B étant ouvert, et la fonction f ayant un seul point critique sur B, qui est son maximum
global, tout point réalisant le minimum global de f sur D se trouve nécessairement sur D\ B (puisque, s'il est dans
B, c’est un point critique, et que ce n’est pas le maximum global de f, puisque la fonction f n’est pas constante),
c’est-a-dire s’écrit (z,y) avec x2 + 32 < 1, mais pas 22 + y? < 1, c’est-a-dire

m2+y2:1.

Or, dans ce cas, f(z,y) = 0.
De plus, f = 0 sur D de maniére directe. Donc

‘ f a un minimum global sur D en tout point du cercle unité

(c’est-a-dire aux points (z,y) vérifiant 22 + y? = 1).

Exercice 16. 1) Soit p €]0, 1], alors

car la variable aléatoire donnant le nombre de boules blanches lors de n tirages avec remise dans une urne qui
contient une proportion p de boules blanches suit une loi binomiale B(n,p) (les tirages successifs sont avec remise,
donc indépendants et identiques, et on en fait n et on compte le nombre de boules blanches, chacune arrivant avec
probabilité p).

La fonction f est alors dérivable sur |0, 1[, et pour tout p €]0, 1],

n

f(p) = (

S ) - ),

et
n
n(l—p)—(n—mny)p>0 < n1>np©—1>p,
n
donc la fonction f est (strictement) croissante sur ]0, "—nl] et décroissante sur [%, 1[, autrement dit la fonction f
a un maximum en

p=—1|
n

n n—n
2a) On a < > fagons de choisir les tirages qui aménent la premiére couleur, puis < 1> fagons de choisir les
ny 2

n
tirages qui ameénent la deuxiéme couleur,..., ce qui fait

n n—mng n—mjp—--—Ng-1 _ n! (n—mnq)! (n—ni——ng_1)!
n no ce ng - nil(n—n)! nel(n—ni—m2)! * 7 ngl(n—m1—--—ng)!

n! _ n!
nilnal..ngl(n—ni—-—ng)! nilnal..ng!

(apres télescopage et, pour la derniére égalité, car n = nj + --- + ng et 0! = 1) tirages différents qui réalisent la
répartition (nq,...,ng). Ils sont tous de méme probabilité, a savoir pj* ... pZ’“ par indépendance des tirages, d’otlt

n! n n
k
7p11 <P

f(p1>"'7pn):n1!”

2b) e L’ensemble F' est un fermé de RF comme intersection de deux fermés : pour [0, 1]’“, on va considérer que

c’est du cours - par exemple, c’est la boule fermée de centre (%, cel %) de rayon % pour la norme |||« -, et pour
k
Fy = {(pl,...,pk)eRk : Zpi = 1},

i=1
si on pose

k

¢1 (plu"'vpk)ERk'_)Zpi_la
i=1
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I’application ¢ est continue sur R¥ car polynomiale, donc

F=¢({0})

est un fermé de R¥.

L’ensemble F' est borné (tout point de F' a une norme infinie majorée par 1, donc F' est inclus dans la boule de
centre (0,...,0) et de rayon 1 pour la norme infinie).

De plus, la fonction f est polynomiale, donc continue sur F. Et R¥ est un espace vectoriel normé de dimension
finie.

Donc, par le théoréme des bornes atteintes, la fonction f a un maximum global sur F'. Notons a € F' un point en
lequel il est atteint.

e Pour tout (p1,...,pr) € F,ona f(p1,...,pr) = 0dés que I'un des p; est nul (car les n; sont strictement positifs!).
k

Si I'un des p; vaut 1, alors comme Z pi = 1 et p; = 0 pour tout i € [[1, k]|, on en déduit que tous les autres p; sont
i=1
nuls, et donc f(p1,...,px) =0 (car k > 2, donc il y a au moins 'un des p; qui est nul). Comme

1 1 n! 1
f(k’”"k) T gl ngl k7 >0,

et que (%, ey %) € F, on en déduit que : tout point (p1,...,pr) € F qui a une coordonnée qui vaut 0 ou 1, n’est
pas un maximum global de f sur F.
Donc a a toutes ses coordonnées dans |0, 1].

2c) ¢ Commengons par remarquer que la fonction H est bien définie : pour tout (x1,...,25_1) € 2, on a
fley,. o xp—1, 1 —21 — - —xp_1) >0,
donc H(x1,...,7)_1) existe. De plus, la fonction In est de classe C! sur R?% , la fonction
(1, 2k—1) €EQ> fa1,..., 21,1 — 21 — - — Xf_1)

est polynomiale, donc de classe C' sur 2, et comme on a vérifié que I'on peut composer, la fonction H (qui est la
composée des deux fonctions précédentes) est de classe C! sur .
e Puis, si on note a = (ay,...,a), on a a; > 0 pour tout i € [1,k — 1], et

k—1
akzl—Eai>O,

i=1
k
donc (ay,...,ax—1) € Q (car si on a a; > 0 pour tout ¢ € [[1,k] et Z a; = 1, alors a; < 1 pour tout i € [[1,k]]
i=1
aussi).
e Soit ensuite (z1,...,rx—1) € 2. Alors si on note
k—1
T = 1— Z Zi,
i=1
on a zy €]0,1[, et donc (z1,...,x) € F. Par conséquent,

flay,...,xx) < f(a).

Comme la fonction In est strictement croissante, on en déduit

H(zy,...,25-1) =In(f(z1,...,21)) <In(f(a)) = H(ay,...,ar_1).

Donc (aq,...,ar—1) est un maximum de H sur 'ouvert €2, donc un point critique (car la fonction H est de classe
Cl sur Q)
2d) Puis, pour (x1,...,25_1) € Q,
nl k—1
H(xi,...,zp—1)=In| ————— )+ » ngln(ag) +npgln (1 —21 — - —xp_1).
—K
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On a alors, pour tout (x1,...,z5_1) € Q, et pour tout i € [1,k — 1],

— (1, , 1) = — — :
&CZ‘ b k-l €Ty 1—x1—---—xk_1
Donc, pour (z1,...,z5_1) € £,
(x1,...,TK_1) est un point critique de H = Vie[l,k—1]: — = )
rp l—a1—- — 2k
Si on note n
a = b >0
l—zy = =2
(>0 car (x1,...,75—1) € ), on a alors
o=—"b
(x1,...,xK_1) est un point critique de H < l=zy— =2 .
Vie[l,k—1]:2z; ="
@ = kn*kl e 1—%’%
= 1*,21 o h
Vie[l,k—1]:z; =%
a—(n—mng)=n
@ .
Vie[1,k—1]:z; ="
a=n
Vie[1,k—1]:z; =7*
Donc H a un seul point critique sur 2 :
ni Ng—1
n T
k—1
(qui est bien dans € car ny, ..., ng_q1 et n — 2 n; = ni sont tous strictement positifs).
i=1
On en déduit que le maximum global de f sur F' est (ay,...,ax) avec a; = * pour tout i € [[1,k — 1], et
k—1 kel -
ap =1-— =1— ) — ==
I
i=1 i=1
Donc la proportion (pi,...,px) de boules qui rende maximale la probabilité d’avoir en n tirage la configuration n;

boules de couleur i pour tout i € [1, k] (avec n; > 0 pour tout i € [1,k]]) est donnée par

n;
pi = —
n
pour tout i € [[1, k]
Remarque. On appelle cette valeur pour (p1,...,pr), le « maximum de vraisemblance ».

Exercice 17. 1) e E, est inclus dans C!(R3) par définition.
e La fonction nulle (qui est de classe C! sur R?) vérifie bien

0=t*-0

pour tout t €]0, + o[, donc fait partie de E, (qui est donc non vide).
e Puis, soit (f,g) € EZ, soit A € R, alors A\f + g est de classe C! comme combinaison linéaire de fonctions qui le
sont, et pour tout (z,v,2) € R, pour tout t €]0, +o0],

(Af +9)(tz, ty, tz) = Af(tx, ty, t2) + g(ta, ty, tz) = M f(2,y, 2) + tg(x, y,2) = t* - (Af + g) (2, y, 2)
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Donc
AN +geE,.

Donc E, est stable par combinaisons linéaires.

e Donc E, est un sous-espace vectoriel de C*(R3).

2) Si la fonction f est de classe C2 sur R3, alors % est de classe C! sur R3.

Puis, si on dérive par rapport a x 'égalité
V(a,y,2) e R, flta,ty,t2) = - f(z,y,2)

(a t €]0, +oo[ et (y, z) fixé, valable pour tout z € R), on a, pour tout (z,y, z) € R? et t €]0, +oo[,

0 0
= (f(tw,ty, t2)) = t“%(fc,y&)-

Or, par la régle de la chaine,

L (ftwty,12)) = 12 a1y, 12),

or or
et donc on obtient, pour tout (z,y, z) € R3 et ¢ €]0, +oo[, I'égalité
0 0
taii(t*r: ty, tz) = taé(.’ﬂ, Y, Z)7

soit en divisant par ¢ (qui est non nul) :

Ut 1y, 12)

_ af
a—1
ﬁx t

. (z,y,2)

Cela étant vrai pour tout ¢ €]0, +o0[ et pour tout (z,vy,2) € R?, on en déduit bien que

0
% € Ea_1.

3) e Si f € Ey, alors pour tout (x,y,2) € R, pour tout ¢ €]0, +o0],

fte,ty,tz) = f(z,y,2).

Si on fixe (x,y, 2z) et que 'on fait tendre ¢ vers 0, comme la fonction f est continue en (0,0,0), on a

f(0,0,0) = lim f(t:n,ty,tz) = lim f(xayvz) = f(x7y7 Z)
t—0+t t—0t

Donc la fonction f est constante sur R3.

e Réciproquement, si la fonction f est constante, on a directement que f € Ej.

e Donc Ej est formé de I’ensemble des fonctions constantes sur R3.

4) e C’est mal précisé dans 1’énoncé : la fonction g n’est défini que pour (z,y, z) fixé. Donc, dans la suite, on fixe

(z,y,2) € R%.

La fonction ¢ est alors de classe C! sur R% comme composée puis différence de fonctions qui le sont. Puis, pour

tout ¢ €]0, +o0[, la régle de la chaine donne :

g,(t) = $al(f)(txv ty7 tz) + yﬁg(f)(ta:, ty) tz) + ZaS(f) (t:U, ty7 tZ) - ata_lf(xv Y, Z)
= %(tw&l(f)(tx, ty,tz) + tyde(f)(tx, ty, tz) + tz05(f)(tz, ty, tz)) —atv L f(x,y,2)

= Sf(ta,ty,tz) —at® 1 f(z,y,2) = $9(t)

(ou lavant derniére égalité s’obtient en évaluant 'EDP vérifiée par f, non pas en (z,y, z), mais en (tz,ty,tz)).
Donc la fonction g est solution d’une équation différentielle linéaire d’ordre 1 que ’on sait résoudre : il existe donc
a € R tel que
g:te R} — at®.
Or,
g(1) = f(z,y,2) — f(z,y,2) =0, donc a =0,
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donc g = 0 (la fonction nulle).
Donc g(t) = 0 pour tout ¢ €]0, +o0[, soit

Fta,ty,t2) = £ f(z,y, 2)
pour tout ¢ €]0, +00[. Ceci est vrai pour tout (x,y,2) € R3. Donc
fekE,.
e Si f e E,, alors en dérivant par rapport a t la relation
fltz, ty, tz) =t*- f(z,y,2)
(en ayant fixé (z,y, z) € R3), on a, par la régle de la chaine, pour tout ¢ €]0, +oo[,
z01(f)(tz, ty, t2) + yoo (f) (tx, ty, t2) + 203(f)(tz, ty, tz) = at* L f(z,y, 2).

On prend t = 1, et on obtient que la fonction f vérifie 'EDP en (z,v, ). Comme c’est vrai pour tout (x,y, 2) € R3,
on en déduit bien que la réciproque est vraie.

Remarque. Sia < 0, si on fait tendre t — 0 dans 1’égalité

Fly,2) = o (b, ty, ),

comme la fonction f a une limite finie en (0, 0,0), on en déduit

flx,y,2) =0
pour tout (z,y,z) € R3, donc f = 0. Donc pour a < 0,
E, = {0}

(cela provient du fait que 'on impose la continuité en (0,0,0)).

Exercice 18. Pour tout (z,y,u,v) € R,

u=x+y T =4
o
v=x—y y =45

en particulier, tout (x,y) € R? peut bien s’écrire ainsi, et plus précisément,

IS

« (z,y) parcourt R? » = « (u,v) parcourt R? ».
Soit f une fonction de classe C! sur R?. On veut
«g(u,v) = f(z,y) ».
On définit donc

g%wweRQHf(“+”“_”>,

2 72
alors la fonction ¢ est de classe C' sur R? par composition avec des polynomes.
Puis, par la régle de la chaine, pour tout (u,v) € R?,

@( )_lﬁ uU+v u—v _1_1% uU+v u—v
ou " T2\ T2 0 2 20y \ 2 ' 2 )

Donc
f est solution de 'EDP sur R> < pour tout (z,y) € R?, %(x,y) + %(aj,y) = f(x,y)
0 — 0 —
= pour tout (z,y) € R, 55 (5%, %3%) + 55 (“3."3%) = 39(u.v)
u=x+ x = utv
(en notant Y , car alors o)
v=x—y y ="

0
< pour tout (u,v) € R £ (u,v) = g(u,v)
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(car « (z,y) parcourt R? » si et seulement si « (u,v) parcourt R? »).
Puis, notons

_u
2
)

h:(u,v) € R? — g(u,v)e
alors par opérations usuelles, la fonction h est de classe C! sur R?, et pour tout (u,v) € R?,

oh og 1
%(U,U) - %(U,’U) -

Alors
f est solution de 'EDP sur R?> < pour tout (u,v) € R?, g—,’;(u, v) =0

< il existe K € C}(R,R) avec h : (u,v) € R? — K(v) (car R? est convexe...)

< il existe K € C'(R,R) avec g : (u,v) € R — K(v)e2

z+y

< ilexiste K € C}(R,R) avec f: (z,y) e R? — | K(z —y)e 2 |.

Exercice 19. La fonction f est polynomiale, donc de classe C? sur R?. Donc, si la fonction f a un extremum en
un point, ce point est un point critique de f (car R? est un ouvert).
Pour tout (z,y) € R?,

of

of
a—x(x,y)—2x+y—5 et a—y(m,y)—2y+x—1.

Donc, pour tout (z,y) € R?,

2r4+y—5=0 x=3
Vf(z,y) = (0,0
f(x,y) = (0,0) ©{2y+w—1—0 @{ _

Donc la fonction f a un unique point critique :

(37 _1>

Hy(z,y) = G ;) :

H=H3,-1) = (? ;) avec det(H) =3>0 et tr(A) =4 >0,

Puis, pour tout (z,y) € R?,

donc

donc la fonction f atteint un minimum local strict en (3, —1), et c’est le seul extremum local de f.
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