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Partie I - Compression du message d’Alice : codage arithmétique

1. On propose le codage suivant :

Caractère Code
’a’ 0
’b’ 10
’c’ 11

Ce codage est préfixe : aucun code n’est le préfixe d’un autre. En effet :
• Lorsqu’on lit un 0, c’est forcément le caractère ’a’.
• Lorsqu’on lit un 1, on sait qu’on commence à lire un ’b’ ou un ’c’, et le bit suivant permet de distinguer

les deux cas.
La chaîne s=’abaabaca’ est alors codée par :

0 10 0 0 10 0 11 0

soit 11 bits au total.
Remarque : On a bien 0 ă 10 ă 11 en binaire (soit 0 ă 2 ă 3 en décimal), ce qui respecte la contrainte
d’ordre demandée.

I.1 - Analyse du texte source

2. Fonction nbCaracteres :

1 def nbCaracteres(c, s):
compteur = 0
for lettre in s:

if lettre == c:
5 compteur += 1

return compteur

Complexité : On parcourt une seule fois la chaîne s de longueur n, et chaque comparaison est en Op1q. La
complexité est donc bien Opnq , linéaire en la longueur de la chaîne.

3. Pour s=’abaabaca’, la fonction listeCaracteres(s) renvoie [’a’, ’b’, ’c’] .
Principe de fonctionnement : La fonction parcourt la chaîne caractère par caractère. Pour chaque carac-
tère rencontré :

• S’il n’est pas déjà présent dans la liste listeCar, on l’y ajoute.
• Sinon, on passe au caractère suivant.

En fin de parcours, listeCar contient exactement la liste des caractères distincts de s, dans leur ordre de
première apparition.

4. Analyse de la complexité de listeCaracteres :
• Les lignes 2, 3, 5 et 7 s’exécutent en temps Op1q.
• La ligne 6 effectue un test d’appartenance c in listeCar. Dans le pire des cas, la liste listeCar

contient k éléments, donc ce test est en Opkq.
• La boucle for (lignes 4-7) effectue n itérations.

Un tour de boucle coûte donc Opkq `Op1q “ Opkq. Comme la boucle est exécutée n fois, la complexité totale
est :

Opnkq
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5. Ce que fait analyseTexte : Cette fonction calcule l’histogramme de la chaîne s, c’est-à-dire la liste des
couples pc, ncq où c est un caractère distinct de s et nc est son nombre d’occurrences.
Pour analyseTexte(’babaaaabca’), la fonction renvoie :

[(’b’, 3), (’a’, 6), (’c’, 1)]

(les caractères apparaissent dans l’ordre de leur première occurrence dans la chaîne)

6. Complexité de analyseTexte :

• Ligne 2 : Op1q

• Ligne 3 (listeCaracteres(s)) : Opnkq d’après Q4
• Lignes 4-6 : la boucle effectue k itérations. À chaque itération :

• Ligne 5 : Op1q

• Ligne 6 : appel à nbCaracteres(c, s) qui est en Opnq

Donc la boucle coûte k ˆ Opnq “ Opknq.

La complexité totale est donc Opnkq ` Opknq “ Opknq .

7. Version avec dictionnaire, en complexité Opnq :

1 def analyseTexte(s):
dico = {}
for c in s:

if c in dico:
5 dico[c] += 1

else:
dico[c] = 1

return dico

Justification :

• On parcourt la chaîne s une seule fois (condition imposée).
• Le test c in dico est en Op1q pour un dictionnaire (admis dans l’énoncé).
• L’accès et la modification dico[c] sont également en Op1q.

La complexité est donc n ˆ Op1q “ Opnq , indépendante de k.

Exemple : analyseTexte(’abracadabra’) renvoie {’a’:5, ’b’:2, ’r’:2, ’c’:1, ’d’:1}.

I.2 - Exploitation d’analyses existantes (SQL)

8. Liste sans doublon des auteurs :

1 SELECT DISTINCT auteur
FROM corpus;

9. Fréquence d’occurrences de chaque caractère en français :

1 SELECT ca.symbole,
SUM(oc.nombreOccurrences) /
(SELECT SUM(nombreCaracteres)
FROM corpus

5 WHERE langue = ’Français’)
FROM caractere AS ca
JOIN occurrences AS oc ON ca.idCar = oc.idCar
JOIN corpus AS co ON oc.idLivre = co.idLivre
WHERE co.langue = ’Français’

10 GROUP BY ca.idCar;

Explication :
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• La sous-requête calcule le nombre total de caractères du corpus français.
• On joint les trois tables pour relier chaque caractère à ses occurrences dans les livres français.
• Le GROUP BY permet de calculer la somme des occurrences pour chaque caractère.
• Le rapport donne la fréquence (entre 0 et 1).

Remarque : Le rapport de jury précise « Plusieurs candidats proposent des sous-requêtes alors que le sujet
demande explicitement UNE requête. » Je ne sais pas comment le dire autrement : le jury a tort. C’est
clairement la réponse précédente qui est la plus adaptée. Cependant, voici une variante sans sous-requête (à
condition de supposer que tous les caractères apparaissent dans tous les livres - ou bien que les occurrences
sont données même lorsqu’il y a 0 apparition) :

1 SELECT ca.symbole,
SUM(oc.nombreOccurrences) / SUM(co.nombreCaracteres)

FROM caractere AS ca
JOIN occurrences AS oc ON ca.idCar = oc.idCar

5 JOIN corpus AS co ON oc.idLivre = co.idLivre
WHERE co.langue = ’Français’
GROUP BY ca.idCar;

I.3 - Compression

10. Intervalle pour s=’bac’ :
On utilise la table des fréquences :

Caractère ’a’ ’b’ ’c’ ’d’ ’e’

Fréquence 0.2 0.1 0.2 0.4 0.1
Intervalle r0; 0.2r r0.2; 0.3r r0.3; 0.5r r0.5; 0.9r r0.9; 1r

• Caractère ’b’ : on part de r0; 1r et on sélectionne la portion correspondant à ’b’, soit r0.2; 0.3r (de
largeur 0.1).

• Caractère ’a’ : on subdivise r0.2; 0.3r selon les mêmes proportions. La portion pour ’a’ (les premiers
20%) donne r0.2; 0.2 ` 0.1 ˆ 0.2r“ r0.2; 0.22r.

• Caractère ’c’ : on subdivise r0.2; 0.22r. La portion pour ’c’ commence à 30% et finit à 50% de l’inter-
valle. Donc :

g “ 0.2 ` 0.02 ˆ 0.3 “ 0.2 ` 0.006 “ 0.206

d “ 0.2 ` 0.02 ˆ 0.5 “ 0.2 ` 0.01 “ 0.21

L’intervalle final est donc r0.206; 0.21r .

11. Fonction codage :

1 def codage(s):
g, d = 0, 1
for car in s:

g, d = codeCar(car, g, d)
5 return (g, d)

I.4 - Décodage

12. Décodage de x “ 0.123 après ’ad’ :

• Premier caractère : x “ 0.123 P r0; 0.2r donc c’est ’a’. Nouvel intervalle : r0; 0.2r.
• Deuxième caractère : on subdivise r0; 0.2r. Comme x “ 0.123 P r0.1; 0.18r (portion correspondant à ’d’

dans r0; 0.2r), le caractère est ’d’.
Calcul : dans r0; 0.2r, la portion pour ’d’ commence à 50% et finit à 90%, soit r0`0.2ˆ0.5; 0`0.2ˆ0.9r“

r0.1; 0.18r.
• Troisième caractère : on subdivise r0.1; 0.18r (de largeur 0.08). On cherche où se trouve x “ 0.123.
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• Portion ’a’ : r0.1; 0.1 ` 0.08 ˆ 0.2r“ r0.1; 0.116r

• Portion ’b’ : r0.116; 0.116 ` 0.08 ˆ 0.1r“ r0.116; 0.124r

Comme 0.123 P r0.116; 0.124r, le caractère qui suit ’ad’ est ’b’ .

Le sous-intervalle utilisé est r0.116; 0.124r .

13. Ambiguïté pour le flottant 0.2 :
Les chaînes ’b’ et ’ba’ correspondent toutes deux au flottant 0.2.
Explication : Le flottant 0.2 est exactement la borne gauche de l’intervalle r0.2; 0.3r associé à ’b’. Lorsqu’on
encode ensuite ’a’, le sous-intervalle est r0.2; 0.22r, dont la borne gauche est toujours 0.2. Cette ambiguïté
vient du fait que la borne gauche d’un intervalle appartient à cet intervalle, et que le sous-intervalle pour ’a’
conserve cette même borne gauche.

14. Fonction decodage :

1 def decodage(x):
s = ’’
g, d = 0, 1
car = decodeCar(x, g, d)

5 while car != ’#’:
s = s + car
g, d = codeCar(car, g, d)
car = decodeCar(x, g, d)

s = s + ’#’
10 return s

Principe : On décode caractère par caractère. À chaque étape :

(a) On trouve le caractère correspondant à x dans l’intervalle courant rg, dr.
(b) Si ce n’est pas ’#’, on l’ajoute à la chaîne et on met à jour l’intervalle.
(c) On répète jusqu’à trouver le caractère de fin ’#’.

Remarque : Variante récursive :

1 def decodage(x):
def aux(g, d, s):

car = decodeCar(x, g, d)
if car == ’#’:

5 return s + ’#’
else:

g_new, d_new = codeCar(car, g, d)
return aux(g_new, d_new, s + car)

return aux(0, 1, ’’)
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Partie II - Décodage par l’algorithme de Viterbi
II.1 - Modélisation du canal de communication par un graphe

15. Nombre de sommets et d’arcs :

• Sommets : Il y a K symboles possibles et N observations, donc K sommets par couche et N couches.
Le nombre total de sommets (hors σ et τ) est :

KN

• Arcs : Chaque sommet de la couche j (pour j ă N ´ 1) est relié à tous les sommets de la couche j ` 1.
Il y a donc K ˆ K “ K2 arcs entre deux couches consécutives, et N ´ 1 transitions entre couches. Le
nombre total d’arcs (hors ceux depuis σ et vers τ) est :

pN ´ 1qK2

16. Graphe pour Obs “ r2, 0s avec K “ 3 et N “ 2 :
Les matrices sont :

E “

¨

˝

0.7 0.2 0.3
0.2 0.7 0.1
0.1 0.1 0.6

˛

‚, P “

¨

˝

0.3 0.2 0.5
0.4 0.4 0.2
0.2 0.3 0.5

˛

‚

Arcs depuis σ : pondérés par Eobs0,i “ E2,i (première observation = 2)

• σ Ñ S0,0 : E2,0 “ 0.1

• σ Ñ S1,0 : E2,1 “ 0.1

• σ Ñ S2,0 : E2,2 “ 0.6

Arcs internes : pondérés par Eobs1,k ˆ Pi,k “ E0,k ˆ Pi,k (deuxième observation = 0)
Depuis S0,0 : S0,0 Ñ S0,1 : 0.7 ˆ 0.3 “ 0.21 ; S0,0 Ñ S1,1 : 0.2 ˆ 0.2 “ 0.04 ; S0,0 Ñ S2,1 : 0.3 ˆ 0.5 “ 0.15

Depuis S1,0 : S1,0 Ñ S0,1 : 0.7 ˆ 0.4 “ 0.28 ; S1,0 Ñ S1,1 : 0.2 ˆ 0.4 “ 0.08 ; S1,0 Ñ S2,1 : 0.3 ˆ 0.2 “ 0.06

Depuis S2,0 : S2,0 Ñ S0,1 : 0.7 ˆ 0.2 “ 0.14 ; S2,0 Ñ S1,1 : 0.2 ˆ 0.3 “ 0.06 ; S2,0 Ñ S2,1 : 0.3 ˆ 0.5 “ 0.15

σ

S0,0

S1,0

S2,0

S0,1

S1,1

S2,1

τ

0.1

0.1

0.6

0.21

0.04

0.15

0.28
0.08

0.06
0.14

0.06

0.15

1

1

1

17. Nombre de chemins entre σ et τ :
À chaque couche, on choisit l’un des K symboles. Comme il y a N couches, le nombre de chemins est
exactement :

KN

Ce nombre croît exponentiellement avec N . Pour des valeurs raisonnables de K et N (par exemple K “ 26
pour l’alphabet et N “ 100 pour un message), KN devient astronomique. Une exploration exhaustive n’est
donc pas envisageable en pratique.

II.2 - Stratégie gloutonne

18. Fonction maximumListe :

5 sur 7



Fauriel - PC - Informatique
Correction DS – Mines-Ponts 2024 ITC

Introduction à deux problèmes en communication numérique

1 def maximumListe(liste):
maxi = liste[0]
ind = 0
for k in range(1, len(liste)):

5 if liste[k] > maxi: # s t r i c t pour l e p l u s p e t i t i n d i c e
maxi = liste[k]
ind = k

return (maxi, ind)

Remarque : L’inégalité stricte liste[k] > maxi garantit qu’en cas d’égalité, on conserve le plus petit
indice (celui rencontré en premier).

19. Erreur dans l’énoncé : Dans initialiserGlouton, la ligne 2 devrait être E[Obs[0]][i] et non E[Obs[0][i]].
Fonction glouton :

1 def glouton(Obs, P, E, K, N):
chemin = []
i = initialiserGlouton(Obs, E, K)
chemin.append(i)

5 for j in range(N − 1):
probas = [E[Obs[j+1]][k] ∗ P[i][k] for k in range(K)]
_, i = maximumListe(probas)
chemin.append(i)

return chemin

Principe : À chaque étape, on choisit le sommet suivant qui maximise la probabilité de l’arc sortant du
sommet courant. C’est un choix localement optimal.

20. Complexité de l’approche gloutonne :

• initialiserGlouton : parcourt une liste de taille K, donc OpKq.
• La boucle s’exécute N ´ 1 fois. À chaque itération :

• Construction de probas : OpKq

• Appel à maximumListe : OpKq

Donc chaque itération coûte OpKq, et la boucle coûte pN ´ 1q ˆ OpKq “ OpNKq.

La complexité totale est OpKq ` OpNKq “ OpNKq .

21. Application à la Figure 4 :

• Depuis σ : arc vers symbole 0 avec probabilité 0.6, vers symbole 1 avec probabilité 0.4. L’algorithme
glouton choisit le symbole 0 (probabilité maximale).

• Depuis S0,0 : arc vers symbole 0 avec probabilité 0.5, vers symbole 1 avec probabilité 0.1. L’algorithme
glouton choisit le symbole 0.

Le chemin renvoyé est donc r0, 0s avec une probabilité de 0.6 ˆ 0.5 ˆ 1 “ 0.3.
Cependant, le chemin r1, 0s a une probabilité de 0.4 ˆ 0.9 ˆ 1 “ 0.36 ą 0.3.
Conclusion : L’algorithme glouton n’est pas optimal. Il peut manquer la solution globalement optimale
en faisant des choix localement optimaux qui s’avèrent sous-optimaux à long terme.

II.3 - Stratégie de programmation dynamique

22. Transformation en plus court chemin :
On souhaite maximiser le produit des probabilités le long d’un chemin. En appliquant la fonction x ÞÑ ´ lnpxq

(qui est décroissante et définie pour x ą 0), on transforme :

• le produit en somme : ´ lnpp1 ˆ p2 ˆ ¨ ¨ ¨ q “ ´ lnpp1q ´ lnpp2q ´ ¨ ¨ ¨

• la maximisation en minimisation (car ´ ln est décroissante)
• les poids sont positifs (car 0 ă pi ď 1 implique ´ lnppiq ě 0)
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On obtient ainsi un problème de plus court chemin dans un graphe à poids positifs, que l’on peut
résoudre avec l’algorithme de Dijkstra.
Remarque : Personne n’utiliserait l’algorithme de Dijkstra pour cela. L’algorithme de Viterbi, présenté dans
le sujet, est plus efficace car il exploite la structure en couches du graphe (graphe orienté acyclique avec un
ordre topologique naturel).

23. Fonction construireTableauViterbi :

1 def construireTableauViterbi(Obs, P, E, K, N):
T, argT = initialiserViterbi(E, Obs[0], K, N)
for j in range(1, N):

for i in range(K):
5 liste = [T[k][j−1] ∗ P[k][i] ∗ E[Obs[j]][i]

for k in range(K)]
T[i][j], argT[i][j] = maximumListe(liste)

return T, argT

Principe : On remplit le tableau colonne par colonne (de gauche à droite). Pour chaque état Si,j , on calcule
la probabilité maximale pour y arriver en considérant tous les prédécesseurs possibles Sk,j´1.

24. Lecture de la séquence optimale :
Avec les tableaux donnés (K “ 3, N “ 8) :

(a) On cherche le maximum dans la dernière colonne de T : c’est 1.8 ˆ 10´5 en position p0, 7q, donc le
dernier état est S0,7 (symbole 0).

(b) On remonte les prédécesseurs avec argT :

• argT[0][7] “ 0 Ñ prédécesseur : symbole 0
• argT[0][6] “ 1 Ñ prédécesseur : symbole 1
• argT[1][5] “ 1 Ñ prédécesseur : symbole 1
• argT[1][4] “ 2 Ñ prédécesseur : symbole 2
• argT[2][3] “ 0 Ñ prédécesseur : symbole 0
• argT[0][2] “ 0 Ñ prédécesseur : symbole 0
• argT[0][1] “ 2 Ñ prédécesseur : symbole 2
• argT[2][0] “ ´1 Ñ source σ

La séquence d’états la plus probable est donc :

r2, 0, 0, 2, 1, 1, 0, 0s

25. Complexité de l’algorithme de Viterbi :
Ź Complexité temporelle :

• Initialisation (initialiserViterbi) : création de deux tableaux K ˆ N , donc OpKNq.
• Double boucle : N ´ 1 itérations sur j, K itérations sur i. À chaque itération intérieure :

• Construction de liste : OpKq

• Appel à maximumListe : OpKq

Donc la double boucle coûte pN ´ 1q ˆ K ˆ OpKq “ OpNK2q.

La complexité temporelle totale est OpNK2q .
Ź Complexité spatiale :

• Les tableaux T et argT ont chacun K ˆ N éléments.
• La liste temporaire liste a K éléments (réutilisée à chaque itération).

La complexité spatiale est OpNKq .

Remarque : Par rapport à l’exploration exhaustive en OpKN q, l’algorithme de Viterbi offre une complexité
polynomiale, ce qui le rend utilisable en pratique.
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