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Correction DS 5 - Intégrales à paramètres, variables
aléatoires

Exercice 1 - CCINP PC 2023 (exercice 2) - La fonction dilogarithme

Partie I - Existence et premières propriétés de la fonction dilogarithme

1. Soit pt, xq P s0,`8r ˆ s´8, 1s. On a et ą 0 pour tout t ą 0, et puisque x ď 1, on a :

et ´ x ě et ´ 1 ą 0 (car et ą 1 pour t ą 0)

Donc le dénominateur ne s’annule pas et f est bien définie sur s0,`8r ˆ s´8, 1s.

2. Pour x “ 1, on a fpt, 1q “ t
et´1 . La fonction t ÞÑ fpt, 1q est continue sur s0,`8r donc intégrable sur tout

segment de s0,`8r.
Étude en 0` : On a et ´ 1 „

tÑ0`
t, donc fpt, 1q „

tÑ0`

t
t “ 1. Ainsi fpt, 1q ÝÝÝÑ

tÑ0`
1, ce qui montre que

t ÞÑ fpt, 1q est prolongeable par continuité en 0. Donc t ÞÑ fpt, 1q est intégrable sur s0, 1s.
Étude en `8 : On a fpt, 1q “ t

et´1 „
tÑ`8

t
et “ te´t. Par croissances comparées, te´t “ o

tÑ`8
pe´t{2q. Or

t ÞÑ e´t{2 est intégrable en `8 (car 1{2 ą 0). Par critère de négligeabilité, t ÞÑ fpt, 1q est intégrable sur
r1,`8r.
Finalement, t ÞÑ fpt, 1q est intégrable sur s0,`8r.

3. Soit x P s´8, 1s et t ą 0. Puisque x ď 1, on a et ´ x ě et ´ 1 ą 0, donc :

0 ď
t

et ´ x
ď

t

et ´ 1
“ fpt, 1q

La fonction t ÞÑ fpt, 1q est intégrable sur s0,`8r d’après la question précédente. Par critère de comparaison
pour les fonctions positives, t ÞÑ fpt, xq est intégrable sur s0,`8r.

4. Montrons que L est continue sur s´8, 1s en utilisant le théorème de continuité sous le signe intégral.
Posons gpt, xq “ x ¨ fpt, xq “ tx

et´x pour pt, xq P s0,`8r ˆ s´8, 1s.

• Pour tout x P s´8, 1s, la fonction t ÞÑ gpt, xq est continue (donc continue par morceaux) sur s0,`8r.
• Pour tout t P s0,`8r, la fonction x ÞÑ gpt, xq est continue sur s´8, 1s.
• Hypothèse de domination : Soit ra, bs Ă s´8, 1s. Pour tout x P ra, bs et t ą 0 :

|gpt, xq| “
t|x|

et ´ x
ď

tmaxp|a|, |b|q

et ´ 1

car x ď 1 implique et ´ x ě et ´ 1. La fonction t ÞÑ
tmaxp|a|,|b|q

et´1 est intégrable sur s0,`8r d’après la
question 2.

Par le théorème de continuité sous le signe intégral, L est continue sur tout segment ra, bs et par caractère
local de la continuité, L est continue sur s´8, 1s.

Partie II - Développement en série entière

5. Soit n P N. La fonction sn : t ÞÑ te´pn`1qtxn est continue sur s0,`8r donc intégrable sur tout segment de
s0,`8r.
En 0` : snptq ÝÝÝÑ

tÑ0`
0, donc sn est prolongeable par continuité en 0 et donc intégrable en 0.

En `8 : |snptq| “ te´pn`1qt|x|n “ o
tÑ`8

pe´t{2q par croissances comparées (car n ` 1 ě 1 ą 1{2). Donc sn

est intégrable en `8.

Ainsi sn est intégrable sur R‹
` et donc l’intégrale

ż `8

0
snptqdt converge.
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Calculons cette intégrale par intégration par parties. Posons uptq “ t et v1ptq “ e´pn`1qt, d’où u1ptq “ 1 et
vptq “ ´ 1

n`1e
´pn`1qt.

Les fonctions u et v sont bien C1 et uptqvptq “ ´ t
n`1e

´pn`1qt ÝÝÝÝÑ
tÑ`8

0 et up0qvp0q “ 0. Ainsi les intégrales
ş`8

0 te´pn`1qtdt et ´ 1
n`1

ş`8

0 e´pn`1qtdt ont même nature et sont donc convergentes car la première l’est.
Donc :

ż `8

0
te´pn`1qtdt “

„

´
t

n ` 1
e´pn`1qt

ȷ`8

0

`
1

n ` 1

ż `8

0
e´pn`1qtdt

“ 0 `
1

n ` 1
ˆ

1

n ` 1
“

1

pn ` 1q2

Ainsi :
ż `8

0
snptqdt “

xn

pn ` 1q2
.

6. Soit t P s0,`8r et x P r´1, 1s. On a :

N
ÿ

n“0

snptq “

N
ÿ

n“0

te´pn`1qtxn “ te´t
N
ÿ

n“0

pxe´tqn

Puisque |xe´t| “ |x|e´t ď e´t ă 1 pour t ą 0, la série géométrique converge et :

`8
ÿ

n“0

snptq “ te´t ˆ
1

1 ´ xe´t
“

te´t

et´x
et

“
t

et ´ x
“ fpt, xq

Donc la série
ÿ

ně0

sn converge simplement vers t ÞÑ fpt, xq sur s0,`8r.

7. D’après la question 5,
ż `8

0
snptqdt “

xn

pn ` 1q2
. En décalant l’indice (m “ n ` 1), on a xm´1

m2 , donc :

`8
ÿ

n“0

ż `8

0
snptqdt “

`8
ÿ

n“1

xn´1

n2

Pour x P r´1, 1s, on a
ˇ

ˇ

xn

n2

ˇ

ˇ ď 1
n2 . La série

ř 1
n2 converge (Riemann avec exposant 2 ą 1), donc par compa-

raison, la série
ÿ

ně1

xn

n2
converge absolument.

Il nous faut maintenant justifier l’interversion somme-intégrale. On utilise le théorème d’intégration terme à
terme :

• Les sn sont continues (donc continues par morceaux) sur s0,`8r.
• La série

ř

sn converge simplement sur s0,`8r.
• sn est intégrable sur s0,`8r comme évoqué à la question 5.

• La série
ÿ

ż `8

0
|snptq|dt “

ÿ |x|n

pn ` 1q2
converge (par comparaison avec

ř 1
n2 ).

Par le théorème d’intégration terme à terme :
ż `8

0
fpt, xqdt “

ż `8

0

`8
ÿ

n“0

snptqdt “

`8
ÿ

n“0

ż `8

0
snptqdt “

`8
ÿ

n“0

xn

pn ` 1q2
“

`8
ÿ

n“1

xn´1

n2

Donc :

Lpxq “ x

ż `8

0
fpt, xqdt “ x

`8
ÿ

n“1

xn´1

n2
“

`8
ÿ

n“1

xn

n2

D’où : Lpxq “

`8
ÿ

n“1

xn

n2
pour x P r´1, 1s.
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8. Soit x P r´1, 1s. On a :

Lpxq ` Lp´xq “

`8
ÿ

n“1

xn

n2
`

`8
ÿ

n“1

p´xqn

n2
“

`8
ÿ

n“1

xn ` p´1qnxn

n2

On peut sommer car les deux sommes sont convergentes.
Or xn ` p´1qnxn “ xnp1 ` p´1qnq, qui vaut 2xn si n est pair et 0 si n est impair. Donc :

Lpxq ` Lp´xq “

`8
ÿ

k“1

2x2k

p2kq2
“

`8
ÿ

k“1

x2k

2k2
“

1

2

`8
ÿ

k“1

px2qk

k2
“

1

2
Lpx2q

D’où : Lpxq ` Lp´xq “ 1
2Lpx2q pour tout x P r´1, 1s.

9. Calcul de Lp1q : D’après le développement en série entière :

Lp1q “

`8
ÿ

n“1

1

n2
“

π2

6

Remarquez qu’on est sur le cercle d’incertitude, mais ça ne pose pas problème car le calcul précédent a été
fait sur r´1, 1s avec ses bornes.

D’où : Lp1q “ π2

6 .

Calcul de Lp´1q : En appliquant la relation de la question 8 avec x “ 1 :

Lp1q ` Lp´1q “
1

2
Lp1q

Donc :

Lp´1q “
1

2
Lp1q ´ Lp1q “ ´

1

2
Lp1q “ ´

π2

12

D’où : Lp´1q “ ´π2

12 .

Partie III - Une autre propriété

10. La série entière
ÿ

ně1

xn

n2
a un rayon de convergence égal à 1 (par règle de d’Alembert ou comparaison). Sur

s ´ 1, 1r, la somme d’une série entière est C8 et on peut dériver terme à terme.
Donc L est dérivable sur s´1, 1r et pour x Ps ´ 1, 1rzt0u :

L1pxq “

`8
ÿ

n“1

nxn´1

n2
“

`8
ÿ

n“1

xn´1

n
“

1

x

`8
ÿ

n“1

xn

n

Or on sait que pour |x| ă 1 :
`8
ÿ

n“1

xn

n
“ ´ lnp1 ´ xq.

Donc pour x Ps ´ 1, 1rzt0u :

L1pxq “
1

x
ˆ p´ lnp1 ´ xqq “ ´

lnp1 ´ xq

x

Pour x “ 0 : L1p0q est le coefficient de x1 dans le développement, c’est-à-dire 1
12

“ 1.

D’où : @x P s´1, 1r, L1pxq “

#

´
lnp1´xq

x si x ‰ 0

1 si x “ 0

11. La fonction h est définie sur s0, 1r par hpxq “ Lpxq ` Lp1 ´ xq ` lnpxq lnp1 ´ xq.
Sur s0, 1r, les fonctions L, ln sont dérivables (pour L, c’est vrai sur s ´ 1, 1rĄs0, 1r). Donc h est dérivable sur
s0, 1r.
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Pour x Ps0, 1r :

h1pxq “ L1pxq ´ L1p1 ´ xq `
lnp1 ´ xq

x
` lnpxq ˆ

´1

1 ´ x

“ ´
lnp1 ´ xq

x
´

ˆ

´
lnp1 ´ p1 ´ xqq

1 ´ x

˙

`
lnp1 ´ xq

x
´

lnpxq

1 ´ x

“ ´
lnp1 ´ xq

x
`

lnpxq

1 ´ x
`

lnp1 ´ xq

x
´

lnpxq

1 ´ x

“ 0

Donc h1pxq “ 0 pour tout x Ps0, 1r, ce qui montre que h est constante sur s0, 1r.

12. Calcul de la constante : Calculons lim
xÑ1´

hpxq.

On a :

• Lpxq ÝÝÝÝÑ
xÑ1´

Lp1q “ π2

6 par continuité de L en 1.

• Lp1 ´ xq ÝÝÝÝÑ
xÑ1´

Lp0q “ 0.

• lnpxq lnp1 ´ xq ÝÝÝÝÑ
xÑ1´

0. En effet, posons u “ 1 ´ x, alors quand x Ñ 1´, u Ñ 0`. On a :

lnpxq lnp1 ´ xq “ lnp1 ´ uq lnpuq

Or lnp1 ´ uq „
uÑ0`

´u et u lnpuq ÝÝÝÝÑ
uÑ0`

0. Donc lnp1 ´ uq lnpuq „ ´u lnpuq Ñ 0.

Ainsi : lim
xÑ1´

hpxq “
π2

6
` 0 ` 0 “

π2

6
“ Lp1q.

Comme h est constante sur s0, 1r, on a hpxq “ Lp1q “ π2

6 pour tout x Ps0, 1r.

Calcul de l’intégrale : Prenons x “ 1
2 dans l’égalité hpxq “ Lp1q :

L

ˆ

1

2

˙

` L

ˆ

1

2

˙

` ln

ˆ

1

2

˙

ln

ˆ

1

2

˙

“
π2

6

Donc :

2L

ˆ

1

2

˙

` pln 2q2 “
π2

6

D’où :

L

ˆ

1

2

˙

“
π2

12
´

pln 2q2

2

Or, par définition :

L

ˆ

1

2

˙

“
1

2

ż `8

0

t

et ´ 1
2

dt “
1

2

ż `8

0

t
2et´1

2

dt “

ż `8

0

t

2et ´ 1
dt

Donc :
ż `8

0

t

2et ´ 1
dt “

π2

12
´

pln 2q2

2
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Exercice 2 - CCINP PC 2023 (exercice 3) - Un jeu de société

Partie I - Préliminaires
I.1 - Modélisation

1. • Xn représente le nombre de cases dont avance le pion au n-ième tour de jeu.
• Sn représente la position du pion après n tours de jeu (numéro de la case sur laquelle se trouve le pion).

2. T représente le nombre de tours de jeu nécessaires pour que le pion atteigne ou dépasse la case A. Si le pion
n’atteint jamais la case A (ce qui n’arrive que si toutes les variables Xk valent 0), alors T “ 0 par convention.

I.2 - Calcul de la somme d’une série entière

3. La fonction f : x ÞÑ 1
1´x est de classe C8 sur s ´ 1, 1r comme fonction rationnelle dont le dénominateur ne

s’annule pas.
Montrons par récurrence que f ppqpxq “

p!
p1´xqp`1 .

Initialisation : Pour p “ 0, f p0qpxq “ fpxq “ 1
1´x “ 0!

p1´xq1
. OK.

Hérédité : Soit p P N. Supposons la propriété vraie au rang p. Alors :

f pp`1qpxq “
d

dx

ˆ

p!

p1 ´ xqp`1

˙

“ p! ˆ pp ` 1q ˆ
1

p1 ´ xqp`2
“

pp ` 1q!

p1 ´ xqp`2

Donc la propriété est héréditaire et @p P N, @x Ps ´ 1, 1r, f ppqpxq “
p!

p1´xqp`1 .

4. Soit p P N. Posons an “
`

n
p

˘

pour n ě p (et an “ 0 pour n ă p).
Pour n ě p ` 1 :

an`1

an
“

`

n`1
p

˘

`

n
p

˘ “
pn ` 1q!

p!pn ` 1 ´ pq!
ˆ

p!pn ´ pq!

n!
“

n ` 1

n ` 1 ´ p
ÝÝÝÝÑ
nÑ`8

1

Par la règle de d’Alembert, le rayon de convergence est R “ 1.

5. On sait que fpxq “ 1
1´x “

`8
ÿ

n“0

xn pour |x| ă 1.

D’après la question 3, pour tout p P N et x Ps ´ 1, 1r :

f ppqpxq “
p!

p1 ´ xqp`1

D’autre part, on peut dériver terme à terme une série entière sur son intervalle ouvert de convergence :

f ppqpxq “

`8
ÿ

n“p

npn ´ 1q ¨ ¨ ¨ pn ´ p ` 1qxn´p “

`8
ÿ

n“p

n!

pn ´ pq!
xn´p

En multipliant par xp et en divisant par p! :

xp

p!
f ppqpxq “

`8
ÿ

n“p

n!

p!pn ´ pq!
xn “

`8
ÿ

n“p

ˆ

n

p

˙

xn

Donc :
`8
ÿ

n“p

ˆ

n

p

˙

xn “
xp

p!
ˆ

p!

p1 ´ xqp`1
“

xp

p1 ´ xqp`1

D’où : @x Ps ´ 1, 1r,
`8
ÿ

n“p

ˆ

n

p

˙

xn “
xp

p1 ´ xqp`1
.
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Partie II - Étude d’un premier cas
II.1 - Loi des variables aléatoires Sn et T

6. Avec M “ 2, les Xk suivent la loi uniforme sur t0, 1u, c’est-à-dire la loi de Bernoulli de paramètre 1{2.
Sn “ X1 ` ¨ ¨ ¨ ` Xn est une somme de n variables aléatoires indépendantes de loi de Bernoulli de paramètre
1{2.
Donc Sn „ Bpn, 1{2q.

7. La variable T prend ses valeurs dans t0, A,A ` 1, A ` 2, ...u.
En effet :

• T “ 0 si et seulement si tous les Xk valent 0.
• Sinon, T ě A car il faut au moins A tours pour atteindre la case A (puisque Xk ď 1).
• De plus, toutes les valeurs plus grandes que A sont possibles, il suffit de faire une série de Xk “ 0 puis
A fois Xk “ 1.

T pΩq “ t0, A,A ` 1, A ` 2, ...u.

8. Soit k ě A. L’événement pT “ kq signifie que :

• Après k ´ 1 tours, le pion est sur une case ă A, donc Sk´1 ă A.
• Après k tours, le pion est sur une case ě A, donc Sk ě A.

Puisque Sk “ Sk´1 ` Xk avec Xk P t0, 1u :

• Si Sk´1 ď A ´ 2, alors même avec Xk “ 1, on a Sk ď A ´ 1 ă A, donc T ‰ k.
• Si Sk´1 “ A ´ 1 et Xk “ 1, alors Sk “ A ě A, donc T “ k.
• Si Sk´1 “ A ´ 1 et Xk “ 0, alors Sk “ A ´ 1 ă A, donc T ‰ k.

Donc : pT “ kq “ pSk´1 “ A ´ 1q X pXk “ 1q.
Les événements pSk´1 “ A´1q et pXk “ 1q sont indépendants car Sk´1 ne dépend que de X1, . . . , Xk´1 et les
Xi sont mutuellement indépendantes et donc, d’après le lemme des coalitions, Sk´1 et Xk sont indépendantes.
Donc :

P pT “ kq “ P pSk´1 “ A ´ 1q ˆ P pXk “ 1q “

ˆ

k ´ 1

A ´ 1

˙ ˆ

1

2

˙k´1

ˆ
1

2
“

ˆ

k ´ 1

A ´ 1

˙

1

2k

D’où : P pT “ kq “
`

k´1
A´1

˘

1
2k

.

9. L’événement pT “ 0q correspond au cas où @n P N‹, Sn ă A. Cela n’arrive que si tous les Xk “ 0.
Pour tout n, on a par indépendance, P pX1 “ 0, . . . , Xn “ 0q “

`

1
2

˘n
ÝÝÝÝÑ
nÑ`8

0.

Par continuité décroissante (les événements
Şn

k“1pXk “ 0q sont décroissants) :

P pT “ 0q “ P

˜

`8
č

n“1

pXn “ 0q

¸

“ lim
nÑ`8

ˆ

1

2

˙n

“ 0

D’où : P pT “ 0q “ 0.

II.2 - Espérance de la variable aléatoire T

10. On a P pT “ kq “
`

k´1
A´1

˘

1
2k

pour k ě A.

Posons ak “ P pT “ kq “
`

k´1
A´1

˘

1
2k

. La série entière
ř

kěA akx
k s’écrit :

`8
ÿ

k“A

ˆ

k ´ 1

A ´ 1

˙

xk

2k
“

1

2A

`8
ÿ

k“A

ˆ

k ´ 1

A ´ 1

˙

´x

2

¯k´A
xA

Posons n “ k ´ 1 (donc k “ n ` 1, et k ě A équivaut à n ě A ´ 1) :

`8
ÿ

k“A

ˆ

k ´ 1

A ´ 1

˙

´x

2

¯k
“

`8
ÿ

n“A´1

ˆ

n

A ´ 1

˙

´x

2

¯n`1
“

x

2

`8
ÿ

n“A´1

ˆ

n

A ´ 1

˙

´x

2

¯n
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D’après la question 5 avec p “ A ´ 1 :

`8
ÿ

n“A´1

ˆ

n

A ´ 1

˙

yn “
yA´1

p1 ´ yqA
pour |y| ă 1

Donc pour
ˇ

ˇ

x
2

ˇ

ˇ ă 1, i.e. |x| ă 2 :

GT pxq “
x

2
ˆ

px{2qA´1

p1 ´ x{2qA
“

x

2
ˆ

xA´1

2A´1
ˆ

1

pp2 ´ xq{2qA
“

xA

2A
ˆ

2A

p2 ´ xqA
“

xA

p2 ´ xqA

Si |x| ă 2, |y| ă 1 et donc la série converge (absolument). Si |x| ą 2, alors |y| ą 1 et la série diverge
(grossièrement). D’où : RT “ 2.

Et donc @x Ps ´ 2, 2r, GT pxq “

´

x
2´x

¯A
.

11. (Pour les 5/2) On utilise la propriété : si T est une v.a. à valeurs dans N de fonction génératrice GT , alors
EpT q “ G1

T p1q (à condition que 1 ă RT ).

On a GT pxq “

´

x
2´x

¯A
. Posons upxq “ x

2´x , alors GT pxq “ upxqA.

On a :
u1pxq “

p2 ´ xq ´ x ˆ p´1q

p2 ´ xq2
“

2

p2 ´ xq2

Donc :

G1
T pxq “ A ¨ upxqA´1 ¨ u1pxq “ A

ˆ

x

2 ´ x

˙A´1

ˆ
2

p2 ´ xq2

En x “ 1 :
G1

T p1q “ A ˆ 1A´1 ˆ
2

1
“ 2A

D’où : EpT q “ 2A.
En moyenne, il faut 2A tours de jeu pour terminer la partie.

Partie III - Étude d’un second cas
III.1 - Calcul de la probabilité P pSn ď kq

12. Soit n P N‹ et k P rr0, A ´ 1ss. On utilise la formule des probabilités totales avec le système complet d’événe-
ments

`

pXn`1 “ 0q, . . . , pXn`1 “ M ´ 1q
˘

:

P pSn`1 ď kq “

M´1
ÿ

ℓ“0

PXn`1“ℓpSn`1 ď kqP pXn`1 “ ℓq

Or P pXn`1 “ ℓq “ 1
M pour tout ℓ P rr0,M ´ 1ss.

De plus, sachant Xn`1 “ ℓ :

PXn`1“ℓpSn`1 ď kq “ PXn`1“ℓpSn ` j ď kq “ P pSn ` ℓ ď kq “ P pSn ď k ´ ℓq

où la seconde égalité découle de l’indépendance de Sn et Xn`1.
Cette probabilité est nulle si k ´ ℓ ă 0, c’est-à-dire si ℓ ą k. Comme k ď A ´ 1 ă M (car A ď M), on a :

P pSn`1 ď kq “
1

M

k
ÿ

ℓ“0

P pSn ď k ´ ℓq.

D’où : @k P rr0, A ´ 1ss, P pSn`1 ď kq “ 1
M

k
ÿ

ℓ“0

P pSn ď k ´ ℓq.
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13. Montrons par récurrence sur n la propriété Hn : « @k P rr0, A ´ 1ss, P pSn ď kq “ 1
Mn

`

n`k
n

˘

».
Initialisation (n “ 1) : On a S1 “ X1 „ Uprr0,M ´ 1ssq. Pour k P rr0, A ´ 1ss (avec A ď M) :

P pS1 ď kq “ P pX1 ď kq “
k ` 1

M

D’autre part, 1
M

`

1`k
1

˘

“ 1
M pk ` 1q. Donc H1 est vraie.

Hérédité : Soit n P N‹. Supposons Hn vraie. Soit k P rr0, A ´ 1ss. D’après la question 12 :

P pSn`1 ď kq “
1

M

k
ÿ

ℓ“0

P pSn ď k ´ ℓq “
1

M

k
ÿ

ℓ“0

1

Mn

ˆ

n ` k ´ ℓ

n

˙

“
1

Mn`1

k
ÿ

ℓ“0

ˆ

n ` k ´ ℓ

n

˙

D’après la formule donnée dans l’énoncé :

k
ÿ

ℓ“0

ˆ

n ` k ´ ℓ

n

˙

“

ˆ

n ` 1 ` k

n ` 1

˙

Donc :
P pSn`1 ď kq “

1

Mn`1

ˆ

pn ` 1q ` k

n ` 1

˙

Ainsi Hn`1 est vraie.

Conclusion : @n P N‹, @k P rr0, A ´ 1ss, P pSn ď kq “ 1
Mn

`

n`k
n

˘

.

III.2 - Espérance de la variable aléatoire T

14. Pour tout n P N, l’événement pT ą nq signifie que le pion n’a pas encore atteint la case A après n tours,
c’est-à-dire Sn ă A.
Donc pT ą nq “ pSn ă Aq “ pSn ď A ´ 1q pour tout n P N.

(Pour les 5/2) D’après le résultat rappelé, si la série
ř

P pT ą nq converge, alors EpT q “
ř`8

n“0 P pT ą nq.
On a P pT ą 0q “ P pS0 ă Aq “ P p0 ă Aq “ 1 (car S0 “ 0 et A ě 1).
Pour n ě 1, d’après la question 13 :

P pT ą nq “ P pSn ď A ´ 1q “
1

Mn

ˆ

n ` A ´ 1

n

˙

Étudions la convergence de la série. On a :
ˆ

n ` A ´ 1

n

˙

“
pn ` A ´ 1q!

n!pA ´ 1q!
„

nA´1

pA ´ 1q!

En effet n! se simplifie et il nous reste un polynôme en n de degré A´1 équivalent à son terme de plus degré.
Donc P pT ą nq „ nA´1

pA´1q!Mn “ o
`

M´n{2
˘

. Puisque M ě 2, la série de terme général M´n{2 converge (série
géométrique de raison 0 ď 1{M ă 1). Par critère de négligeabilité, la série de terme général P pT ą nq

converge également .
Donc T admet une espérance et :

EpT q “

`8
ÿ

n“0

P pT ą nq “ 1 `

`8
ÿ

n“1

1

Mn

ˆ

n ` A ´ 1

n

˙

D’après la question 5 avec p “ A ´ 1 et x “ 1
M :

`8
ÿ

n“A´1

ˆ

n

A ´ 1

˙ ˆ

1

M

˙n

“
p1{MqA´1

p1 ´ 1{MqA
“

1

MA´1
ˆ

MA

pM ´ 1qA
“

M

pM ´ 1qA

Or
`

n`A´1
n

˘

“
`

n`A´1
A´1

˘

, donc en posant m “ n ` A ´ 1 :

`8
ÿ

n“1

1

Mn

ˆ

n ` A ´ 1

A ´ 1

˙

“ MA´1
`8
ÿ

m“A

ˆ

m

A ´ 1

˙ ˆ

1

M

˙m
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Or
ř`8

m“A “
ř`8

m“A´1 ´terme m “ A ´ 1 “ M
pM´1qA

´
`

A´1
A´1

˘ `

1
M

˘A´1
“ M

pM´1qA
´ 1

MA´1 .
Donc :

EpT q “ 1 ` MA´1

ˆ

M

pM ´ 1qA
´

1

MA´1

˙

“ 1 `
MA

pM ´ 1qA
´ 1 “

MA

pM ´ 1qA

D’où : EpT q “

´

M
M´1

¯A
.
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Exercice 3 - Centrale Supélec PC 2024 Maths 2 (extrait) - Produits infinis

Partie I - Résultats préliminaires

1. Montrons par récurrence sur n la propriété Pn : « |
śn

k“1p1 ` xkq ´ 1| ď
śn

k“1p1 ` |xk|q ´ 1 ».
Initialisation (n “ 1) : |p1 ` x1q ´ 1| “ |x1| “ p1 ` |x1|q ´ 1. OK.
Hérédité : Soit n P N‹. Supposons Pn vraie. Posons Pn “

śn
k“1p1 ` xkq et Qn “

śn
k“1p1 ` |xk|q.

|Pn`1 ´ 1| “ |Pnp1 ` xn`1q ´ 1| “ |Pn ´ 1 ` Pnxn`1|

ď |Pn ´ 1| ` |Pn| ¨ |xn`1|

Par hypothèse de récurrence, |Pn ´ 1| ď Qn ´ 1. De plus, |Pn| ď Qn (car |1 ` xk| ď 1 ` |xk|).
Donc :

|Pn`1 ´ 1| ď Qn ´ 1 ` Qn|xn`1| “ Qnp1 ` |xn`1|q ´ 1 “ Qn`1 ´ 1

D’où : |
śn

k“1p1 ` xkq ´ 1| ď
śn

k“1p1 ` |xk|q ´ 1.

2. Pour tout x ě ´1, on a 1 ` x ď ex (convexité de l’exponentielle : la courbe est au-dessus de sa tangente en
0).
Donc pour px1, . . . , xnq P r´1,`8rn :

n
ź

k“1

p1 ` xkq ď

n
ź

k“1

exk “ e
řn

k“1 xk

D’où :
śn

k“1p1 ` xkq ď exp p
řn

k“1 xkq.

3. On peut utiliser la série entière :

et ´ p1 ` tq “

`8
ÿ

k“2

tk

k!

D’où :

|et ´ p1 ` tq| ď

`8
ÿ

k“2

|t|k

k!
“ |t|2

`8
ÿ

k“2

|t|k´2

k!
ď |t|2

`8
ÿ

j“0

|t|j

j!
“ |t|2e|t|

D’où : |p1 ` tq ´ et| ď |t|2e|t|.

4. Soit pa, bq P C2, n P N‹ et M “ maxp|a|, |b|q. On utilise l’identité :

an ´ bn “ pa ´ bqpan´1 ` an´2b ` ¨ ¨ ¨ ` bn´1q “ pa ´ bq
n´1
ÿ

j“0

an´1´jbj

Donc :

|an ´ bn| ď |a ´ b|
n´1
ÿ

j“0

|a|n´1´j |b|j ď |a ´ b|
n´1
ÿ

j“0

Mn´1´jM j “ |a ´ b| ˆ nMn´1

D’où : |an ´ bn| ď nMn´1|a ´ b|.

5. Posons a “ 1 ` z
n et b “ ez{n. Alors an “

`

1 ` z
n

˘n et bn “ ez.
D’après la question 3 avec t “ z

n :

|a ´ b| “

ˇ

ˇ

ˇ

´

1 `
z

n

¯

´ ez{n
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

z

n

ˇ

ˇ

ˇ

2
e|z|{n “

|z|2

n2
e|z|{n

De plus, M “ maxp|a|, |b|q. On a |a| “ |1 ` z{n| ď 1 ` |z|{n et |b| “ eℜpzq{n ď e|z|{n. Donc M ď e|z|{n pour n
assez grand.
D’après la question 4 :

|an ´ bn| ď nMn´1|a ´ b| ď n ¨ epn´1q|z|{n ¨
|z|2

n2
e|z|{n “

|z|2

n
e|z|

D’où :
ˇ

ˇ

`

1 ` z
n

˘n
´ ez

ˇ

ˇ ď
|z|2

n e|z|.
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6. D’après la question 5, pour tout n P N‹ :

|un ´ ez| “

ˇ

ˇ

ˇ

´

1 `
z

n

¯n
´ ez

ˇ

ˇ

ˇ
ď

|z|2

n
e|z| ÝÝÝÝÑ

nÑ`8
0

Donc punq converge vers ez.

Partie II - Exemples de calcul de produit infini

7. Premier produit : Pour n ě 2 :

1 ´
1

n2
“

n2 ´ 1

n2
“

pn ´ 1qpn ` 1q

n2

Donc :
N

ź

n“2

ˆ

1 ´
1

n2

˙

“

N
ź

n“2

pn ´ 1qpn ` 1q

n2
“

śN
n“2pn ´ 1q ¨

śN
n“2pn ` 1q

´

śN
n“2 n

¯2

On a :

•
śN

n“2pn ´ 1q “ 1 ˆ 2 ˆ ¨ ¨ ¨ ˆ pN ´ 1q “ pN ´ 1q!

•
śN

n“2pn ` 1q “ 3 ˆ 4 ˆ ¨ ¨ ¨ ˆ pN ` 1q “
pN`1q!

2

•
śN

n“2 n “ N !{1! “ N !

Donc :
N

ź

n“2

ˆ

1 ´
1

n2

˙

“
pN ´ 1q! ˆ pN ` 1q!{p2q

pN !q2
“

pN ´ 1q!pN ` 1q!

2pN !q2
“

N ` 1

2N
ÝÝÝÝÝÑ
NÑ`8

1

2

D’où :
`8
ź

n“2

ˆ

1 ´
1

n2

˙

“
1

2
.

Second produit : Si on regroupe deux termes consécutifs (un terme impair puis un terme pair), on a :
ˆ

1 `
p´1q2k`1`1

2k ` 1

˙ ˆ

1 `
p´1q2k`2`1

2k ` 2

˙

“
2k ` 1 ` 1

2k ` 1
ˆ

2k ` 2 ´ 1

2k ` 2
“ 1.

Ainsi, si M “ 2N est pair (et donc qu’on s’arrête sur un terme pair), on a :

2N
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

“
1

2
ˆ 1 ˆ 1 ˆ ¨ ¨ ¨ ˆ 1 ÝÝÝÝÝÑ

NÑ`8

1

2
.

Et si M “ 2N ` 1 est impair (et donc qu’on s’arrête sur un terme impair), on a :

2N`1
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

“
1

2
ˆ 1 ˆ ¨ ¨ ¨ ˆ 1 ˆ

ˆ

1 `
p´1q2N`1`1

2N ` 1

˙

NÑ`8
ÝÝÝÝÝÑ

1

2
.

Comme les deux suites extraites tendent vers 1
2 , on a :

M
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

MÑ`8
ÝÝÝÝÝÑ

1

2
.

D’où :
`8
ź

n“2

ˆ

1 `
p´1qn`1

n

˙

“
1

2
.
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8. On a Wn “

ż π{2

0
pcosuqndu. Par intégration par parties (l’intégrale est sur un segment, aucune difficulté

de convergence), posons αpuq “ cosn`1puq et β1puq “ cospuq. Alors βpuq “ sinpuq et α1puq “ ´pn `

1q cosnpuq sinpuq (et α et β sont C1).

Wn`2 “

ż π{2

0
cosn`2puqdu “

“

cosn`1puq sinpuq
‰π{2

0
` pn ` 1q

ż π{2

0
cosnpuq sin2puqdu

“ 0 ` pn ` 1q

ż π{2

0
cosnpuqp1 ´ cos2puqqdu

“ pn ` 1qpWn ´ Wn`2q

Donc pn ` 2qWn`2 “ pn ` 1qWn, soit pn ` 2qWn`2 “ pn ` 1qWn.

Pour W2n`1 : On a W1 “
şπ{2
0 cosudu “ 1.

Par récurrence (faites ce que je dis pas ce que je fais !) :

W2n`1 “
2n

2n ` 1
W2n´1 “

2n

2n ` 1
ˆ

2n ´ 2

2n ´ 1
ˆ ¨ ¨ ¨ ˆ

2

3
ˆ W1

Donc :
W2n`1 “

2n ˆ p2n ´ 2q ˆ ¨ ¨ ¨ ˆ 2

p2n ` 1q ˆ p2n ´ 1q ˆ ¨ ¨ ¨ ˆ 3
“

2nn!

p2n ` 1q!!

où p2n ` 1q!! “ p2n ` 1qp2n ´ 1q ¨ ¨ ¨ 3 ¨ 1 “
p2n`1q!
2nn! .

Donc :

W2n`1 “
2nn!

p2n`1q!
2nn!

“
22npn!q2

p2n ` 1q!

D’où : W2n`1 “
22npn!q2

p2n`1q! .

9. Équivalent de W2n`1 : D’après la question précédente, on a :

W2n`1 “
22npn!q2

p2n ` 1q!

En utilisant l’équivalent de Stirling n! „
nÑ`8

?
2πn

`

n
e

˘n, on obtient :

• pn!q2 „ 2πn
`

n
e

˘2n
“ 2πn ¨ n2n

e2n

• p2n ` 1q! „ p2nq! ¨ p2n ` 1q „
a

2πp2nq
`

2n
e

˘2n
¨ p2n ` 1q „ 2

?
πn ¨

p2nq2n

e2n
¨ 2n “ 4n

?
πn ¨

p2nq2n

e2n

Donc :

W2n`1 „
22n ¨ 2πn ¨ n2n

e2n

4n
?
πn ¨

p2nq2n

e2n

“
22n ¨ 2πn ¨ n2n

4n
?
πn ¨ p2nq2n

“
22n ¨ 2πn ¨ n2n

4n
?
πn ¨ 22n ¨ n2n

“
2πn

4n
?
πn

“

?
π

2
?
n

D’où : W2n`1 „ 1
2

a

π
n .

Calcul du produit : On a :

N
ź

n“1

ˆ

1 `
1

4n2 ´ 1

˙

“

N
ź

n“1

4n2

p2n ´ 1qp2n ` 1q

Complétons le dénominateur en multipliant par les termes pairs p2nq et p2n ` 2q, et compensons au numé-
rateur :

N
ź

n“1

4n2

p2n ´ 1qp2n ` 1q
“

N
ź

n“1

4n2 ¨ p2nqp2n ` 2q

p2n ´ 1qp2nqp2n ` 1qp2n ` 2q

Dénominateur : Séparons le produit en deux :

N
ź

n“1

p2n ´ 1qp2nqp2n ` 1qp2n ` 2q “

N
ź

n“1

p2n ´ 1qp2nq ˆ

N
ź

n“1

p2n ` 1qp2n ` 2q
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•
N

ź

n“1

p2n ´ 1qp2nq “ 1 ¨ 2 ¨ 3 ¨ 4 ¨ ¨ ¨ p2N ´ 1qp2Nq “ p2Nq!

•
N

ź

n“1

p2n ` 1qp2n ` 2q “ 3 ¨ 4 ¨ 5 ¨ 6 ¨ ¨ ¨ p2N ` 1qp2N ` 2q “
p2N ` 2q!

2

Donc le dénominateur vaut p2Nq! ¨
p2N ` 2q!

2
.

Numérateur : On factorise les 2 des termes pairs :

N
ź

n“1

4n2 ¨ p2nqp2n ` 2q “

N
ź

n“1

4n2 ¨ 2n ¨ 2pn ` 1q “ 4N ¨ pN !q2 ¨ 4N ¨ N ! ¨ pN ` 1q! “ 16N pN !q3pN ` 1q!

Donc :
N

ź

n“1

4n2

p2n ´ 1qp2n ` 1q
“

16N pN !q3pN ` 1q!

p2Nq! ¨
p2N`2q!

2

“
2 ¨ 16N pN !q3pN ` 1q!

p2Nq!p2N ` 2q!

Or pN ` 1q! “ pN ` 1q ¨ N ! et p2N ` 2q! “ p2N ` 2qp2N ` 1qp2Nq!, donc :

N
ź

n“1

4n2

p2n ´ 1qp2n ` 1q
“

2 ¨ 16N pN !q4pN ` 1q

p2Nq!p2N ` 2qp2N ` 1qp2Nq!

“
2 ¨ 24N pN !q4pN ` 1q

2pN ` 1qp2N ` 1qpp2Nq!q2

“
24N pN !q4

p2N ` 1qpp2Nq!q2

On reconnaît :

W2N`1 “
22N pN !q2

p2N ` 1q!
“

22N pN !q2

p2N ` 1qp2Nq!

Donc :

W 2
2N`1 “

24N pN !q4

p2N ` 1q2pp2Nq!q2

Et ainsi :

N
ź

n“1

4n2

p2n ´ 1qp2n ` 1q
“

24N pN !q4

p2N ` 1qpp2Nq!q2
“ p2N ` 1q ¨

24N pN !q4

p2N ` 1q2pp2Nq!q2
“ p2N ` 1qW 2

2N`1

D’après l’équivalent de W2N`1 :
p2N ` 1qW 2

2N`1 „ 2N ¨
π

4N
“

π

2

D’où :
`8
ź

n“1

ˆ

1 `
1

4n2 ´ 1

˙

“
π

2
.

10. Soit n P N. On a 1 ´ PpApq ď e´PpApq d’après la question 2.
Donc :

N
ź

p“n

p1 ´ PpApqq ď exp

˜

´

N
ÿ

p“n

PpApq

¸

Or
ř

pě0 PpApq diverge, donc
řN

p“n PpApq ÝÝÝÝÝÑ
NÑ`8

`8.

Donc exp
´

´
řN

p“n PpApq

¯

ÝÝÝÝÝÑ
NÑ`8

0.

D’où :
`8
ź

p“n

p1 ´ PpApqq “ 0.
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11. Par indépendance des pApq :

P

˜

N
č

p“n

Ap

¸

“

N
ź

p“n

PpApq “

N
ź

p“n

p1 ´ PpApqq

D’après la question 10, cette probabilité tend vers 0 quand N Ñ `8.

Donc, par continuité décroissante, P
´

Ş

pěnAp

¯

“ 0, soit P
´

Ť

pěnAp

¯

“ 0.

Donc P
´

Ť

pěnAp

¯

“ 1 pour tout n.

Ainsi :

P

˜

č

nPN

ď

pěn

Ap

¸

“ lim
nÑ`8

P

˜

ď

pěn

Ap

¸

“ 1

(par continuité décroissante, les
Ť

pěnAp étant décroissants en n).

D’où : P
´

Ş

nPN
Ť

pěnAp

¯

“ 1.

Remarque : C’est le lemme de Borel-Cantelli (seconde partie) : si les pAnq sont indépendants et
ř

PpAnq “

`8, alors presque sûrement, une infinité d’événements An se réalisent.
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