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DS 5 - Intégrales à paramètres, variables aléatoires

Samedi 31/01/2026 - 4h
Calculatrice interdite

1. La notation des copies tiendra compte de la qualité de la rédaction.

2. Si vous repérez ce qui vous pensez être une erreur d’énoncé, signalez le sur votre
copie et poursuivez votre composition en expliquant vos initiatives.

3. Encadrez ou soulignez vos résultats.

4. Rendre les exercices sur copies séparées et mettre son nom sur chaque copie.

5. Rendre les copies les unes dans les autres dans l’ordre des exercices.

Exercice 1 - CCINP PC 2023 (exercice 2) - La fonction dilogarithme

Présentation générale
Dans cet exercice, on commence par définir la fonction dilogarithme dans la première partie, puis on étudie
quelques-unes de ses propriétés dans les parties suivantes.
On admet et on pourra utiliser librement l’égalité :

`8
ÿ

n“1

1

n2
“

π2

6

Partie I - Existence et premières propriétés de la fonction dilogarithme
Dans cette partie, on considère la fonction f : s0,`8r ˆ s´8, 1s Ñ R définie par :

@pt, xq P s0,`8r ˆ s´8, 1s, fpt, xq “
t

et ´ x
.

1. Justifier que la fonction f est bien définie sur s0,`8r ˆ s´8, 1s.

2. Montrer que la fonction t ÞÑ fpt, 1q est intégrable sur s0,`8r.

3. Soit x P s´8, 1s. En comparant les fonctions t ÞÑ fpt, xq et t ÞÑ fpt, 1q, montrer que t ÞÑ fpt, xq est intégrable
sur s0,`8r.

D’après les résultats précédents, on peut définir la fonction L : s´8, 1s Ñ R par :

@x P s´8, 1s, Lpxq “ x

ż `8

0
fpt, xqdt

Cette dernière est appelée fonction dilogarithme.

4. Montrer que la fonction L est continue sur s´8, 1s.

Partie II - Développement en série entière
Dans cette partie, on montre que la fonction L est développable en série entière. On considère un nombre réel
x P r´1, 1s. Pour tout n P N, on définit la fonction sn : s0,`8r Ñ R par

@t P s0,`8r, snptq “ te´pn`1qtxn.

5. Soit n P N. Montrer que l’intégrale
ż `8

0
snptqdt converge et que

ż `8

0
snptqdt “

xn

pn ` 1q2
.
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6. Montrer que la série de fonctions
ÿ

ně0

sn converge simplement sur s0,`8r et que :

@t P s0,`8r,
`8
ÿ

n“0

snptq “ fpt, xq

7. Montrer que la série
ÿ

ně1

xn

n2
converge et déduire des questions précédentes que Lpxq “

`8
ÿ

n“1

xn

n2
.

8. Montrer que pour tout x P r´1, 1s, on a Lpxq ` Lp´xq “
1

2
Lpx2q.

9. Déduire des questions précédentes les valeurs de Lp1q et Lp´1q.

Partie III - Une autre propriété
Dans cette partie, on considère la fonction h : s0, 1r Ñ R définie par :

@x P s0, 1r, hpxq “ Lpxq ` Lp1 ´ xq ` lnpxq lnp1 ´ xq

10. Justifier que la fonction L est dérivable sur s´1, 1r et montrer que l’on a :

@x P s´1, 1r, L1pxq “

$

&

%

´
lnp1 ´ xq

x
si x ‰ 0

1 si x “ 0.

11. Montrer que la fonction h est constante sur s0, 1r.

12. Montrer que hpxq “ Lp1q pour tout x P s0, 1r. En déduire la valeur de l’intégrale
ż `8

0

t

2et ´ 1
dt.

Exercice 2 - CCINP PC 2023 (exercice 3) - Un jeu de société

Présentation générale
On considère deux entiers M P Nzt0, 1u et A P N‹. On dispose d’un plateau de jeu infini sur lequel se trouve un
parcours composé de cases numérotées par les entiers naturels. Un pion se trouve initialement sur la case numérotée
0 et il doit atteindre ou dépasser la case numérotée A pour terminer le jeu. À chaque tour de jeu, le joueur utilise
un ordinateur qui génère aléatoirement et uniformément un élément de l’ensemble rr0,M ´ 1ss : le pion est avancé
d’autant de cases que le nombre généré.
Dans la suite, on s’intéresse tout particulièrement au nombre de tours de jeu nécessaire pour que le pion atteigne
ou dépasse la case numérotée A.
Pour modéliser cette situation, on se place sur un espace probabilisé pΩ,A, P q et on considère une suite pXkqkPN‹

de variables aléatoires réelles indépendantes de loi uniforme sur rr0,M ´ 1ss. On considère également la suite de
variables aléatoires réelles pSnqnPN définie par S0 “ 0 et :

@n P N‹, Sn “

n
ÿ

k“1

Xk

On considère la variable aléatoire T définie de la façon suivante :

1) si pour tout n P N‹, on a Sn ă A, alors on pose T “ 0 ;
2) sinon, on pose T “ mintn P N‹ | Sn ě Au.

L’objectif de cet exercice est de déterminer l’espérance de la variable aléatoire T dans deux cas particuliers.

Partie I - Préliminaires
I.1 - Modélisation
Dans cette sous-partie, on effectue le lien entre la situation présentée dans l’introduction et le modèle considéré
ci-dessus.
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1. Soit n P N‹. Que représentent les variables aléatoires Xn et Sn dans le contexte de la situation présentée ?

2. Que représente la variable aléatoire T ?

I.2 - Calcul de la somme d’une série entière
On considère la fonction f : s´1, 1r Ñ R définie par :

@x P s´1, 1r, fpxq “
1

1 ´ x

3. Montrer que la fonction f est de classe C8 sur s´1, 1r et que :

@p P N, @x P s´1, 1r, f ppqpxq “
p!

p1 ´ xqp`1
.

4. Soit p P N. Montrer que le rayon de convergence de la série entière
ÿ

něp

ˆ

n

p

˙

xn est égal à 1.

5. Soit p P N. En développant la fonction f en série entière, déduire des questions précédentes l’égalité suivante :

@x P s´1, 1r,
`8
ÿ

n“p

ˆ

n

p

˙

xn “
xp

p1 ´ xqp`1

Partie II - Étude d’un premier cas
Dans cette partie uniquement, on suppose que M “ 2.
II.1 - Loi des variables aléatoires Sn et T

6. Soit n P N‹. Démontrer que Sn suit une loi binomiale de paramètres n et 1{2.

7. Quelles sont les valeurs prises par la variable aléatoire T ?

8. Soit k P N avec k ě A. Exprimer l’évènement pT “ kq en fonction des évènements pSk´1 “ A ´ 1q et
pXk “ 1q. En déduire que :

P pT “ kq “

ˆ

k ´ 1

A ´ 1

˙

1

2k

9. Calculer P pT “ 0q.

II.2 - Espérance de la variable aléatoire T
On déduit des résultats précédents que la fonction génératrice 1 GT de la variable aléatoire T est égale à la somme
de la série entière

ÿ

kěA

P pT “ kqxk sur son intervalle de convergence.

10. Déterminer le rayon de convergence RT de la série entière
ÿ

kěA

P pT “ kqxk et montrer que :

@x P s´RT , RT r, GT pxq “

ˆ

x

2 ´ x

˙A

.

11. Pour les 5{2 : En déduire le nombre moyen de tours de jeu pour terminer notre partie.

Partie III - Étude d’un second cas
Dans cette partie uniquement, on suppose que A ď M .
III.1 - Calcul de la probabilité P pSn ď kq

Dans cette sous-partie, on pourra librement utiliser la formule suivante :

@pk, nq P N2,
k

ÿ

ℓ“0

ˆ

n ` k ´ ℓ

n

˙

“

ˆ

n ` 1 ` k

n ` 1

˙

.

1. Aucune connaissance préalable sur la fonction génératrice n’est nécessaire sauf pour la question 11.
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12. Soit n P N‹. En considérant le système complet d’évènements
`

pXn`1 “ 0q, . . . , pXn`1 “ M ´ 1q
˘

, montrer
que :

@k P rr0, A ´ 1ss, P pSn`1 ď kq “
1

M

k
ÿ

ℓ“0

P pSn ď k ´ ℓq.

13. Montrer par récurrence que pour tout n P N‹, on a :

@k P rr0, A ´ 1ss, P pSn ď kq “
1

Mn

ˆ

n ` k

n

˙

III.2 - Espérance de la variable aléatoire T
On rappelle le résultat suivant qui pourra être utilisé librement dans la suite : si Z est une variable aléatoire à
valeurs dans N telle que la série numérique

ÿ

ně0

P pZ ą nq converge, alors Z admet une espérance et on a l’égalité :

EpZq “

`8
ÿ

n“0

P pZ ą nq

14. Que peut-on dire des évènements pT ą nq et pSn ă Aq pour tout n P N ? Pour les 5{2 : En déduire que la
variable aléatoire T admet une espérance et calculer sa valeur.

Exercice 3 - Centrale Supélec PC 2024 Maths 2 (extrait) - Produits infinis

Notations
Dans ce problème, on introduit la notion de produit infini et on l’utilise pour obtenir diverses propriétés.

• La partie I permet d’obtenir des résultats qui seront utilisés dans tout le problème.

• La partie II étudie quelques exemples de calcul de produit infini, dont celui de Wallis, et donne par ailleurs
une illustration en probabilités.

Pour t P R, on note ttu la partie entière de t.
Soit p P N et punqněp une suite de nombres réels. On pose pour tout n P N tel que n ě p,

Pn “

n
ź

k“p

uk.

On dit que la suite pPnqněp est la suite des produits partiels du produit infini
ź

něp

un.

Si la suite pPnqněp converge, on dit que sa limite est la valeur du produit infini et on pose :

`8
ź

k“p

uk “ lim
nÑ`8

Pn.

Partie I - Résultats préliminaires
Soit n P N‹.

1. Montrer que, pour tout px1, . . . , xnq P Rn,
ˇ

ˇ

ˇ

ˇ

ˇ

˜

n
ź

k“1

p1 ` xkq

¸

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

n
ź

k“1

p1 ` |xk|q

¸

´ 1.

2. Montrer que, pour tout px1, . . . , xnq P r´1,`8rn,

n
ź

k“1

p1 ` xkq ď exp

˜

n
ÿ

k“1

xk

¸

.
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Soit z P C. Pour tout n P N‹, on pose
un “

´

1 `
z

n

¯n
.

Le but de cette sous-partie est de montrer que la suite punqnPN converge vers ez.

3. Montrer que, pour tout t P C,
|p1 ` tq ´ et| ď |t|2e|t|

4. Soit pa, bq P C2 et n P N‹. On note M “ maxt|a|, |b|u.
Montrer que |an ´ bn| ď nMn´1|a ´ b|.

5. Montrer que, pour tout n P N‹,
ˇ

ˇ

ˇ

´

1 `
z

n

¯n
´ ez

ˇ

ˇ

ˇ
ď

|z|2

n
e|z|.

6. Conclure que la suite punqnPN‹ converge vers ez.

Partie II - Exemples de calcul de produit infini

7. Calculer
`8
ź

n“2

ˆ

1 ´
1

n2

˙

et
`8
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

.

On pourra, pour tout N ě 2, établir une expression de
N

ź

n“2

ˆ

1 ´
1

n2

˙

et
2N
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

.

Pour tout n P N, on pose

Wn “

ż π
2

0
pcosuqndu.

8. Montrer que, pour tout n P N, pn ` 2qWn`2 “ pn ` 1qWn et en déduire que, pour tout n P N,

W2n`1 “
22npn!q2

p2n ` 1q!

9. Déterminer un équivalent de la suite pW2n`1qnPN et en déduire
`8
ź

n“1

ˆ

1 `
1

4n2 ´ 1

˙

.

On considère pΩ,A,Pq un espace probabilisé et pAnqnPN une suite d’événements indépendants tels que la série
numérique

ÿ

ně0

PpAnq diverge.

10. Soit n P N. Montrer que
`8
ź

p“n

p1 ´ PpApqq “ 0.

On pourra utiliser l’inégalité démontrée en Q 2.

11. En déduire que P

˜

č

nPN

ď

pěn

Ap

¸

“ 1.
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