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TD16 - Fonctions de plusieurs variables

Exercice 1. Soient ϕ : R Ñ R de classe C1 et ψ, ψ1, ψ2 : R2 Ñ R trois fonctions de classe C1. Déterminer les
dérivées partielles d’ordre 1 des fonctions suivantes :

1. fpx, yq “ ϕpx2y ` xy3q

2. gpx, yq “ ψ
`

cospxyq, yex
˘

3. hpx, yq “
`

ψ1

`

x2, ϕpxyq
˘

, ψ2px2y, y2exq
˘

.

Exercice 2. Soit f : R2 Ñ R définie par fpx, yq “

#

x2y
x4`y2

si px, yq ‰ p0, 0q

0 si x “ y “ 0

1. La fonction f possède-t-elle en p0, 0q des dérivées partielles ?

2. Plus généralement, pour h P R2 non nul, est-ce que f a une dérivée en p0, 0q selon h ?

3. La fonction f est-elle continue en p0, 0q ?

Exercice 3. Soit f : R2 Ñ R définie par fpx, yq “

#

x4`y4

x2`y2
si px, yq ‰ p0, 0q

0 si x “ y “ 0

1. Étudier la continuité de f sur R2.

2. f est-elle de classe C1 sur R2 ?

Exercice 4. Soit f la fonction définie sur R2 par : fpx, yq “
px2´y2qxy
x2`y2

si px, yq ‰ p0, 0q et fp0, 0q “ 0.

1. Vérifier que f est continue en p0, 0q.

2. (a) Montrer que f est de classe C1 sur R2.
(b) Calculer B2f

BxBy p0, 0q et B2f
ByBxp0, 0q. Que peut-on en conclure ?

Exercice 5. Soit f : R2 Ñ R de classe C2, et gpr, θq “ f
`

r cospθq, r sinpθq
˘

. On pose :

∆pfq “
B2f

Bx2
`

B2f

By2
“ B2

1pfq ` B2
2pfq.

1. Calculer Bg
Br ,

Bg
Bθ ,

B2g
Br2

, B2g
Bθ2

en fonction des dérivées partielles de f .

2. Exprimer ∆pfq en fonction des dérivées partielles de g.

Exercice 6. Déterminer les fonctions f de classe C1 sur un ouvert Ω convexe telles que : pour tout px, y, zq P Ω,

1. Bf
Bx px, y, zq “ 0

2. Bf
By px, y, zq “ x` y ` z

3. Bf
Bx px, y, zq “ 3, Bf

By px, y, zq “ y ` z et Bf
Bz px, y, zq “ y ` z.

Exercice 7. À l’aide du changement de variable x “ u ´ v et y “ v, trouver toutes les fonctions f P C2pR2,Rq

vérifiant
B2f

Bx2
px, yq ´ 2

B2f

BxBy
px, yq `

B2f

By2
px, yq “ 0

Exercice 8. Soit U l’ouvert U “
␣

px, yq P R2 : x ą 0
(

. À l’aide d’un passage en coordonnées polaires trouver les
fonctions f de classe C1 sur U telles que :

x
Bf

Bx
px, yq ` y

Bf

By
px, yq “

x
a

x2 ` y2

Exercice 9. Soit f : px, yq P R2 ÞÑ px2 ´yqp3x2 ´yq P R2. Montrer que la restriction de f à toute droite contenant
p0, 0q atteint un minimum strict en 0 mais que f n’atteint pas d’extremum en p0, 0q.
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Exercice 10. Montrer que ces fonctions sont de classe C2 sur leur ensemble de définition, puis étudier les extrema
locaux :

1. f : px, yq ÞÑ x4 ` y4 ´ 2px´ yq2 sur R2

2. g : px, yq ÞÑ
xy

p1`xqp1`yqpx`yq
sur

`

R˚
`

˘2

3. ℓ : px, yq ÞÑ xy lnpx2 ` y2q sur R2ztp0, 0qu

Exercice 11. Déterminer les extrema locaux des fonctions qui suivent :
1. f : R3 Ñ R est définie par : px, y, zq ÞÑ x2 ` y ´ 2z ` 8xyz.
2. f : R3 Ñ R est définie par : px, y, zq ÞÑ x4 ` 2x2 ` y2 ` 4z2 ´ 2xy ` 2yz ` 8z ` 2y ´ 1.

Exercice 12. Pour n ě 2 donné, soit f : px1, . . . , xnq P Rn ÞÑ

n
ÿ

k“1

x2k `

˜

n
ÿ

k“1

xk

¸2

´

n
ÿ

k“1

xk.

1. Justifier que f est de classe C2 sur Rn et calculer ses dérivées partielles premières.
2. Montrer que f admet un unique point critique A “ pa1, . . . , anq que l’on déterminera.
3. (a) Déterminer la matrice hessienne de f en A en fonction de la matrice J P MnpRq dont tous les coefficients

sont égaux à 1.
(b) Déterminer rgpJq et calculer JU où U P Mn,1pRq a tous ses coefficients égaux à 1. En déduire SppJq.
(c) Montrer que f admet en A un extremum local dont on précisera la nature et la valeur.
(d) Vérifier que l’extremum précédent est global.

Exercice 13. On considère la fonction f : px, yq ÞÑ 2x2 ` y2 ´ 2xy ` 2x´ 2y ` 1.
1. Déterminer le point critique a de f .
2. Quel est le signe de qph1, h2q “ 2h21 ´ 2h1h2 ` h22 ? (On pourra transformer l’expression à l’aide de l’identité

remarquable a2 ` 2ab “ pa` bq2 ´ b2).
3. Soit h “ ph1, h2q P R2. En considérant la fonction ϕ : t P R ÞÑ fpa` thq, montrer qu’il existe θ Ps0, 1r tel que

fpa` hq “ fpaq ` x∇⃗fpa` θhq, hy

(c’est le produit scalaire usuel de R2). En déduire que f possède un minimum global strict en a.

Exercice 14. Soit f : px, yq P R2 ÞÑ ´3
2x` 1

2y ` xy ` x2 ´ y2 P R.
1. Justifier l’existence d’un maximum et d’un minimum global sur r0, 1s2.
2. Les déterminer.

Exercice 15. Soit D “
␣

px, yq P R2 : x2 ` y2 ď 1
(

, B “
␣

px, yq P R2 : x2 ` y2 ă 1
(

et f : px, yq P D ÞÑ
a

1 ´ x2 ´ y2 P R.
1. Montrer que D est un fermé borné de R2 et B un ouvert de R2.
2. Montrer que f est continue sur D. En déduire l’existence d’un maximum global et d’un minimum global de
f sur D.

3. Montrer que f est de classe C1 sur B, et étudier ses points critiques sur B. En déduire l’un de ses extremums
globaux.

4. En faisant l’étude sur le bord de D, déterminer l’autre (ou les autres) extremum global de f .

Exercice 16 (maximum de vraisemblance).

1. Une urne contient une proportion p de boules blanches, p1 “ 1 ´ p de boules noires, avec p Ps0, 1r.
On effectue n tirages successifs d’une boule avec remise dans cette urne. Soit pn1, n2q P N2, n1 ` n2 “ n.
Quelle est la probabilité d’obtenir n1 boules blanches (et n2 noires) ? On note fppq cette probabilité.
Pour quelle(s) valeur(s) de p cette probabilité est-elle maximale ?

2. On effectue à présent n tirages successifs d’une boule avec remise, dans une urne contenant des boules de k

couleurs différentes (avec k ě 2), en proportion p1, p2, . . ., pk, telle que
k
ÿ

i“1

pi “ 1, et pour tout i P t1, . . . , ku,

pi Ps0, 1r. pn1, . . . , nkq est un k-uplet d’entiers strictement positifs dont la somme vaut n.
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(a) Quelle est la probabilité fpp1, . . . , pkq d’obtenir la répartition pn1, . . . , nkq en n tirages ?

(b) On étend f à F “ r0, 1sk X

#

pp1, . . . , pkq P Rk :
k
ÿ

i“1

pi “ 1

+

par la même formule. Justifier que f a un

maximum global a sur F , et que ses coordonnées sont toutes dans s0, 1r.

(c) Soit l’ouvert Ω “s0, 1rk´1X

#

px1, . . . , xk´1q :
k´1
ÿ

i“1

xi ă 1

+

de Rk´1, et H la fonction

H : px1, . . . , xk´1q P Ω ÞÑ ln
`

fpx1, . . . , xk´1, 1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1q
˘

.

Montrer que si a “ pa1, . . . , akq est un maximum global de f sur F , alors pa1, . . . , ak´1q est un maximum
global de H sur Ω.

(d) Déterminer les points critiques de H sur Ω. Conclusion ?

Exercice 17 (CCP 2011 Officiel de la Taupe).

1. Montrer que l’ensemble Ea des applications f de classe C1 sur R3 à valeurs dans R et vérifiant :

@t P R˚
`, @px, y, zq P R3, fptx, ty, tzq “ ta.fpx, y, zq

est un sous-espace vectoriel de C1pR3q.

2. Montrer que, si f P Ea est C2, Bf
Bx P Ea´1.

3. Montrer que pour tout f P E0, fpx, y, zq “ fp0, 0, 0q. Que peut-on en déduire sur E0 ?

4. Soit f de classe C1, telle que pour tout px, y, zq P R3,

x
Bf

Bx
px, y, zq ` y

Bf

By
px, y, zq ` z

Bf

Bz
px, y, zq “ afpx, y, zq.

Montrer que g, donnée par gptq “ fptx, ty, tzq ´ ta.fpx, y, zq est dérivable sur R˚
` et que tg1 “ ag. En déduire

que f P Ea.
La réciproque est-elle vraie ?

Exercice 18 (CCP 2009 Officiel de la Taupe - exo 2). Déterminer toutes les fonctions de R2 dans R, de classe C1,
vérifiant

Bf

Bx
`

Bf

By
“ f

(on pourra utiliser le changement de variables u “ x` y, v “ x´ y).

Exercice 19 (CCP 2014 (ODLT) - exo 2). Trouver les extrema, s’ils existent, de fpx, yq “ x2 ` y2 ` xy ´ 5x´ y
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Solutions

Exercice 1.

1. L’application
px, yq P R2 ÞÑ x2y ` xy3 P R

est de classe C1 sur R2 car polynomiale. De plus l’application ϕ est de classe C1 sur R, donc par composition,
l’application f est de classe C1 sur R2 et, pour tout px, yq P R2,

Bf

Bx
px, yq “ p2xy ` y3qϕ1px2y ` xy3q et

Bf

By
px, yq “ px2 ` 3xy2qϕ1px2y ` xy3q

2. Les applications

px, yq P R2 ÞÑ x P R, px, yq P R2 ÞÑ y P R et px, yq P R2 ÞÑ xy P R

sont de classe C1 sur R2 car polynomiales.
Puis, les fonctions cos et exp sont de classe C1 sur R, donc par composition, les fonctions

px, yq P R2 ÞÑ cospxyq et px, yq ÞÑ ex

sont de classe C1 sur R2.
Puis, par produit de fonctions de classe C1, la fonction

px, yq ÞÑ yex

est de classe C1 sur R2.
Puis, la fonction ψ est de classe C1 sur R2, donc par composition (règle de la chaîne), la fonction g est de
classe C1 sur R2, et pour tout px, yq P R2,

Bg

Bx
px, yq “ ´y sinpxyq

Bψ

Bx
pcospxyq, yexq ` yex

Bψ

By
pcospxyq, yexq et

Bg

By
px, yq “ ´x sinpxyq

Bψ

Bx
pcospxyq, yexq ` ex

Bψ

By
pcospxyq, yexq

3. Les applications

px, yq P R2 ÞÑ x P R, px, yq P R2 ÞÑ y P R, px, yq P R2 ÞÑ y2 P R, px, yq P R2 ÞÑ x2 P R, px, yq P R2 ÞÑ x2y P R

et
px, yq P R2 ÞÑ xy P R

sont de classe C1 sur R2 car polynomiales.
Puis, les fonctions exp et ϕ sont de classe C1 sur R, donc par composition, les fonctions

px, yq P R2 ÞÑ ex et px, yq P R2 ÞÑ ϕpxyq

sont de classe C1 sur R2.
Alors, par produit de fonctions de classe C1 sur R2, l’application

px, yq P R2 ÞÑ y2ex

est de classe C1 sur R2.
Comme les fonctions ψ1 et ψ2 sont de classe C1 sur R2, par composition (règle de la chaîne), les applications

px, yq P R2 ÞÑ ψ1

`

x2, ϕpxyq
˘

et px, yq P R2 ÞÑ ψ2px2y, y2exq

sont de classe C1 sur R2.
Les fonctions coordonnées de h sont donc de classe C1 sur R2. Donc la fonction h est de classe C1 sur R2.
Puis, pour tout px, yq P R2,

Bh

Bx
px, yq “

ˆ

2x
Bψ1

Bx
px2, ϕpxyqq ` yϕ1pxyq

Bψ1

By
px2, ϕpxyqq, 2xy

Bψ2

Bx
px2y, y2exq ` y2ex

Bψ2

By
px2y, y2exq

˙

Bh

By
px, yq “

ˆ

xϕ1pxyq
Bψ1

By
px2, ϕpxyqq, x2

Bψ2

Bx
px2y, y2exq ` 2yex

Bψ2

By
px2y, y2exq

˙

1
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Exercice 2.

1. ‚ On a
fph, 0q ´ fp0, 0q

h´ 0
“ 0 ÝÑ

hÑ0
0,

donc la fonction f a une dérivée partielle suivant la première variable en 0, et

Bf

Bx
p0, 0q “ 0 .

‚ On a
fp0, hq ´ fp0, 0q

h´ 0
“ 0 ÝÑ

hÑ0
0,

donc la fonction f a une dérivée partielle suivant la deuxième variable en 0, et

Bf

By
p0, 0q “ 0 .

2. Soit h “ pa, bq P R2 avec h ‰ p0, 0q.
‚ Si b ‰ 0, on a

f
`

th
˘

´ fp0, 0q

t´ 0
“

t2a2tb

tpt4a4 ` t2b2q
“

a2b

t2a4 ` b2
ÝÑ
tÑ0

a2

b
.

Donc la fonction f a une dérivée en p0, 0q selon h, qui vaut

Dhfp0, 0q “
a2

b
.

‚ Si b “ 0, alors a ‰ 0 et on a
f
`

th
˘

´ fp0, 0q

t´ 0
“ 0 ÝÑ

tÑ0
0.

Donc la fonction f a une dérivée en p0, 0q selon h, qui vaut

Dhfp0, 0q “ 0 .

3. NON. On a vu « qu’on est dérivable (donc continue) en p0, 0q si on se déplace sur les droites ». Mais si on se
déplace sur une parabole bien choisie, c’est faux : on a

fp0, eq “ 0 ÝÑ
eÑ0

0 et fp
?
e, eq “

e2

2e2
“

1

2
ÝÑ
eÑ0

1

2
‰ 0.

Donc la fonction f n’a pas de limite en p0, 0q (si la limite existait, alors

lim
eÑ0

fp0, eq et lim
eÑ0

fp
?
e, eq

devraient être égales (et égales à cette limite)...), donc la fonction f n’est pas continue en p0, 0q.

Exercice 3.

1. La fonction f est continue sur (l’ouvert) R2z
␣

p0, 0q
(

comme quotient de deux polynômes (donc continus)
dont le dénominateur qui ne s’annule pas sur R2z

␣

p0, 0q
(

.
Étude en p0, 0q : On a pour tout px, yq :

0 ď x4 ` y4 ď x4 ` y4 ` 2x2y2 “ px2 ` y2q2.

Donc, pour px, yq P R2z
␣

p0, 0q
(

,

0 ď
ˇ

ˇfpx, yq
ˇ

ˇ ď px2 ` y2q “
›

›px, yq ´ p0, 0q
›

›

2

2
ÝÑ

px,yqÑp0,0q
0

2
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(en effet, dire px, yq Ñ p0, 0q, c’est par définition dire
›

›px, yq ´ p0, 0q
›

› Ñ 0 pour n’importe quelle norme (car
R2 est de dimension finie), en particulier pour la norme }.}2).
Donc le théorème des gendarmes donne

fpx, yq ÝÑ
px,yqÑp0,0q

0 “ fp0, 0q,

autrement dit, la fonction f est continue en p0, 0q.
Donc la fonction f est continue sur R2.

Remarque. On peut aussi passer en polaire : pour px, yq ‰ p0, 0q, on pose

x “ r cospθq, y “ r sinpθq avec r “
a

x2 ` y2,

alors
fpx, yq “ r2

`

cos4pθq ` sin4pθq
˘

, et donc 0 ď |fpx, yq| ď 2r2,

or px, yq Ñ p0, 0q équivaut à r Ñ 0 (car r “
a

x2 ` y2 “
a

px´ 0q2 ` py ´ 0q2 “
›

›px, yq ´ p0, 0q
›

›

2
), et donc

par le théorème des gendarmes,
fpx, yq ÝÑ

rÑ0
0 “ fp0, 0q

et on retrouve que la fonction f est continue en p0, 0q.

2. ‚ La fonction f est de classe C1 sur (l’ouvert) R2z
␣

p0, 0q
(

comme quotient de deux polynômes (donc de classe
C1) dont le dénominateur qui ne s’annule pas sur R2z

␣

p0, 0q
(

.
‚ Calcul de Bf

Bx p0, 0q :
f
`

p0, 0q ` tp1, 0q
˘

´ fp0, 0q

t
“ t ÝÑ

tÑ0
0.

Donc
Bf

Bx
p0, 0q “ 0.

‚ Calcul de Bf
By p0, 0q :

f
`

p0, 0q ` tp0, 1q
˘

´ fp0, 0q

t
“ t ÝÑ

tÑ0
0.

Donc
Bf

By
p0, 0q “ 0.

‚ Pour px, yq ‰ p0, 0q,
Bf

Bx
px, yq “

4x3px2 ` y2q ´ 2xpx4 ` y4q

px2 ` y2q2
,

donc (en réutilisant l’inégalité trouvée à la première question) :

0 ď

ˇ

ˇ

ˇ

ˇ

Bf

Bx
px, yq

ˇ

ˇ

ˇ

ˇ

ď
4x2|x|

x2 ` y2
` |2x| ď |6x| ÝÑ

px,yqÑp0,0q
0

(car x2 ď x2 ` y2). Donc le théorème des gendarmes donne

Bf

Bx
px, yq ÝÑ

px,yqÑp0,0q
0 “

Bf

Bx
p0, 0q,

autrement dit, la fonction Bf
Bx est continue en p0, 0q.

Remarque. Là aussi, on peut passer en polaire si on préfère (c’est plus simple à manipuler), comme illustré
ci-dessous.
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‚ Pour px, yq ‰ p0, 0q,
Bf

By
px, yq “

4y3px2 ` y2q ´ 2ypx4 ` y4q

px2 ` y2q2
,

donc en posant x “ r cospθq, y “ r sinpθq avec r “
a

x2 ` y2, on a :

Bf

By
px, yq “ 4r sin3pθq ´ 2r sinpθq

`

cos4pθq ` sin4pθq
˘

,

et donc, par inégalité triangulaire (et car | cos | ď 1, | sin | ď 1) :

0 ď

ˇ

ˇ

ˇ

ˇ

Bf

By
px, yq

ˇ

ˇ

ˇ

ˇ

ď 4r ` 2r ˆ 2 “ 8r ÝÑ
rÑ0

0.

Donc le théorème des gendarmes donne

Bf

By
px, yq ÝÑ

px,yqÑp0,0q
0 “

Bf

By
p0, 0q

(car « px, yq Ñ p0, 0q » est la même chose que « r Ñ 0 »), autrement dit, la fonction Bf
By est continue en p0, 0q.

‚ Donc, par définition, la fonction f est de classe C1 en p0, 0q, et donc sur R2.

Exercice 4. 1) On passe en polaire : pour px, yq ‰ p0, 0q, on pose

x “ r cospθq, y “ r sinpθq avec r “
a

x2 ` y2,

alors :
fpx, yq “ r2 cospθq sinpθq

`

cos2pθq ´ sin2pθq
˘

,

donc, par inégalité triangulaire (et car | cos | ď 1, | sin | ď 1) :

0 ď |fpx, yq| ď 2r2 ÝÑ
rÑ0

0,

donc
fpx, yq ÝÑ

px,yqÑp0,0q
0 “ fp0, 0q

(car r “
a

x2 ` y2 “
a

px´ 0q2 ` py ´ 0q2 “
›

›px, yq ´ p0, 0q
›

›

2
, donc « px, yq Ñ p0, 0q » est la même chose que

« r Ñ 0 »), donc la fonction f est continue en p0, 0q.
2a) La fonction f est de classe C1 sur (l’ouvert) R2z

␣

p0, 0q
(

comme quotient de deux polynômes (donc de classe
C1) dont le dénominateur qui ne s’annule pas sur R2ztp0, 0qu.
‚ Calcul de Bf

Bx p0, 0q :
f
`

p0, 0q ` tp1, 0q
˘

´ fp0, 0q

t
“ 0 ÝÑ

tÑ0
0.

Donc
Bf

Bx
p0, 0q “ 0.

‚ Calcul de Bf
By p0, 0q :

f
`

p0, 0q ` tp0, 1q
˘

´ fp0, 0q

t
“ 0 ÝÑ

tÑ0
0.

Donc
Bf

By
p0, 0q “ 0.

‚ Pour px, yq ‰ p0, 0q,
Bf

Bx
px, yq “

p3x2y ´ y3qpx2 ` y2q ´ 2xpx2 ´ y2qxy

px2 ` y2q2
,

donc en passant en coordonnées polaires (comme à la première question), on a par inégalité triangulaire (et car
| cos | ď 1, | sin | ď 1) :

ˇ

ˇ

ˇ

ˇ

Bf

Bx
px, yq

ˇ

ˇ

ˇ

ˇ

ď 8r ÝÑ
rÑ0

0,

4
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donc
Bf

Bx
px, yq ÝÑ

px,yqÑp0,0q
0 “

Bf

Bx
p0, 0q.

Donc la fonction Bf
Bx est continue en p0, 0q.

‚ Pour px, yq ‰ p0, 0q,
Bf

By
px, yq “

p´3xy2 ` x3qpx2 ` y2q ´ 2ypx2 ´ y2qxy

px2 ` y2q2
,

donc en passant en coordonnées polaires, on a par inégalité triangulaire (et car | cos | ď 1, | sin | ď 1) :
ˇ

ˇ

ˇ

ˇ

Bf

By
px, yq

ˇ

ˇ

ˇ

ˇ

ď 8r ÝÑ
rÑ0

0,

donc
Bf

By
px, yq ÝÑ

px,yqÑp0,0q
0 “

Bf

By
p0, 0q.

Donc la fonction Bf
By est continue en p0, 0q.

‚ Donc la fonction f est de classe C1 en p0, 0q, et donc sur R2.
2b) Pour tout x P R˚, Bf

By px, 0q “ x, donc

B2f

BxBy
p0, 0q “

B

Bx

ˆ

Bf

By

˙

p0, 0q “ lim
tÑ0

Bf
By pt, 0q ´

Bf
By p0, 0q

t´ 0
“ lim

tÑ0

t

t
“ 1 .

Pour tout y P R˚, Bf
Bx p0, yq “ ´y, donc

B2f

ByBx
p0, 0q “

B

By

ˆ

Bf

Bx

˙

p0, 0q “ lim
tÑ0

Bf
Bx p0, tq ´

Bf
Bx p0, 0q

t´ 0
“ lim

tÑ0
´
t

t
“ ´1 .

Donc
B2f

BxBy
p0, 0q ‰

B2f

ByBx
p0, 0q,

contredit la conclusion du théorème de Schwarz. On peut en conclure (en contraposant le théorème de Schwarz)
que la fonction f n’est pas de classe C2 en p0, 0q.

Exercice 5.

1. Par composition, la fonction g est de classe C2 sur R2, et pour tout pr, θq P R2, en utilisant le théorème de
Schwarz

‹
Bg
Br pr, θq “ cospθq

Bf
Bx

`

r cospθq, r sinpθq
˘

` sinpθq
Bf
By

`

r cospθq, r sinpθq
˘

‹
Bg
Bθ pr, θq “ ´r sinpθq

Bf
Bx

`

r cospθq, r sinpθq
˘

` r cospθq
Bf
By

`

r cospθq, r sinpθq
˘

‹
B2g
Br2

pr, θq “ cos2pθq
B2f
Bx2

`

r cospθq, r sinpθq
˘

`2 cospθq sinpθq
B2f

BxBy

`

r cospθq, r sinpθq
˘

`sin2pθq
B2f
By2

`

r cospθq, r sinpθq
˘

‹
B2g
Bθ2

pr cospθq, r sinpθqq “ ´r cospθq
Bf
Bx

`

r cospθq, r sinpθq
˘

´ r sinpθq
Bf
By

`

r cospθq, r sinpθq
˘

` r2 sin2pθq
B2f
Bx2

`

r cospθq, r sinpθq
˘

´2r2 cospθq sinpθq
B2f

BxBy

`

r cospθq, r sinpθq
˘

` r2 cos2pθq
B2f

By2
`

r cospθq, r sinpθq
˘

Remarque. Pour plus de lisibilité, on peut éviter d’écrire les arguments des fonctions :

Bg

Br
“ cospθq

Bf

Bx
` sinpθq

Bf

By

Bg

Bθ
“ ´r sinpθq

Bf

Bx
` r cospθq

Bf

By

5
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B2g

Br2
“ cos2pθq

B2f

Bx2
` 2 cospθq sinpθq

B2f

BxBy
` sin2pθq

B2f

By2

B2g

Bθ2
“ ´r cospθq

Bf

Bx
´ r sinpθq

Bf

By
` r2 sin2pθq

B2f

Bx2
´ 2r2 cospθq sinpθq

B2f

BxBy
` r2 cos2pθq

B2f

By2

2. Donc, afin d’exploiter la relation cos2 ` sin2 “ 1, on calcule :

r2
B2g

Br2
`

B2g

Bθ2
“ r2

B2f

Bx2
` r2

B2f

By2
´ r

Bg

Br
,

ce qui donne

∆pfq “
B2g

Br2
`

1

r2
B2g

Bθ2
`

1

r

Bg

Br
.

Exercice 6. Sur un ouvert quelconque, on peut avoir Bf
Bx “ 0, bien que fpx, y, zq dépende de x ! L’hypothèse

« convexe » est là pour éliminer ce problème (car les raisonnements fait s’appliquent en se ramenant à l’étude de
la fonction sur un segment, ce qui est possible car le segment reste ici inclus dans Ω par convexité).
1)

Bf

Bx
“ 0 sur Ω ô Dg : @px, y, zq P Ω : fpx, y, zq “ gpy, zq,

g étant une fonction quelconque de classe C1 (défini sur l’ensemble des py, zq P R2 tels qu’il existe un x P R avec
px, y, zq P Ω, c’est bien un ouvert de R2...) puisque l’on veut f de classe C1 sur Ω. Montrons ceci à l’aide d’un
raisonnement par analyse/synthèse.
Analyse : en effet, pour une fonction f qui vérifie l’équation, pour tout px0, y0, z0q P Ω et px1, y0, z0q P Ω fixés, si
l’on considère

ϕ : t P r0, 1s ÞÑ f
`

tx0 ` p1 ´ tqx1, y0, z0
˘

(bien défini car Ω est convexe et car
`

tx0 ` p1 ´ tqx1, y0, z0
˘

“ t ¨ px0, y0, z0q ` p1 ´ tq ¨ px1, y0, z0q

avec t P r0, 1s, ce qui assure que
`

tx0 ` p1´ tqx1, y0, z0
˘

est un élément d’un segment entre deux points de Ω), alors
la fonction ϕ est de classe C1 par la règle de la chaîne, et pour tout t P r0, 1s,

ϕ1ptq “ px0 ´ x1q
Bf

Bx

`

tx0 ` p1 ´ tqx1, y0, z0
˘

“ 0,

donc la fonction ϕ est constante sur l’intervalle r0, 1s. Donc

fpx1, y0, z0q “ ϕp0q “ ϕp1q “ fpx0, y0, z0q.

Donc la fonction f est constante sur
␣

px, y0, z0q tel que x P R et px, y0, z0q P U
(

. On note alors cette valeur gpy0, z0q.
g est alors C1, car f l’est (pour le justifier proprement, cela nécessiterait d’exploiter la définition d’ouvert, et le fait
qu’une boule ouverte est un convexe...).
Synthèse : il est direct que si f ne dépend pas de x, alors Bf

Bx “ 0 sur Ω...
2) La fonction f vérifie l’équation si et seulement si f est de la forme

f : px, y, zq ÞÑ xy `
y2

2
` zy ` gpx, zq,

g étant une fonction quelconque de classe C1 (défini sur l’ensemble des px, zq P R2 tels qu’il existe un y P R avec
px, y, zq P Ω, c’est bien un ouvert de R2...).
En effet, en considérant la fonction

ϕ : px, y, zq ÞÑ fpx, y, zq ´ xy ´
y2

2
´ zy

(de classe C1 sur Ω), on a :

6
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f vérifie l’équation sur Ω ô
Bϕ
By “ 0 sur Ω,

et on se ramène à une situation similaire au premier cas (puisque Ω est convexe).
3) La fonction f vérifie l’équation si et seulement si f est de la forme

f : px, y, zq ÞÑ 3x`
y2

2
` yz `

z2

2
` C,

C étant une constante quelconque.
En effet, en considérant

ϕ : px, y, zq ÞÑ fpx, y, zq ´ 3x´
y2

2
´ yz ´

z2

2

(de classe C1 sur Ω), on a

f vérifie les trois équations sur Ω ô
Bϕ
Bx “

Bϕ
By “

Bϕ
Bz “ 0 sur le convexe Ω,

ce qui est équivalent à
ϕ “ constante

d’après le cours.

Exercice 7. Pour tout px, y, u, vq P R4,
#

x “ u´ v

y “ v
ô

#

u “ x` y

v “ y
.

Soit f une fonction de classe C2 sur R2, à valeurs dans R. On veut définir une fonction g de sorte que

« gpu, vq “ fpx, yq ».

On pose donc
g : pu, vq P R2 ÞÑ fpu´ v, vq P R.

Comme les fonctions
pu, vq ÞÑ u´ v et pu, vq ÞÑ v

sont de classe C2 sur R2 (car polynomiales), par composition, la fonction g est aussi de classe C2 sur R2.
De plus, pour tout px, yq P R2, on a

fpx, yq “ gpx` y, yq,

donc la règle de la chaîne donne :

Bf

Bx
px, yq “

Bg

Bu
px` y, yq “

Bg

Bu
pu, vq et

Bf

By
px, yq “

Bg

Bu
px` y, yq `

Bg

Bv
px` y, yq “

Bg

Bu
pu, vq `

Bg

Bv
pu, vq

En appliquant à nouveau la règle de la chaîne, on a :

B2f

Bx2
px, yq “

B2g

Bu2
pu, vq,

B2f

ByBx
px, yq “

B2g

Bu2
pu, vq`

B2g

BvBu
pu, vq et

B2f

By2
px, yq “

B2g

Bu2
pu, vq`2

B2g

BvBu
pu, vq`

B2g

Bv2
pu, vq.

Remarquons que la fonction
px, yq P R2 ÞÑ pu, vq “ px` y, yq P R2

est bijective (de bijection réciproque pu, vq P R2 ÞÑ pu´ v, vq “ px, yq P R2), donc

px, yq parcourt R2 ô pu, vq parcourt R2.

En réinjectant, on a :

f est solution de l’EDP sur R2 ô
B2f
Bx2 px, yq ´ 2 B2f

BxBy px, yq `
B2f
By2

px, yq “ 0 pour tout px, yq P R2

ô
B2g

Bu2
pu, vq ´ 2

B2g

Bu2
pu, vq ´ 2

B2g

BvBu
pu, vq `

B2g

Bu2
pu, vq ` 2

B2g

BvBu
pu, vq `

B2g

Bv2
pu, vq “ 0

pour tout pu, vq P R2

ô
B2g
Bv2

pu, vq “ 0 pour tout pu, vq P R2

7
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Comme R2 est convexe, on en déduit

f est solution de l’EDP sur R2 ô il existe λ P C1pR,Rq avec Bg
Bv : pu, vq ÞÑ λpuq

ô il existe λ P C1pR,Rq et µ P C1pR,Rq avec g : pu, vq ÞÑ λpuqv ` µpuq.

Comme on veut f et donc g de classe C2, on veut

λ P C2pR,Rq et µ P C2pR,Rq

(car la fonction
µ : u ÞÑ gpu, 0q

est de classe C2 par composition, puis la fonction

λ : u ÞÑ gpu, 1q ´ µpuq

est de classe C2 par composition puis soustraction). Ainsi

f est solution de l’EDP sur R2 ô il existe λ P C2pR,Rq et µ P C2pR,Rq avec f : px, yq ÞÑ λpx` yqy ` µpx` yq .

Exercice 8.
On veut passer en coordonnées polaires, donc écrire

« fpx, yq “ gpr, θq »

si pr, θq sont les coordonnées polaires de px, yq.
Pour px, yq P U , on pose r “

a

x2 ` y2, on a r ą 0 (car r ě
?
x2 “ |x| “ x ą 0 car px, yq P U) et on veut θ tel que

$

’

&

’

%

cospθq “ x
r

sinpθq “
y
r

.

Comme x ą 0 (car px, yq P U), on peut prendre

θ P

ı

´
π

2
,
π

2

”

.

Réciproquement, si θ P
‰

´π
2 ,

π
2

“

, alors pour tout r ą 0,
`

x, y
˘

“
`

r cospθq, r sinpθq
˘

P U.

On peut donc noter V “ R˚
` ˆ

‰

´π
2 ,

π
2

“

, et poser

g : pr, θq P V ÞÑ f
`

r cospθq, r sinpθq
˘

,

ainsi si px, yq “
`

r cospθq, r sinpθq
˘

, on a bien

« fpx, yq “ gpr, θq ».

Puis, les fonctions
pr, θq ÞÑ r cospθq et pr, θq ÞÑ r sinpθq

sont de classe C1 sur V (par composition et produit...), donc pour f fonction de classe C1 sur U , par composition,
on aura la fonction g de classe C1 sur V , et par la règle de la chaîne : pour tout pr, θq P V ,

Bg

Br
pr, θq “ cospθq

Bf

Bx

`

r cospθq, r sinpθq
˘

`sinpθq
Bf

By

`

r cospθq, r sinpθq
˘

, soit r
Bg

Br
pr, θq “ x

Bf

Bx
px, yq`y

Bf

By
px, yq.

Puis, on a remarqué que, pour pr, θq P V , on a px, yq “
`

r cospθq, r sinpθq
˘

P U , et que réciproquement, pour tout
px, yq P U , il existe pr, θq P V avec px, yq “

`

r cospθq, r sinpθq
˘

P U . On en déduit que

8
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« px, yq parcourt U » ô « pr, θq parcourt V »

(avec la relation px, yq “
`

r cospθq, r sinpθq
˘

, qui donne en particulier cospθq “ x
r “ x?

x2`y2
). Donc

f est solution de l’EDP sur U ô pour tout px, yq P U , xBf
Bx px, yq ` y Bf

By px, yq “ x?
x2`y2

ô pour tout pr, θq P V , r Bg
Br pr, θq “ cospθq

ô pour tout pr, θq P V , Bg
Br pr, θq “

cospθq

r .

Posons alors
h : pr, θq P V ÞÑ gpr, θq ´ cospθq lnprq.

La fonction h est de classe C1 sur V (par opérations usuelles...), et pour tout pr, θq P V , on a

Bh

Br
pr, θq “

Bg

Br
pr, θq ´

cospθq

r
.

Ainsi (car R˚
` ˆ

‰

´π
2 ,

π
2

“

est convexe), on a :

f est solution de l’EDP sur U ô pour tout pr, θq P V , Bh
Br pr, θq “ 0

ô il existe v P C1
`‰

´π
2 ,

π
2

“

,R
˘

(quelconque) avec h : pr, θq P V ÞÑ vpθq

ô il existe v P C1
`‰

´π
2 ,

π
2

“

,R
˘

(quelconque) avec g : pr, θq ÞÑ cospθq lnprq ` vpθq.

Le programme officiel demande de s’arrêter ici. On peut cependant revenir facilement à f dans ce cas précis :
Soit pr, θq P V , alors si on note px, yq “

`

r cospθq, r sinpθq
˘

, on a

x ą 0 et
y

x
“ tanpθq.

Comme θ P
‰

´π
2 ,

π
2

“

, on conclut :

θ “ arctan
´y

x

¯

.

Alors

f est solution de l’EDP sur U ô il existe v P C1
`‰

´π
2 ,

π
2

“

,R
˘

(quelconque) avec
f : px, yq P U ÞÑ x?

x2`y2
ˆ ln

´

a

x2 ` y2
¯

` v ˝ arctan
`

y
x

˘

ô il existe w P C1pR,Rq (quelconque) avec f : px, yq ÞÑ x?
x2`y2

ˆ 1
2 ln

`

x2 ` y2
˘

` w
`

y
x

˘

(car v P C1
`‰

´π
2 ,

π
2

“

,R
˘

ÞÑ w “ v ˝ arctan P C1pR,Rq est bijective, de bijection réciproque w ÞÑ w ˝ tan).

Exercice 9.
‹ Soit D une droite passant par p0, 0q et de vecteur directeur pa, bq avec b ‰ 0 : alors, pour tout px, yq P R2,

px, yq P D ô Dt P R : px, yq “ p0, 0q ` tpa, bq.

On pose
ϕ : t P R ÞÑ f

`

p0, 0q ` tpa, bq
˘

“ pt2a2 ´ tbqp3t2a2 ´ tbq “ 3t4a4 ´ 4t3a2b` t2b2.

Alors la fonction ϕ est dérivable sur R et

ϕ1p0q “ 0, et ϕ2p0q “ 2b2 ą 0.

Donc la fonction ϕ atteint un minimum strict en 0 (si c’est pas clair, faire le tableau de variations des fonctions ϕ
et ϕ1 au voisinage de 0 : ϕ2p0q ą 0 donne par continuité de ϕ2 en 0 que ϕ2 ą 0 sur un voisinage de 0 de la forme
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s ´ e, er avec e ą 0, donc ϕ1 est strictement croissante sur s ´ e, er, et comme ϕ1p0q “ 0, c’est que ϕ1 ă 0 sur s ´ e, 0r

et ϕ1 ą 0 sur s0, er, ce qui donne ϕ strictement décroissante sur s ´ e, 0s et strictement croissante sur r0, er, d’où
l’affirmation). Donc la fonction f atteint un minimum strict sur Dpa,bq en p0, 0q.
Pour la droite Dpa,0q avec a ‰ 0, on pose alors

ϕ : t ÞÑ f
`

p0, 0q ` tpa, 0q
˘

“ 3t4a4,

et sous cette forme, il est direct que la fonction ϕ atteint un minimum strict en 0, donc la fonction f atteint bien
un minimum strict sur Dpa,0q en p0, 0q.
‹ Montrons que la fonction f n’atteint pas d’extremum en p0, 0q : pour tout e ą 0 (aussi proche que l’on veut de
0),

fpe, 0q “ 3e4 ą 0 “ fp0, 0q,

donc p0, 0q ne peut pas être un maximum local de f , et

fpe, 2e2q “ ´e4 ă 0 “ fp0, 0q,

donc p0, 0q ne peut pas être un minimum local de f .
Donc f n’atteint pas de minimum en p0, 0q.

Remarque. La fonction f est polynomiale, donc de classe C2 sur R2. Puis, pour tout px, yq P R2,

fpx, yq “ 3x4 ´ 4x2y ` y2,

donc
Bf

Bx
px, yq “ 12x3 ´ 8xy et

Bf

By
px, yq “ ´4x2 ` 2y,

et

Hf px, yq “

ˆ

36x2 ´ 8y ´8x
´8x 2

˙

,

donc

H “ Hf p0, 0q “

ˆ

0 0
0 2

˙

, puis detpHq “ 0,

donc le cours ne permet pas de conclure quand à la nature de p0, 0q.

Exercice 10. 1) ‚ La fonction f est polynomiale donc de classe C2 sur R2. Or, R2 est un ouvert, donc un point
extrémal de f sera un point critique.
‚ Or, pour px, yq P R2,

Bf

Bx
px, yq “ 4x3 ´ 4px´ yq et

Bf

By
px, yq “ 4y3 ` 4px´ yq,

donc

px, yq est un point critique de f ô

#

Bf
Bx px, yq “ 0
Bf
By px, yq “ 0

ô

#

x´ y “ x3

y3 “ ´x3 “ p´xq3
ô

#

2x “ x3

y “ ´x

(car la fonction t ÞÑ t3 est injective sur R).
Donc la fonction f a trois points critiques :

p0, 0q,
`
?
2,´

?
2
˘

et
`

´
?
2,

?
2
˘

.

‚ Pour tout px, yq P R2, la hessienne de f en px, yq vaut

Hf px, y “

ˆ

12x2 ´ 4 4
4 12y2 ´ 4

˙

.

‹ Donc

Hf p0, 0q “

ˆ

´4 4
4 ´4

˙

, donc det
`

Hf p0, 0q
˘

“ 0,
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donc le cours ne permet pas de conclure quand à la nature de p0, 0q.
Mais, pour tout x P R˚ (aussi petit que l’on veut),

fpx, xq “ 2x4 ą 0 “ fp0, 0q,

donc p0, 0q ne peut pas être un maximum local.
Pour tout y P R˚ (aussi petit que l’on veut),

fp0, yq “ y4 ´ 2y2 ă 0 “ fp0, 0q,

donc p0, 0q ne peut pas être un minimum local.
Donc p0, 0q est un point col (ce n’est pas un extremum).
‹ Puis,

H :“ Hf

`
?
2,´

?
2
˘

“

ˆ

20 4
4 20

˙

donc detpHq “ 384 ą 0 et trpHq “ 40 ą 0,

comme on est sur R2, on en déduit que f atteint un minimum local strict en
`?

2,´
?
2
˘

.
‹ Comme, pour tout px, yq P R2,

fp´x,´yq “ fpx, yq,

il en est de même pour
`

´
?
2,

?
2
˘

.
2)‚ La fonction g est le quotient de deux fonctions polynomiales, le dénominateur ne s’annule pas sur l’ouvert
U “

`

R˚
`

˘2, donc la fonction g est de classe C2 sur U . Un point extrémal de g sera donc un point critique.
‚ Pour tout px, yq P U ,

Bg

Bx
px, yq “

ypy ´ x2q

p1 ` xq2p1 ` yqpx` yq2
et

Bg

By
px, yq “

xpx´ y2q

p1 ` xqp1 ` yq2px` yq2
,

donc

px, yq P U est un point critique de g ô

#

ypy ´ x2q “ 0

xpx´ y2q “ 0

et comme on se place sur U , x ‰ 0 et y ‰ 0, donc

px, yq P U est un point critique de g ô

#

y “ x2

x “ y2
ô

#

y “ x2

x “ x4
ô x “ y “ 1

(car on est sur U).
‚ Pour tout px, yq P U ,

B2g

Bx2
px, yq “

y

1 ` y

´2xp1 ` xq2px` yq2 ´ py ´ x2q
`

2p1 ` xqpx` yq2 ` 2p1 ` xq2px` yq
˘

p1 ` xq4px` yq4

et
B2

ByBx
px, yq “

1

p1 ` xq2

p2y ´ x2qp1 ` yqpx` yq2 ´ ypy ´ x2q
`

px` yq2 ` 2p1 ` yqpx` yq
˘

p1 ` yq2px` yq4

donc
B2g

Bx2
p1, 1q “

1

2

´32 ´ 0

44
“ ´

1

16
et

B2g

ByBx
p1, 1q “

1

4

8 ´ 0

26
“

1

32
.

Puis, le théorème de Schwarz donne
B2g

BxBy
p1, 1q “

B2g

ByBx
p1, 1q “

1

32
.

Enfin, remarquons que, pour tout px, yq P R2, fpx, yq “ fpy, xq. Alors

B2g

By2
p1, 1q “

B2g

Bx2
p1, 1q “ ´

1

16
.
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Donc

H :“ Hgp1, 1q “
1

32

ˆ

´2 1
1 ´2

˙

, puis detpHq “
1

322
3 ą 0 et trpHq “ ´

4

32
ă 0.

comme on est sur R2, on en déduit que g atteint en p1, 1q un maximum local strict.
3) ‚ Sur l’ouvert V “ R2z

␣

p0, 0q
(

, la fonction

px, yq ÞÑ x2 ` y2

est polynomiale, donc de classe C2, à valeurs strictement positives. Comme la fonction ln est de classe C2 sur R˚
`,

par composition, la fonction
px, yq ÞÑ lnpx2 ` y2q

est de classe C2 sur V . Puis, par produit avec un polynôme, la fonction ℓ est de classe C2 sur V . Un point extrémal
de ℓ sera donc un point critique.
‚ Pour tout px, yq P V ,

Bℓ

Bx
px, yq “ y lnpx2 ` y2q ` xy

2x

x2 ` y2
et

Bℓ

By
px, yq “ x lnpx2 ` y2q ` xy

2y

x2 ` y2
.

Donc

px, yq P V est un point critique de ℓ ô

#

ypx2 ` y2q lnpx2 ` y2q “ ´2x2y

xpx2 ` y2q lnpx2 ` y2q “ ´2y2x
ô

L3ÐyL2´xL1

$

’

&

’

%

ypx2 ` y2q lnpx2 ` y2q “ ´2x2y

xpx2 ` y2q lnpx2 ` y2q “ ´2y2x

2xypx2 ´ y2q “ 0

.

Si x “ 0, alors L1 devient y3 lnpy2q “ 0, donc lnpy2q “ 0 (car px, yq ‰ p0, 0q), donc

y “ ˘1.

Si y “ 0, de même,
x “ ˘1.

Si x “ y, on a 2x3 lnp2x2q “ ´2x3, donc

x “ y “ ˘

c

e´1

2
.

Si x “ ´y, on a la même équation que pour x “ y.
Réciproquement, ces valeurs sont bien solutions du système précédent.
Donc la fonction ℓ a 6 points critiques.
‚ Comme, pour tout px, yq P V , on a

p´x,´yq P V et ℓp´x,´yq “ ℓpx, yq

alors

p0, 1q est de même nature que p0,´1q, p1, 0q est de même nature que p´1, 0q,

et
ˆ

b

e´1

2 ,
b

e´1

2

˙

est de même nature que
ˆ

´

b

e´1

2 ,´
b

e´1

2

˙

(en tant qu’extremum ou non-extremum).
Enfin, pour tout px, yq P V , on a

py, xq P V et ℓpx, yq “ ℓpy, xq,

donc

p1, 0q est de même nature que p0, 1q

12
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(en tant qu’extremum ou non-extremum).
On a donc plus que deux points à regarder.
‚ Pour tout px, yq P V ,

B2ℓ

Bx2
px, yq “

2xy

x2 ` y2
`

4xypx2 ` y2q ´ 2x2y2x

px2 ` y2q2

et
B2ℓ

ByBx
px, yq “ lnpx2 ` y2q `

2y2

x2 ` y2
`

2x2

x2 ` y2
´

4x2y2

px2 ` y2q2
.

Puis, le théorème de Schwarz donne
B2ℓ

BxBy
px, yq “

B2ℓ

ByBx
px, yq.

Enfin, pour tout px, yq P V , on a ℓpx, yq “ ℓpy, xq, donc

B2ℓ

By2
px, yq “

B2ℓ

Bx2
py, xq.

‹ Donc

H “ Hℓp1, 0q “

ˆ

0 2
2 0

˙

, donc detpHq “ ´4 ă 0,

donc p1, 0q n’est pas un extremum de f .

Remarque. En effet, pour tout y Ps0,`8r (aussi petit que l’on veut),

ℓp1, yq “ y lnp1 ` y2q ą 0 “ ℓp1, 0q,

donc p1, 0q n’est pas un maximum local de ℓ.
Pour tout y Ps ´ 8, 0r (aussi petit que l’on veut),

ℓp1, yq “ y lnp1 ` y2q ă 0 “ ℓp1, 0q,

donc p1, 0q n’est pas un minimum local de ℓ.

‹ Puis

H “ Hℓ

˜

c

e´1

2
,

c

e´1

2

¸

“

ˆ

2 ´1
´1 2

˙

donc detpHq “ 3 ą 0 et trpHq “ 4 ą 0.

Remarque. On peut remarquer que B2ℓ
BxBy px, xq et B2ℓ

By2
px, xq se calculent bien, et remplacer ensuite x par

b

e´1

2 , le
calcul est ainsi plus facile...

Donc
ˆ

b

e´1

2 ,
b

e´1

2

˙

est un minimum local strict de h.

Exercice 11. 1) La fonction f est polynomiale sur R3, donc de classe C2 sur R3. Donc, si la fonction f a un
extremum en un point, ce point est un point critique de f (car R3 est un ouvert).
Pour tout px, y, zq P R3,

Bf

Bx
px, y, zq “ 2x` 8yz,

Bf

By
px, y, zq “ 1 ` 8xz et

Bf

Bz
px, y, zq “ ´2 ` 8xy.

Puis, pour px, y, zq P R3,

∇fpx, y, zq “ 0⃗ ô

$

’

&

’

%

2x` 8yz “ 0

1 ` 8xz “ 0

´2 ` 8xy “ 0

ô

$

’

&

’

%

2x` 8
`

1
4x

˘ `

´ 1
8x

˘

“ 0

z “ ´ 1
8x

y “ 1
4x

ô

$

’

&

’

%

x3 “ 1
8

z “ ´ 1
8x

y “ 1
4x

ô

$

’

&

’

%

x “ 1
2

z “ ´ 1
8x

y “ 1
4x

Donc la fonction f a un unique point critique :
ˆ

1

2
,
1

2
,´

1

4

˙

.

13
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Puis, pour tout px, y, zq P R3,

Hf px, y, zq “

¨

˝

2 8z 8y
8z 0 8x
8y 8x 0

˛

‚,

donc

H “ Hf

ˆ

1

2
,
1

2
,´

1

4

˙

“

¨

˝

2 ´2 4
´2 0 4
4 4 0

˛

‚.

Puis, si X “

¨

˝

1
1
0

˛

‚, alors

tXHX “ ´2 ă 0,

et si X “

¨

˝

1
0
0

˛

‚, alors

tXHX “ 2 ą 0.

Donc H n’est ni positive, ni négative, donc f n’a pas d’extremum local en
`

1
2 ,

1
2 ,´

1
4

˘

.

Remarque. Autre façon : on a

χH “ X3 ´ 2X2 ´ 36X ` 96, donc χ1
H “ 3X2 ´ 4X ´ 36

donc α “ 2´4
?
7

3 et β “ 2`4
?
7

3 sont racines de χ1
H . Le tableau de variations de χH est alors

x ´8 α β `8

χ1
Hpxq ` 0 ´ 0 `

χHpxq ´8 Õ ą 0 Œ ă 0 Õ `8

.

χHpαq ă 0 et χHpβq ą 0 peuvent s’obtenir à la calculatrice, ou alors en faisant un calcul exact à la main, qui
donne

χHpαq “
8

27

`

241 ` 112
?
7
˘

ą 0 et χHpβq “
8

27

`

241 ´ 112
?
7
˘

ă 0

(pour la dernière inégalité, c’est directe une fois que l’on remarque
?
7 ą 2, 5).

Comme χH est continue sur s ´ 8, αs, χHpαq ą 0 et lim
´8

χH “ ´8, le théorème des valeurs intermédiaires donne

qu’il existe λ Ps ´ 8, αs racine de χH , donc
λ ď α ă 0.

Comme χH est continue sur rβ,`8r, χHpβq ă 0 et lim
`8

χH “ `8, le théorème des valeurs intermédiaires donne

qu’il existe µ P rβ,`8r racine de χH , donc
µ ě β ą 0.

Donc H a une valeur propre strictement négative, une valeur propre strictement positive, et H est symétrique
réelle. Donc H n’est ni positive, ni négative, donc f n’a pas d’extremum local en

`

1
2 ,

1
2 ,´

1
4

˘

.

Donc f n’a pas d’extremum local
2) La fonction f est polynomiale sur R3, donc de classe C2 sur R3. Donc, si la fonction f a un extremum en un
point, ce point est un point critique de f (car R3 est un ouvert).
Pour tout px, y, zq P R3,

Bf

Bx
px, y, zq “ 4x3 ` 4x´ 2y,

Bf

By
px, y, zq “ 2y ´ 2x` 2z ` 2 et

Bf

Bz
px, y, zq “ 8z ` 2y ` 8.

14
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Puis, pour px, y, zq P R3,

∇fpx, y, zq “ 0⃗ ô

$

’

&

’

%

4x3 ` 4x´ 2y “ 0

2y ´ 2x` 2z ` 2 “ 0

8z ` 2y ` 8 “ 0

ô
L2Ð4L2´L1

$

’

&

’

%

4x3 ` 4x´ 2y “ 0

6y ´ 8x “ 0

8z ` 2y ` 8 “ 0

ô

$

’

&

’

%

4x3 ` 4x´ 8
3x “ 0

6y ´ 8x “ 0

8z ` 2y ` 8 “ 0

ô

$

’

’

’

’

&

’

’

’

’

%

x
´

4x2 `
4

3
looomooon

ą0

¯

“ 0

6y ´ 8x “ 0

8z ` 2y ` 8 “ 0

ô

$

’

&

’

%

x “ 0

y “ 4
3x “ 0

z “ ´1 ´
y
4 “ ´1

Donc la fonction f a un unique point critique :
p0, 0,´1q.

Puis, pour tout px, y, zq P R3,

Hf px, y, zq “

¨

˝

12x2 ` 4 ´2 0
´2 2 2
0 2 8

˛

‚,

donc

H “ Hf p0, 0,´1q “

¨

˝

4 ´2 0
´2 2 2
0 2 8

˛

‚.

Puis,
χH “ X3 ´ 14X2 ` 48X ´ 16, χ1

H “ 3X2 ´ 28X ` 48.

Donc, pour tout x Ps ´ 8, 0s,
χ1
Hpxq “ 3 x2

loomoon

ě0

`28 p´xq
loomoon

ě0

`48 ě 48 ą 0,

donc la fonction polynomiale χH est strictement croissante sur s ´ 8, 0s. Comme χHp0q “ ´16 ă 0, on en déduit

χH ď χHp0q ă 0

sur s ´ 8, 0s. Donc χH n’a aucune racine réelle négative.
Donc, les racines réelles de χH sont dans R˚

`. Or, la matrice H est symétrique réelle, donc diagonalisable dans
M3pRq, et donc toutes ses valeurs propres sont dans R, donc dans R˚

` par ce qui précède.
Donc H P S``

3 pRq, et donc f atteint un minimum local strict en p0, 0,´1q, et c’est le seul extremum local de f .

Exercice 12. 1) La fonction f est polynomiale, donc de classe C2 sur l’ouvert Rn.
Puis, pour tout i P rr1, nss, pour tout px1, . . . , xnq P Rn,

Bf

Bxi
px1, . . . , xnq “ 2xi ´ 1 ` 2

n
ÿ

k“1

xk .

15
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2) Analyse : soit px1, . . . , xnq P Rn, supposons qu’il soit un point critique de la fonction f . Notons alors α “

n
ÿ

k“1

xk.

Alors, pour tout i P rr1, nss, on a

0 “
Bf

Bxi
px1, . . . , xnq “ 2xi ´ 1 ` 2

n
ÿ

k“1

xk, donc xi “
1

2
´

n
ÿ

k“1

xk “
1

2
´ α.

Donc toutes les coordonnées du point px1, . . . , xnq sont égales à 1
2 ´ α. Puis,

α “

n
ÿ

k“1

xk “

n
ÿ

k“1

ˆ

1

2
´ α

˙

“
n

2
´ nα,

et donc
pn` 1qα “

n

2
, soit α “

n

2n` 2
, puis

1

2
´ α “

1

2n` 2

Donc, si la fonction f a un point critique, il est unique, et c’est
ˆ

1

2n` 2
, . . . ,

1

2n` 2

˙

.

Synthèse : pour tout i P rr1, nss,

Bf

Bxi

ˆ

1

2n` 2
, . . . ,

1

2n` 2

˙

“ 2
1

2n` 2
´ 1 ` 2

n
ÿ

k“1

1

2n` 2
“

2

2n` 2
´

2n` 2

2n` 2
` 2

n

2n` 2
“ 0.

Donc
´

1
2n`2 , . . . ,

1
2n`2

¯

est bien un point critique de la fonction f .
Conclusion : la fonction f a un et un seul point critique sur R2, à savoir

A “

ˆ

1

2n` 2
, . . . ,

1

2n` 2

˙

.

3a) Pour tout px1, . . . , xnq P Rn, pour tout i P rr1, nss,

B2f

Bx2i
px1, . . . , xnq “ 2 ` 2 “ 4,

et pour tout j P rr1, nss, si j ‰ i,
B2f

BxjBxi
px1, . . . , xnq “ 2.

Donc

Hf px1, . . . , xnq “

¨

˚

˚

˚

˚

˝

4 2 . . . 2

2
. . . . . .

...
...

. . . . . . 2
2 . . . 2 4

˛

‹

‹

‹

‹

‚

.

En particulier,

Hf pAq “

¨

˚

˚

˚

˚

˝

4 2 . . . 2

2
. . . . . .

...
...

. . . . . . 2
2 . . . 2 4

˛

‹

‹

‹

‹

‚

“ 2In ` 2J .

3b) ‚ La matrice J est non nulle, donc
rgpJq ě 1.

Puis, toutes les colonnes de J sont égales entre elles, donc

rgpJq ď 1.

16
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Par double inégalité,
rgpJq “ 1 .

‚ Comme la matrice J est de taille n avec n ě 2, et que rgpJq ă n, on en déduit que 0 est valeur propre de J , et
le théorème du rang donne alors

dimpE0q “ n´ rgpJq “ n´ 1.

‚ Enfin, U “

¨

˚

˝

1
...
1

˛

‹

‚

est une matrice-colonne non nulle, et

JU “

¨

˚

˝

n
...
n

˛

‹

‚

“ n

¨

˚

˝

1
...
1

˛

‹

‚

(la somme des coefficients de chaque ligne de J fait toujours n), donc n est une valeur propre de J et U en est un
vecteur propre associé. En particulier,

dimpEnq ě 1.

‚ La matrice J est symétrique réelle, donc diagonalisable dans MnpRq. Donc
ÿ

λPSppJq

dimpEλq “ n.

Or, on a vu que 0 P SppJq et n P SppJq, donc (comme une dimension est positive)

n “
ÿ

λPSppJq

dimpEλq ě dimpE0q ` dimpEnq “ n´ 1 ` dimpEnq ě n.

Pour que l’égalité soit possible, cela force dimpEnq “ 1 et pour tout λ P SppJqzt0, nu,

dimpEλq “ 0.

Mais la dimension d’un espace propre n’est jamais nul, donc SppJqzt0, nu “ H.
Donc

SppJq “ t0, nu .

3c) Comme la matrice J est diagonalisable avec SppJq “ t0, nu, dimpE0q “ n ´ 1 et dimpEnq “ 1, il existe
P P GLnpRq avec

P´1AP “ diagpn, 0, . . . , 0q

(on peut même supposer P orthogonale par le théorème spectral, mais on ne s’en servira pas ici). Alors

P´1Hf pAqP “ P´1
`

2In ` 2J
˘

P “ 2P´1InP ` 2P´1JP “ 2In ` 2diagpn, 0, . . . , 0q “ diagp2 ` 2n, 2, . . . , 2q.

Donc Hf pAq est semblable à la matrice diagonale diagp2`2n, 2, . . . , 2q, donc ces deux matrices ont le même spectre,
donc

Sp
`

Hf pAq
˘

“ t2, 2 ` 2nu.

La matrice Hf pAq est alors symétrique réelle, ses valeurs propres sont toutes strictement positives (car 2 ą 0 et
2 ` 2n ą 0), donc Hf pAq P S``

n pRq, et donc

f atteint un minimum local strict en A ,
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et ce minimum vaut

fpAq “

n
ÿ

k“1

ˆ

1

2n` 2

˙2

`

˜

n
ÿ

k“1

1

2n` 2

¸2

´

n
ÿ

k“1

1

2n` 2

“ n
p2n`2q2

` n2

p2n`2q2
´ n

2n`2

“
n`n2´np2n`2q

p2n`2q2

“ n ´n´1
p2n`2q2

“ ´
n

4pn` 1q

3d) Soit u “ pu1, . . . , unq P Rn non nul, notons U “

¨

˚

˝

u1
...
un

˛

‹

‚

P Mn,1pRq. Notons

ϕ : t P r0, 1s ÞÑ fpA` tuq P R.

Alors, par composition, la fonction ϕ est de classe C2 sur r0, 1s, et la règle de la chaîne donne, pour tout t P r0, 1s,

ϕ1ptq “

n
ÿ

i“1

ui
Bf

Bxi
pA` tuq et ϕ2ptq “

n
ÿ

i“1

ui

n
ÿ

j“1

uj
B2f

BxjBxi
pA` tuq “ tUHf pA` tuqU

(en identifiant M1pRq avec R).
Or, on a vu

Hf pA` tuq “ Hf pAq P S``
n pRq,

donc puisque U P Mn,1pRq et U ‰ 0n,1, on a pour tout t P r0, 1s,

ϕ2ptq “ tUHf pA` tuqU ą 0.

La formule de Taylor avec reste intégral donne alors

fpA` uq ´ fpAq “ ϕp1q ´ ϕp0q “ ϕ1p0q `

ż 1

0
p1 ´ tqϕ2ptqdt “

ż 1

0
p1 ´ tqϕ2ptqdt,

car

ϕ1p0q “

n
ÿ

i“1

ui
Bf

Bxi
pAq

loomoon

“0

“ 0

(puisque A est un point critique de f). Puis, la fonction

h : t P r0, 1s ÞÑ p1 ´ tqϕ2ptq P R

est continue sur r0, 1s (car la fonction ϕ est de classe C2 sur r0, 1s), positive et n’est pas la fonction nulle, car pour
tout t P r0, 1r, 1 ´ t ą 0 et ϕ2ptq ą 0, donc

hptq ą 0

(par produit), et
hp1q “ 0.

Enfin, « 0 ă 1 », donc « les bornes de l’intégrale sont dans le bon sens ». Donc, par stricte positivité de l’intégrale,
ż 1

0
p1 ´ tqϕ2ptqdt “

ż 1

0
hptqdt ą 0.

Donc, pour tout u P Rn non nul, on a
fpA` uq ą fpAq.

Donc

18
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f atteint un minimum global strict en A .

Exercice 13. 1) La fonction f est polynomiale sur R2, donc de classe C2 sur R2. Puis, pour tout px, yq P R2,

px, yq est un point critique de f ô ∇⃗fpx, yq “ p0, 0q

ô p4x´ 2y ` 2,´2x` 2y ´ 2q “ p0, 0q

ô

#

4x´ 2y “ ´2

´2x` 2y “ 2

ô px, yq “ p0, 1q

Donc la fonction f a un seul point critique :
a “ p0, 1q .

2) Pour tout ph1, h2q P R2,

qph1, h2q “ 2h21 ´ 2h1h2 ` h22 “ h21 ` ph1 ´ h2q2 ą 0

si ph1, h2q ‰ p0, 0q (et nul en p0, 0q).
3) Notons

ϕ : t P R ÞÑ fpa` thq,

par composition la fonction ϕ est de classe C2 sur R, et par application du théorème des accroissements finis, il
existe θ Ps0, 1r tel que

ϕp1q ´ ϕp0q “ p1 ´ 0qϕ1pθq “ ϕ1pθq.

Puis,
ϕp1q ´ ϕp0q “ fpa` hq ´ fpaq, et ϕ1pθq “ x∇⃗fpa` θhq, hy.

Enfin,

x∇⃗fpa` θhq, hy “ xθp4h1 ´ 2h2,´2h1 ` 2h2q, ph1, h2qy “ 2θ
`

2h21 ´ 2h1h2 ` h22
˘

“ 2θqph1, h2q ě 0,

et
qph1, h2q “ 0 ô h1 “ h2 “ 0.

Donc
fpa` hq ě fpaq, et fpa` hq “ fpaq ô h “ 0.

Donc a est un minimum global strict.

Exercice 14.

1. ‚ L’application f est continue (car polynomiale) sur R2, r0, 1s2 est un fermé borné de R2 et R2 est un
espace vectoriel normé de dimension finie, donc par le théorème des bornes atteintes, la fonction f admet
un maximum et un minimum global sur r0, 1s2 : il existe pa, bq P r0, 1s2 et pc, dq P r0, 1s2 avec, pour tout
px, yq P r0, 1s2,

fpa, bq ď fpx, yq ď fpc, dq.

‚ Justifions que r0, 1s2 est un fermé borné : pour tout px, yq P r0, 1s2, on a

|x| “ x ď 1 et |y| “ y ď 1, donc
›

›px, yq
›

›

8
ď 1.

Donc r0, 1s2 est borné (r0, 1s est inclus dans la boule unité de centre p0, 0q pour la norme }.}8).
Puis, soit

f1 : px, yq P R2 ÞÑ 1´x, f2 : px, yq P R2 ÞÑ x, f3 : px, yq P R2 ÞÑ 1´y et f4 : px, yq P R2 ÞÑ y.

Ce sont des fonctions continues sur R2, car polynomiales. Donc, pour i P rr1, 4ss,

Ei “
␣

px, yq P R2 : fipx, yq ě 0
(

“ f´1
i

`

r0,`8r
˘

est un fermé de R2. Donc
r0, 1s2 “ E1 X E2 X E3 X E4

est un fermé de R2, comme intersections de fermés de R2.
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2. ‚ Cherchons les extrema locaux sur l’ouvert Ω “s0, 1r2. Comme la fonction f est de classe C1 (car polynomiale)
sur R2, et que Ω est un ouvert, un extremum local est un point critique. Puis, pour px, yq P R2,

px, yq est un point critique de f ô

$

’

&

’

%

Bf
Bx px, yq “ ´3

2 ` y ` 2x “ 0

Bf
By px, yq “ 1

2 ` x´ 2y “ 0

ô

"

2x` y “ 3
2

x´ 2y “ ´1
2

ô x “ y “
1

2
.

Donc
`

1
2 ,

1
2

˘

est l’unique point critique de f sur R2, et il est bien dans Ω. On a

f

ˆ

1

2
,
1

2

˙

“ ´
1

4
.

Remarque. On peut pousser l’étude, pour voir si ce point critique est un extremum local ou non : pour
tout px, yq P Ω,

Hf px, yq “

ˆ

2 1
1 ´2

˙

,

donc

H “ Hf

ˆ

1

2
,
1

2

˙

“

ˆ

2 1
1 ´2

˙

, donc detpHq “ ´5 ă 0,

donc
`

1
2 ,

1
2

˘

n’est pas un extremum local de f .

‹ Étude des extrema sur les bords du carré r0, 1s2 (on fera le tableau de variation de chacune des fonctions
ci-après) : pour tout x P r0, 1s, pour tout y P r0, 1s, on pose :

gpxq “ fpx, 0q “ ´
3

2
x` x2, hpxq “ fpx, 1q “ ´

1

2
x` x2 ´

1

2
,

upyq “ fp0, yq “
1

2
y ´ y2, vpyq “ fp1, yq “ ´

1

2
`

3

2
y ´ y2.

Faisons les tableaux de variations de g, h, u, v :

x 0 3
4 1

g1pxq ´ 0 `

gpxq 0 Œ ´ 9
16 Õ ´1

2

x 0 1
4 1

h1pxq ´ 0 `

hpxq ´1
2 Œ ´ 9

16 Õ 0

x 0 1
4 1

u1pxq ` 0 ´

upxq 0 Õ 1
16 Œ ´1

2

x 0 3
4 1

v1pxq ` 0 ´

vpxq ´1
2 Õ 1

16 Œ 0

Des quatre tableaux, on obtient que la fonction f a un minimum sur le bord en
ˆ

3

4
, 0

˙

et
ˆ

1

4
, 1

˙

(qui vaut ´ 9
16), et un maximum sur le bord en

ˆ

0,
1

4

˙

et
ˆ

1,
3

4
, 1

˙

(qui vaut 1
16).

Or, d’après la question 1, la fonction f a un maximum global sur r0, 1s2. Deux cas sont possibles :

• soit c’est en un point de s0, 1r2,
• soit c’est en un point du bord.

Mais, si c’est en un point de s0, 1r2, alors ce point est un point critique, et donc c’est
`

1
2 ,

1
2

˘

, et alors le
maximum vaut

f

ˆ

1

2
,
1

2

˙

“ ´
1

4
,
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mais c’est impossible car

f

ˆ

0,
1

4

˙

“
1

16
ą ´

1

4
“ f

ˆ

1

2
,
1

2

˙

.

Donc le point est sur le bord, et donc f atteint un maximum global sur r0, 1s2 en
ˆ

3

4
, 0

˙

et
ˆ

1

4
, 1

˙

,

et ce maximum vaut
1

16
.

De même, comme

´
9

16
ă ´

1

4
“ f

ˆ

1

2
,
1

2

˙

,

le minimum global de f sur r0, 1s2 est atteint sur le bord, donc en
ˆ

3

4
, 0

˙

et
ˆ

1

4
, 1

˙

,

et il vaut
´

9

16
.

Exercice 15. 1) D est la boule fermée de centre p0, 0q et de rayon 1 pour la norme euclidienne standard, donc est
un fermé borné de R2.
B est la boule ouverte de centre p0, 0q et de rayon 1 pour la norme euclidienne standard, donc est un ouvert de R2.
2) La fonction

px, yq ÞÑ 1 ´ x2 ´ y2

est une fonction polynomiale, donc continue sur R2, donc sur D. De plus, pour tout px, yq P D,

1 ´ x2 ´ y2 ě 0.

Or, la fonction
t ÞÑ

?
t

est continue sur R`. Par composition, on en déduit que la fonction f est continue sur D.
La fonction f est alors continue sur D qui est un fermé borné de R2, et R2 est de dimension finie, donc par le
théorème des bornes atteintes, il existe un maximum global et un minimum global de f sur D.
3) La fonction

px, yq ÞÑ 1 ´ x2 ´ y2

est une fonction polynomiale, donc de classe C1 sur R2, donc sur l’ouvert B. De plus, pour tout px, yq P B,

1 ´ x2 ´ y2 ą 0.

Or, la fonction
t ÞÑ

?
t

est de classe C1 sur R˚
`. Par composition, on en déduit que la fonction f est de classe C1 sur l’ouvert B.

Puis, pour tout px, yq P B,

px, yq est un point critique de f ô

#

Bf
Bx px, yq “ 0
Bf
By px, yq “ 0

ô

$

&

%

´ x?
1´x2´y2

“ 0

´
y?

1´x2´y2
“ 0

ô px, yq “ p0, 0q.

Donc la fonction f a un seul point critique sur B, qui est p0, 0q.
De plus, fp0, 0q “ 1, et pour tout px, yq P D, on a 1´x2 ´ y2 ď 1, donc par croissance de la fonction racine carrée,

fpx, yq “
a

1 ´ x2 ´ y2 ď
?
1 “ 1 “ fp0, 0q.

Donc
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f a un maximum global sur D en p0, 0q .

4) Remarquons que, B étant ouvert, et la fonction f ayant un seul point critique sur B, qui est son maximum
global, tout point réalisant le minimum global de f sur D se trouve nécessairement sur DzB (puisque, s’il est dans
B, c’est un point critique, et que ce n’est pas le maximum global de f , puisque la fonction f n’est pas constante),
c’est-à-dire s’écrit px, yq avec x2 ` y2 ď 1, mais pas x2 ` y2 ă 1, c’est-à-dire

x2 ` y2 “ 1.

Or, dans ce cas, fpx, yq “ 0.
De plus, f ě 0 sur D de manière directe. Donc

f a un minimum global sur D en tout point du cercle unité

(c’est-à-dire aux points px, yq vérifiant x2 ` y2 “ 1).

Exercice 16. 1) Soit p Ps0, 1r, alors

fppq “

ˆ

n

n1

˙

pn1p1 ´ pqn´n1

car la variable aléatoire donnant le nombre de boules blanches lors de n tirages avec remise dans une urne qui
contient une proportion p de boules blanches suit une loi binomiale Bpn, pq (les tirages successifs sont avec remise,
donc indépendants et identiques, et on en fait n et on compte le nombre de boules blanches, chacune arrivant avec
probabilité p).
La fonction f est alors dérivable sur s0, 1r, et pour tout p Ps0, 1r,

f 1ppq “

ˆ

n

n1

˙

pn1´1p1 ´ pqn´n1´1
`

n1p1 ´ pq ´ pn´ n1qp
˘

,

et
n1p1 ´ pq ´ pn´ n1qp ą 0 ô n1 ą np ô

n1
n

ą p,

donc la fonction f est (strictement) croissante sur
‰

0, n1
n

‰

et décroissante sur
“

n1
n , 1

“

, autrement dit la fonction f
a un maximum en

p “
n1
n
.

2a) On a
ˆ

n

n1

˙

façons de choisir les tirages qui amènent la première couleur, puis
ˆ

n´ n1
n2

˙

façons de choisir les

tirages qui amènent la deuxième couleur,..., ce qui fait
ˆ

n

n1

˙ˆ

n´ n1
n2

˙

. . .

ˆ

n´ n1 ´ ¨ ¨ ¨ ´ nk´1

nk

˙

“ n!
n1!pn´n1q!

pn´n1q!
n2!pn´n1´n2q! . . .

pn´n1´¨¨¨´nk´1q!
nk!pn´n1´¨¨¨´nkq!

“ n!
n1!n2!...nk!pn´n1´¨¨¨´nkq! “ n!

n1!n2!...nk!

(après télescopage et, pour la dernière égalité, car n “ n1 ` ¨ ¨ ¨ ` nk et 0! “ 1) tirages différents qui réalisent la
répartition pn1, . . . , nkq. Ils sont tous de même probabilité, à savoir pn1

1 . . . pnk
k par indépendance des tirages, d’où

fpp1, . . . , pnq “
n!

n1! . . . nk!
pn1
1 . . . pnk

k .

2b) ‚ L’ensemble F est un fermé de Rk comme intersection de deux fermés : pour r0, 1sk, on va considérer que
c’est du cours - par exemple, c’est la boule fermée de centre

`

1
2 , . . . ,

1
2

˘

de rayon 1
2 pour la norme }.}8 -, et pour

F1 :“

#

pp1, . . . , pkq P Rk :
k
ÿ

i“1

pi “ 1

+

,

si on pose

ϕ : pp1, . . . , pkq P Rk ÞÑ

k
ÿ

i“1

pi ´ 1,
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l’application ϕ est continue sur Rk car polynomiale, donc

F1 “ ϕ´1
`

t0u
˘

est un fermé de Rk.
L’ensemble F est borné (tout point de F a une norme infinie majorée par 1, donc F est inclus dans la boule de
centre p0, . . . , 0q et de rayon 1 pour la norme infinie).
De plus, la fonction f est polynomiale, donc continue sur F . Et Rk est un espace vectoriel normé de dimension
finie.
Donc, par le théorème des bornes atteintes, la fonction f a un maximum global sur F . Notons a P F un point en
lequel il est atteint.
‚ Pour tout pp1, . . . , pkq P F , on a fpp1, . . . , pkq “ 0 dès que l’un des pj est nul (car les nj sont strictement positifs !).

Si l’un des pj vaut 1, alors comme
k
ÿ

i“1

pi “ 1 et pi ě 0 pour tout i P rr1, kss, on en déduit que tous les autres pi sont

nuls, et donc fpp1, . . . , pkq “ 0 (car k ě 2, donc il y a au moins l’un des pi qui est nul). Comme

f

ˆ

1

k
, . . . ,

1

k

˙

“
n!

n1!n2! . . . nk!

1

kn
ą 0,

et que
`

1
k , . . . ,

1
k

˘

P F , on en déduit que : tout point pp1, . . . , pkq P F qui a une coordonnée qui vaut 0 ou 1, n’est
pas un maximum global de f sur F .
Donc a a toutes ses coordonnées dans s0, 1r.
2c) ‚ Commençons par remarquer que la fonction H est bien définie : pour tout px1, . . . , xk´1q P Ω, on a

fpx1, . . . , xk´1, 1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1q ą 0,

donc Hpx1, . . . , xk´1q existe. De plus, la fonction ln est de classe C1 sur R˚
`, la fonction

px1, . . . , xk´1q P Ω ÞÑ fpx1, . . . , xk´1, 1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1q

est polynomiale, donc de classe C1 sur Ω, et comme on a vérifié que l’on peut composer, la fonction H (qui est la
composée des deux fonctions précédentes) est de classe C1 sur Ω.
‚ Puis, si on note a “ pa1, . . . , akq, on a ai ą 0 pour tout i P rr1, k ´ 1ss, et

ak “ 1 ´

k´1
ÿ

i“1

ai ą 0,

donc pa1, . . . , ak´1q P Ω (car si on a ai ą 0 pour tout i P rr1, kss et
k
ÿ

i“1

ai “ 1, alors ai ă 1 pour tout i P rr1, kss

aussi).
‚ Soit ensuite px1, . . . , xk´1q P Ω. Alors si on note

xk “ 1 ´

k´1
ÿ

i“1

xi,

on a xk Ps0, 1r, et donc px1, . . . , xkq P F . Par conséquent,

fpx1, . . . , xkq ď fpaq.

Comme la fonction ln est strictement croissante, on en déduit

Hpx1, . . . , xk´1q “ ln
`

fpx1, . . . , xkq
˘

ď ln
`

fpaq
˘

“ Hpa1, . . . , ak´1q.

Donc pa1, . . . , ak´1q est un maximum de H sur l’ouvert Ω, donc un point critique (car la fonction H est de classe
C1 sur Ω)
2d) Puis, pour px1, . . . , xk´1q P Ω,

Hpx1, . . . , xk´1q “ ln

ˆ

n!

n1!n2! . . . nk!

˙

looooooooooomooooooooooon

“K

`

k´1
ÿ

i“1

nk lnpxkq ` nk ln
`

1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1

˘

.
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On a alors, pour tout px1, . . . , xk´1q P Ω, et pour tout i P rr1, k ´ 1ss,

BH

Bxi
px1, . . . , xk´1q “

ni
xi

´
nk

1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1
.

Donc, pour px1, . . . , xk´1q P Ω,

px1, . . . , xk´1q est un point critique de H ô @i P rr1, k ´ 1ss :
ni
xi

“
nk

1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1
.

Si on note
α “

nk
1 ´ x1 ´ ¨ ¨ ¨ ´ xk´1

ą 0

(α ą 0 car px1, . . . , xk´1q P Ω), on a alors

px1, . . . , xk´1q est un point critique de H ô

#

α “
nk

1´x1´¨¨¨´xk´1

@i P rr1, k ´ 1ss : xi “
ni
α

ô

$

’

&

’

%

α “
nk

1´
k´1
ř

i“1

ni
α

“
nk

1´
n´nk

α

@i P rr1, k ´ 1ss : xi “
ni
α

ô

#

α ´ pn´ nkq “ nk

@i P rr1, k ´ 1ss : xi “
ni
α

ô

#

α “ n

@i P rr1, k ´ 1ss : xi “
ni
n

Donc H a un seul point critique sur Ω :
ˆ

n1
n
, . . . ,

nk´1

nk

˙

(qui est bien dans Ω car n1, . . ., nk´1 et n´

k´1
ÿ

i“1

ni “ nk sont tous strictement positifs).

On en déduit que le maximum global de f sur F est pa1, . . . , akq avec ai “
ni
n pour tout i P rr1, k ´ 1ss, et

ak “ 1 ´

k´1
ÿ

i“1

ai “ 1 ´

k´1
ÿ

i“1

ni
n

“
nk
n
.

Donc la proportion pp1, . . . , pkq de boules qui rende maximale la probabilité d’avoir en n tirage la configuration ni
boules de couleur i pour tout i P rr1, kss (avec ni ą 0 pour tout i P rr1, kss) est donnée par

pi “
ni
n

pour tout i P rr1, kss.

Remarque. On appelle cette valeur pour pp1, . . . , pkq, le « maximum de vraisemblance ».

Exercice 17. 1) ‚ Ea est inclus dans C1pR3q par définition.
‚ La fonction nulle (qui est de classe C1 sur R3) vérifie bien

0 “ ta ¨ 0

pour tout t Ps0,`8r, donc fait partie de Ea (qui est donc non vide).
‚ Puis, soit pf, gq P E2

a, soit λ P R, alors λf ` g est de classe C1 comme combinaison linéaire de fonctions qui le
sont, et pour tout px, y, zq P R3, pour tout t Ps0,`8r,

pλf ` gqptx, ty, tzq “ λfptx, ty, tzq ` gptx, ty, tzq “ λtafpx, y, zq ` tagpx, y, zq “ ta ¨ pλf ` gqpx, y, zq
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Donc
λf ` g P Ea.

Donc Ea est stable par combinaisons linéaires.
‚ Donc Ea est un sous-espace vectoriel de C1pR3q.
2) Si la fonction f est de classe C2 sur R3, alors Bf

Bx est de classe C1 sur R3.
Puis, si on dérive par rapport à x l’égalité

@px, y, zq P R3, fptx, ty, tzq “ ta ¨ fpx, y, zq

(à t Ps0,`8r et py, zq fixé, valable pour tout x P R), on a, pour tout px, y, zq P R3 et t Ps0,`8r,

B

Bx

`

fptx, ty, tzq
˘

“ ta
Bf

Bx
px, y, zq.

Or, par la règle de la chaîne,
B

Bx

`

fptx, ty, tzq
˘

“ t
Bf

Bx
ptx, ty, tzq,

et donc on obtient, pour tout px, y, zq P R3 et t Ps0,`8r, l’égalité

t
Bf

Bx
ptx, ty, tzq “ ta

Bf

Bx
px, y, zq,

soit en divisant par t (qui est non nul) :

Bf

Bx
ptx, ty, tzq “ ta´1 Bf

Bx
px, y, zq

Cela étant vrai pour tout t Ps0,`8r et pour tout px, y, zq P R3, on en déduit bien que

Bf

Bx
P Ea´1.

3) ‚ Si f P E0, alors pour tout px, y, zq P R3, pour tout t Ps0,`8r,

fptx, ty, tzq “ fpx, y, zq.

Si on fixe px, y, zq et que l’on fait tendre t vers 0, comme la fonction f est continue en p0, 0, 0q, on a

fp0, 0, 0q “ lim
tÑ0`

fptx, ty, tzq “ lim
tÑ0`

fpx, y, zq “ fpx, y, zq.

Donc la fonction f est constante sur R3.
‚ Réciproquement, si la fonction f est constante, on a directement que f P E0.
‚ Donc E0 est formé de l’ensemble des fonctions constantes sur R3.
4) ‚ C’est mal précisé dans l’énoncé : la fonction g n’est défini que pour px, y, zq fixé. Donc, dans la suite, on fixe
px, y, zq P R3.
La fonction g est alors de classe C1 sur R˚

` comme composée puis différence de fonctions qui le sont. Puis, pour
tout t Ps0,`8r, la règle de la chaîne donne :

g1ptq “ xB1pfqptx, ty, tzq ` yB2pfqptx, ty, tzq ` zB3pfqptx, ty, tzq ´ ata´1fpx, y, zq

“ 1
t

´

txB1pfqptx, ty, tzq ` tyB2pfqptx, ty, tzq ` tzB3pfqptx, ty, tzq

¯

´ ata´1fpx, y, zq

“ a
t fptx, ty, tzq ´ ata´1fpx, y, zq “ a

t gptq

(où l’avant dernière égalité s’obtient en évaluant l’EDP vérifiée par f , non pas en px, y, zq, mais en ptx, ty, tzq).
Donc la fonction g est solution d’une équation différentielle linéaire d’ordre 1 que l’on sait résoudre : il existe donc
α P R tel que

g : t P R˚
` ÞÑ αta.

Or,
gp1q “ fpx, y, zq ´ fpx, y, zq “ 0, donc α “ 0,
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donc g “ 0 (la fonction nulle).
Donc gptq “ 0 pour tout t Ps0,`8r, soit

fptx, ty, tzq “ tafpx, y, zq

pour tout t Ps0,`8r. Ceci est vrai pour tout px, y, zq P R3. Donc

f P Ea.

‚ Si f P Ea, alors en dérivant par rapport à t la relation

fptx, ty, tzq “ ta ¨ fpx, y, zq

(en ayant fixé px, y, zq P R3), on a, par la règle de la chaîne, pour tout t Ps0,`8r,

xB1pfqptx, ty, tzq ` yB2pfqptx, ty, tzq ` zB3pfqptx, ty, tzq “ ata´1fpx, y, zq.

On prend t “ 1, et on obtient que la fonction f vérifie l’EDP en px, y, zq. Comme c’est vrai pour tout px, y, zq P R3,
on en déduit bien que la réciproque est vraie.

Remarque. Si a ă 0, si on fait tendre t Ñ 0 dans l’égalité

fpx, y, zq “
1

ta
fptx, ty, tzq,

comme la fonction f a une limite finie en p0, 0, 0q, on en déduit

fpx, y, zq “ 0

pour tout px, y, zq P R3, donc f “ 0. Donc pour a ă 0,

Ea “ t0u

(cela provient du fait que l’on impose la continuité en p0, 0, 0q).

Exercice 18. Pour tout px, y, u, vq P R4,
#

u “ x` y

v “ x´ y
ô

#

x “ u`v
2

y “ u´v
2

en particulier, tout px, yq P R2 peut bien s’écrire ainsi, et plus précisément,

« px, yq parcourt R2 » ô « pu, vq parcourt R2 ».

Soit f une fonction de classe C1 sur R2. On veut

« gpu, vq “ fpx, yq ».

On définit donc
g : pu, vq P R2 ÞÑ f

ˆ

u` v

2
,
u´ v

2

˙

,

alors la fonction g est de classe C1 sur R2 par composition avec des polynômes.
Puis, par la règle de la chaîne, pour tout pu, vq P R2,

Bg

Bu
pu, vq “

1

2

Bf

Bx

ˆ

u` v

2
,
u´ v

2

˙

`
1

2

Bf

By

ˆ

u` v

2
,
u´ v

2

˙

.

Donc

f est solution de l’EDP sur R2 ô pour tout px, yq P R2, Bf
Bx px, yq `

Bf
By px, yq “ fpx, yq

ô pour tout px, yq P R2, 1
2

Bf
Bx

`

u`v
2 , u´v

2

˘

` 1
2

Bf
By

`

u`v
2 , u´v

2

˘

“ 1
2gpu, vq

(en notant

#

u “ x` y

v “ x´ y
, car alors

#

x “ u`v
2

y “ u´v
2

)

ô pour tout pu, vq P R2, Bg
Bupu, vq “ 1

2gpu, vq
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(car « px, yq parcourt R2 » si et seulement si « pu, vq parcourt R2 »).
Puis, notons

h : pu, vq P R2 ÞÑ gpu, vqe´u
2 ,

alors par opérations usuelles, la fonction h est de classe C1 sur R2, et pour tout pu, vq P R2,

Bh

Bu
pu, vq “

Bg

Bu
pu, vq ´

1

2
gpu, vq.

Alors

f est solution de l’EDP sur R2 ô pour tout pu, vq P R2, Bh
Bupu, vq “ 0

ô il existe K P C1pR,Rq avec h : pu, vq P R2 ÞÑ Kpvq (car R2 est convexe...)

ô il existe K P C1pR,Rq avec g : pu, vq P R2 ÞÑ Kpvqe
u
2

ô il existe K P C1pR,Rq avec f : px, yq P R2 ÞÑ Kpx´ yqe
x`y
2 .

Exercice 19. La fonction f est polynomiale, donc de classe C2 sur R2. Donc, si la fonction f a un extremum en
un point, ce point est un point critique de f (car R2 est un ouvert).
Pour tout px, yq P R2,

Bf

Bx
px, yq “ 2x` y ´ 5 et

Bf

By
px, yq “ 2y ` x´ 1.

Donc, pour tout px, yq P R2,

∇fpx, yq “ p0, 0q ô

#

2x` y ´ 5 “ 0

2y ` x´ 1 “ 0
ô

#

x “ 3

y “ ´1

Donc la fonction f a un unique point critique :
p3,´1q

Puis, pour tout px, yq P R2,

Hf px, yq “

ˆ

2 1
1 2

˙

,

donc

H “ Hf p3,´1q “

ˆ

2 1
1 2

˙

avec detpHq “ 3 ą 0 et trpAq “ 4 ą 0,

donc la fonction f atteint un minimum local strict en p3,´1q, et c’est le seul extremum local de f .
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