CORRECTION DS — MINES-PoONTS 2024 ITC

Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

CORRECTION DS — MINES-PONTS 2024 ITC
INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION
NUMERIQUE

Partie I - Compression du message d’Alice : codage arithmétique

1.

On propose le codage suivant :

Caractére | Code
b a b ®
b’ 10
c’ 11

Ce codage est préfixe : aucun code n’est le préfixe d’un autre. En effet :
e Lorsqu’on lit un @, c’est forcément le caractére ’a’.

e Lorsqu’on lit un 1, on sait qu’on commence a lire un b’ ou un ’c’, et le bit suivant permet de distinguer
les deux cas.

La chaine s="abaabaca’ est alors codée par :

[0 10 0 0 10 0 11 O]

soit 11 bits au total.

Remarque : On a bien 0 < 10 < 11 en binaire (soit 0 < 2 < 3 en décimal), ce qui respecte la contrainte
d’ordre demandée.

1.1 - Analyse du texte source

2.

1

Fonction nbCaracteres :

def nbCaracteres(c, s):
compteur = 0
for lettre in s:
if lettre == c:
compteur += 1
return compteur

Complexité : On parcourt une seule fois la chaine s de longueur n, et chaque comparaison est en O(1). La
complexité est donc bien , linéaire en la longueur de la chaine.

Pour s="abaabaca’, la fonction listeCaracteres(s) renvoie‘ [’a’, 'b’, 'c’] ‘

Principe de fonctionnement : La fonction parcourt la chaine caractére par caractére. Pour chaque carac-
tére rencontré :

e S’il n’est pas déja présent dans la liste listeCar, on 'y ajoute.

e Sinon, on passe au caractére suivant.
En fin de parcours, listeCar contient exactement la liste des caractéres distincts de s, dans leur ordre de
premiére apparition.
Analyse de la complexité de listeCaracteres :

e Les lignes 2, 3, 5 et 7 s’exécutent en temps O(1).

e La ligne 6 effectue un test d’appartenance ¢ in listeCar. Dans le pire des cas, la liste listeCar
contient k éléments, donc ce test est en O(k).

e La boucle for (lignes 4-7) effectue n itérations.

Un tour de boucle cotite donc O(k) + O(1) = O(k). Comme la boucle est exécutée n fois, la complexité totale
est :

O(nk)

1sur7

CORRECTION DS — MINES-PoONTS 2024 ITC

Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

D.

1.2 -

10

Ce que fait analyseTexte : Cette fonction calcule 'histogramme de la chaine s, c’est-a-dire la liste des
couples (¢, n.) oil ¢ est un caractére distinct de s et n. est son nombre d’occurrences.

Pour analyseTexte(’babaaaabca’), la fonction renvoie :

(Cv?, 3), Ca’, 6), (Cc’, 1]

(les caractéres apparaissent dans 'ordre de leur premiére occurrence dans la chaine)
Complexité de analyseTexte :
e Ligne 2: O(1)
e Ligne 3 (listeCaracteres(s)) : O(nk) d’aprés Q4
e Lignes 4-6 : la boucle effectue k itérations. A chaque itération :
e Ligne 5: O(1)
e Ligne 6 : appel 4 nbCaracteres(c, s) qui est en O(n)
Donc la boucle cotite k& x O(n) = O(kn).
La complexité totale est donc O(nk) + O(kn) =|O(kn) |

Version avec dictionnaire, en complexité O(n) :

def analyseTexte(s):
dico = {}
for c in s:
if ¢ in dico:
dico[c] += 1
else:
dico[c] =1
return dico

Justification :

e On parcourt la chaine s une seule fois (condition imposée).
e Le test ¢ in dico est en O(1) pour un dictionnaire (admis dans 1’énoncé).
e L’accés et la modification dico[c] sont également en O(1).

La complexité est donc n x O(1) =|O(n) |, indépendante de k.

Exemple : analyseTexte(’abracadabra’) renvoie {’a’:5, 'b’:2, 'r’:2, ’'c’:1, 'd’:1}.
Exploitation d’analyses existantes (SQL)

Liste sans doublon des auteurs :

SELECT DISTINCT auteur
FROM corpus;

Fréquence d’occurrences de chaque caractére en francais :

SELECT ca.symbole,

SUM(oc.nombreOccurrences) /

(SELECT SUM(nombreCaracteres)

FROM corpus

WHERE langue = ’Francais’)
FROM caractere AS ca
JOIN occurrences AS oc ON ca.idCar = oc.idCar
JOIN corpus AS co ON oc.idLivre = co.idLivre
WHERE co.langue = ’'Francais’
GROUP BY ca.idCar;

Explication :

2sur 7

CORRECTION DS — MINES-PoONTS 2024 ITC
Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

e La sous-requéte calcule le nombre total de caractéres du corpus francais.

e On joint les trois tables pour relier chaque caractére & ses occurrences dans les livres francais.

e Le GROUP BY permet de calculer la somme des occurrences pour chaque caractére.

e Le rapport donne la fréquence (entre 0 et 1).
Remarque : Le rapport de jury précise « Plusieurs candidats proposent des sous-requétes alors que le sujet
demande explicitement UNE requéte. » Je ne sais pas comment le dire autrement : le jury a tort. C’est
clairement la réponse précédente qui est la plus adaptée. Cependant, voici une variante sans sous-requéte (&
condition de supposer que tous les caractéres apparaissent dans tous les livres - ou bien que les occurrences
sont données méme lorsqu’il y a 0 apparition) :

1 | SELECT ca.symbole,
SUM(oc.nombreOccurrences) / SUM(co.nombreCaracteres)
FROM caractere AS ca
JOIN occurrences AS oc ON ca.idCar = oc.idCar
5 | JOIN corpus AS co ON oc.idlLivre = co.idLivre
WHERE co.langue = ’'Francais’
GROUP BY ca.idCar;

1.3 - Compression

10. Intervalle pour s=’bac’ :
On utilise la table des fréquences :

Caracteére a’ b’ c’ d’ e’
Fréquence 0.2 0.1 0.2 0.4 0.1
Intervalle | [0;0.2] | [0.2;0.3[| [0.3;0.5] | [0.5;0.9] | [0.9;1]

e Caractére 'b’ : on part de [0;1] et on sélectionne la portion correspondant & ’b’, soit [0.2;0.3[(de
largeur 0.1).

e Caractére "a’ : on subdivise [0.2;0.3[selon les mémes proportions. La portion pour 'a’ (les premiers
20%) donne [0.2;0.2 + 0.1 x 0.2[= [0.2;0.22].

e Caractére "¢’ : on subdivise [0.2;0.22[. La portion pour ¢’ commence a 30% et finit & 50% de l'inter-
valle. Donc :

g=02+0.02x0.3=0.2+0.006 =0.206
d=02+0.02x05=02+0.01=0.21

L’intervalle final est donc |[0.206;0.21] |

11. Fonction codage :

1 |def codage(s):
g, d =0, 1
for car in s:
g, d = codeCar(car, g, d)
5 return (g, d)

1.4 - Décodage
12. Décodage de x = 0.123 aprés 'ad’ :

e Premier caractére : x = 0.123 € [0;0.2[donc c’est "a’. Nouvel intervalle : [0;0.2].

e Deuxiéme caractére : on subdivise [0;0.2[. Comme z = 0.123 € [0.1;0.18[(portion correspondant a ’d’
dans [0;0.2]), le caractére est 'd’.
Calcul : dans [0;0.2[, la portion pour *d’ commence a 50% et finit & 90%, soit [040.2x0.5;0+0.2x0.9[=
[0.1;0.18].

e Troisiéme caractére : on subdivise [0.1;0.18[(de largeur 0.08). On cherche ou se trouve z = 0.123.

3sur 7

CORRECTION DS — MINES-PoONTS 2024 ITC

Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

13.

14.

10

e Portion "a’ : [0.1;0.1 + 0.08 x 0.2[= [0.1;0.116]
e Portion 'b’ : [0.116;0.116 4 0.08 x 0.1[= [0.116;0.124]

Comme 0.123 € [0.116;0.124], le caractére qui suit "ad’ est .

Le sous-intervalle utilisé est | [0.116;0.124] |
Ambiguité pour le flottant 0.2 :

Les chaines et correspondent toutes deux au flottant 0.2.

Explication : Le flottant 0.2 est exactement la borne gauche de l'intervalle [0.2; 0.3[associé & "b’. Lorsqu’on
encode ensuite ’a’, le sous-intervalle est [0.2;0.22[, dont la borne gauche est toujours 0.2. Cette ambiguité
vient du fait que la borne gauche d’un intervalle appartient a cet intervalle, et que le sous-intervalle pour "a’
conserve cette méme borne gauche.

Fonction decodage :

def decodage(x):

S =

g, d =0, 1

car = decodeCar(x, g, d)
while car != "#’:

S = s + car
g, d = codeCar(car, g, d)
car = decodeCar(x, g, d)
s =s + '#’
return s

Principe : On décode caractére par caractére. A chaque étape :

(a) On trouve le caractére correspondant a = dans l'intervalle courant [g, d].
(b) Si ce n’est pas "#’, on l'ajoute a la chaine et on met a jour l'intervalle.
(c) On répete jusqu'a trouver le caractére de fin "#’.

Remarque : Variante récursive :

def decodage(x):
def aux(g, d, s):
car = decodeCar(x, g, d)
if car == ’#’:
return s + ’#’
else:
g_new, d_new = codeCar(car, g, d)
return aux(g_new, d_new, s + car)
return aux(®, 1, ’’)

4 sur 7

CORRECTION DS — MINES-PoNTSs 2024 ITC
Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

Partie II - Décodage par I’algorithme de Viterbi

I1.1 - Modélisation du canal de communication par un graphe

15. Nombre de sommets et d’arcs :

e Sommets : Il y a K symboles possibles et IV observations, donc K sommets par couche et N couches.
Le nombre total de sommets (hors o et 7) est :

e Arcs : Chaque sommet de la couche j (pour j < N — 1) est relié a tous les sommets de la couche j + 1.
Iy a donc K x K = K? arcs entre deux couches consécutives, et N — 1 transitions entre couches. Le
nombre total d’arcs (hors ceux depuis o et vers 7) est :

(N —1)K?

16. Graphe pour 0Obs = [2,0] avec K =3 et N =2 :

Les matrices sont :

0.7 0.2 0.3 0.3 0.2 0.5
E=102 07 01), P=104 04 02
0.1 0.1 0.6 0.2 0.3 0.5

Arcs depuis o : pondérés par Eoue, i = Eo; (premiére observation = 2)

e 0 — S00:Exp=0.1

e 00— Si0:Ey; =01

® 00— S0:FE29 =006
Arcs internes : pondérés par Eous, 1 X P;p = Eo i X P (deuxiéme observation = 0)
Depuis So : So,0 — So,1 : 0.7 x 0.3 =0.21; Spo — S1,1 : 0.2 x 0.2 = 0.04; Sp,0 — S2,1 : 0.3 x 0.5 =0.15
Depuis S1,0 : S1,0 = S0,1 : 0.7x0.4=0.28; S190— 51,1 :02x0.4=0.08; S10— 521 :0.3x0.2=0.06
Depuis 5270 : 527() - 50,1 :0.7x0.2= 0.14; 52,0 - 5171 :0.2x03 = 0.06; 527() — 5271 :0.3x0.5=0.15

So,1
0.1 1
0.1 < > 1
Sl’l @
0.6

1
Sa1

17. Nombre de chemins entre o et 7 :
A chaque couche, on choisit I'un des K symboles. Comme il y a N couches, le nombre de chemins est

exactement :

Ce nombre croit exponentiellement avec N. Pour des valeurs raisonnables de K et N (par exemple K = 26
pour l'alphabet et N = 100 pour un message), K"V devient astronomique. Une exploration exhaustive n’est
donc pas envisageable en pratique.

I1.2 - Stratégie gloutonne

18. Fonction maximumListe :

5sur 7

CORRECTION DS — MINES-PoONTS 2024 ITC

Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE
1 |def maximumListe(liste):
maxi = liste[0]
ind = 0
for k in range(l, len(liste)):
5 if liste[k] > maxi: # strict pour le plus petit indice
maxi = liste[k]
ind = k
return (maxi, ind)

Remarque : L’inégalité stricte 1liste[k] > maxi garantit qu’en cas d’égalité, on conserve le plus petit
indice (celui rencontré en premier).

19. Erreur dans I’énoncé : Dans initialiserGlouton, laligne 2 devrait étre E[Obs[0]][i] et non E[Obs[®][i]].
Fonction glouton :

1 |def glouton(Obs, P, E, K, N):

chemin = []

i = initialiserGlouton(Obs, E, K)

chemin.append (i)

5 for j in range(N — 1):
probas = [E[Obs[j+1]]1[k] * P[i][k] for k in range(K)]
_, 1 = maximumListe (probas)
chemin.append (i)

return chemin

Principe : A chaque étape, on choisit le sommet suivant qui maximise la probabilité de I’arc sortant du
sommet courant. C’est un choix localement optimal.

20. Complexité de ’approche gloutonne :
e initialiserGlouton : parcourt une liste de taille K, donc O(K).
e La boucle s’exécute N — 1 fois. A chaque itération :
e Construction de probas : O(K)
e Appel & maximunListe : O(K)
Donc chaque itération cotite O(K), et la boucle cotite (N — 1) x O(K) = O(NK).
La complexité totale est O(K) + O(NK) = |O(NK) |
21. Application a la Figure 4 :
e Depuis o : arc vers symbole 0 avec probabilité 0.6, vers symbole 1 avec probabilité 0.4. L’algorithme
glouton choisit le symbole 0 (probabilité maximale).

e Depuis Sp : arc vers symbole 0 avec probabilité 0.5, vers symbole 1 avec probabilité 0.1. L’algorithme
glouton choisit le symbole 0.

Le chemin renvoyé est donc | [0, 0] | avec une probabilité de 0.6 x 0.5 x 1 = 0.3.

Cependant, le chemin [1,0] a une probabilité de 0.4 x 0.9 x 1 = 0.36 > 0.3.

Conclusion : L’algorithme glouton n’est pas optimal. Il peut manquer la solution globalement optimale
en faisant des choix localement optimaux qui s’avérent sous-optimaux a long terme.

I1.3 - Stratégie de programmation dynamique

22. Transformation en plus court chemin :
On souhaite maximiser le produit des probabilités le long d’un chemin. En appliquant la fonction x — — In(x)
(qui est décroissante et définie pour z > 0), on transforme :
e le produit en somme : —1In(p; X pg X --+) = —In(p1) — In(p2) — - -~
e la maximisation en minimisation (car — In est décroissante)

e les poids sont positifs (car 0 < p; < 1 implique — In(p;) = 0)

6 sur 7

CORRECTION DS — MINES-PoONTS 2024 ITC

Fauriel - PC - Informatique INTRODUCTION A DEUX PROBLEMES EN COMMUNICATION NUMERIQUE

23.

24.

25.

On obtient ainsi un probléme de plus court chemin dans un graphe a poids positifs, que 'on peut
résoudre avec 'algorithme de Dijkstra.

Remarque : Personne n’utiliserait ’algorithme de Dijkstra pour cela. L’algorithme de Viterbi, présenté dans
le sujet, est plus efficace car il exploite la structure en couches du graphe (graphe orienté acyclique avec un
ordre topologique naturel).

Fonction construireTableauViterbi :

def construireTableauViterbi(Obs, P, E, K, N):
T, argT = initialiserViterbi(E, Obs[0], K, N)
for j in range(l, N):
for i in range(K):
liste = [T[k][j—1] = P[k][i] = E[Obs[j]1]1[i]
for k in range(K)]

T[il[j]l, argT[i]l[j] = maximumListe(liste)

return T, argT

Principe : On remplit le tableau colonne par colonne (de gauche a droite). Pour chaque état S; j, on calcule
la probabilité maximale pour y arriver en considérant tous les prédécesseurs possibles Sy ;1.

Lecture de la séquence optimale :

Avec les tableaux donnés (K =3, N = 8) :

(a) On cherche le maximum dans la derniére colonne de T : c’est 1.8 x 1075 en position (0,7), donc le
dernier état est Sop 7 (symbole 0).

(b) On remonte les prédécesseurs avec argT :

e argT[0][7] = 0 — prédécesseur : symbole 0
e argT[0][6] = 1 — prédécesseur : symbole 1
e argT[1][5] = 1 — prédécesseur : symbole 1
e argT[1][4] = 2 — prédécesseur : symbole 2
e argT[2][3] = 0 — prédécesseur : symbole 0
e argT[0][2] = 0 — prédécesseur : symbole 0
e argT[0][1] = 2 — prédécesseur : symbole 2
e argT[2][0] = —1 — source o

La séquence d’états la plus probable est donc :

1[2,0,0,2,1,1,0,0]|

Complexité de P’algorithme de Viterbi :
> Complexité temporelle :
e Initialisation (initialiserViterbi) : création de deux tableaux K x N, donc O(KN).
e Double boucle : N — 1 itérations sur j, K itérations sur 7. A chaque itération intérieure :
e Construction de liste : O(K)
e Appel & maximumListe : O(K)
Donc la double boucle coiite (N —1) x K x O(K) = O(NK?).

La complexité temporelle totale est | O(NK?) |.

> Complexité spatiale :

e Les tableaux T et argT ont chacun K x N éléments.

e La liste temporaire liste a K éléments (réutilisée a chaque itération).
La complexité spatiale est [O(NK) |.

Remarque : Par rapport & I'exploration exhaustive en O(K*), I'algorithme de Viterbi offre une complexité
polynomiale, ce qui le rend utilisable en pratique.

7 sur 7

