Corrigé de Centrale 2014 PC math 1

Partie I

I.A
$$f_i(x) = \sum_{j=1}^n A_{i,j} x_j + b_i$$
 donc $\frac{\partial f_i}{\partial x_j}(x) = A_{i,j}$: f est donc de classe C^1 et $J_f(x) = A$.

- I.B 1) φ est la composée de deux fonctions de classe C^1 . $\varphi'(t) = \sum_{j=1}^n D_j g(ta) a_j$.
 - 2) $\varphi(t) = \varphi(0) + t\varphi'(0) + o(t)$ donne $g(ta) = g(0) + t\sum_{j=1}^{n} a_j D_j g(0) + o(t)$.
- I.C 1) On a $t_j = te_j$ où e_j désigne le j-ème vecteur de la base canonique. En utilisant le I.B.2 : $f_i(t_j) = f_i(te_j) = f_i(0) + t D_j f_i(0) + o(t) \text{ donc puisque } f(0) = 0 : f(t_j) = t D_j f(0) + o(t).$ Par n-linéarité du déterminant on déduit : $\det(f(t_1), ..., f(t_n)) = t^n \det(D_1 f(0) + o(1), ..., D_n f(0) + o(1)) = t^n \text{jac}_f(0) + o(t^n) \text{ par continuité du déterminant.}$
 - 2) Puisque $\det(t_1, ..., t_n) = t^n \det(e_1, ..., e_n) = t^n$ on a bien $\lim_{t \to 0} \frac{\det(f(t_1), ..., f(t_n))}{\det(t_1, ..., t_n)} = \mathrm{jac}_f(0)$.
 - 3) Pour n=2, $|\mathrm{jac}_f(0)|=|\det(\mathrm{D}_1f(0),\mathrm{D}_2f(0))|$ est égal à l'aire du parallélogramme de sommets $(0,0),\,\mathrm{D}_1f(0),\,\mathrm{D}_2f(0)$ et $\mathrm{D}_1f(0)+\mathrm{D}_2f(0)$. Pour n=3, $|\mathrm{jac}_f(0)|=|\det(\mathrm{D}_1f(0),\mathrm{D}_2f(0),\mathrm{D}_3f(0))|$ est égal au volume du parallélépipède de sommets $(0,0),\,\mathrm{D}_1f(0),\,\mathrm{D}_2f(0),\,\mathrm{D}_3f(0),\,\mathrm{D}_1f(0)+\mathrm{D}_2f(0),\,\mathrm{D}_1f(0)+\mathrm{D}_3f(0)$ et $\mathrm{D}_1f(0)+\mathrm{D}_2f(0)+\mathrm{D}_3f(0)$.

Partie II

- II.A D'après le I.A. on a $\operatorname{jac}_f(x) = A$ donc $\operatorname{div}_f(x) = \operatorname{tr}(A)$.
- II.B 1) Notons $a=(a_1,a_2)$ et $u_a(t)=(x_1(t),x_2(t))$. L'équation $x_1'(t)=\lambda_1x_1(t)$ avec la condition initiale $x_1(0)=a_1$ a pour solution $x_1(t)=a_1\mathrm{e}^{\lambda_1 t}$. De même $x_2(t)=a_2\mathrm{e}^{\lambda_2 t}$. On a donc $u_a(t)=(a_1\mathrm{e}^{\lambda_1 t},a_2\mathrm{e}^{\lambda_2 t})$.
 - 2) $\det(u_a(t), u_b(t)) = (a_1b_2 a_2b_1)e^{\lambda_1t + \lambda_2t} = \det(a, b)e^{t\operatorname{div}_f(a)}$ puisque $\operatorname{div}_f(x) = \operatorname{tr}(A) = \lambda_1 + \lambda_2$. De plus on a bien $\det(u_a(0), u_b(0)) = \det(a, b)$ puisque $u_a(0) = a$ et $u_b(0) = b$.
 - 3) Le parallélogramme de sommets (0,0), $u_a(t)$, $u_b(t)$ et $u_a(t) + u_b(t)$ a pour aire: $|\det(u_a(t), u_b(t))| = |\det(a, b)| e^{t \operatorname{div}_f(a)}$. C'est une fonction croissante de t si $\operatorname{div}_f(a) > 0$, décroissante si $\operatorname{div}_f(a) < 0$ et constante si $\operatorname{div}_f(a) = 0$.
- II.C 1) $x_2(t) = a_2 \left(\frac{x_1(t)}{a_1}\right)^{\lambda_2/\lambda_1}$ puisque a_1 et λ_1 sont non nuls. On a donc $x_2(t) = \theta_a(x_1(t))$ avec $\theta_a(x) = a_2 \left(\frac{x}{a_1}\right)^{\lambda_2/\lambda_1}$.
 - 2) a) $\theta_a(x) = \frac{x^2}{4}$, $\theta_b(x) = 2x^2$ et $\theta_{a+b}(x) = \frac{x^2}{3}$. b) $\theta_a(x) = \frac{4}{x^2}$, $\theta_b(x) = \frac{2}{x^2}$ et $\theta_{a+b}(x) = \frac{27}{x^2}$. c) $\theta_a(x) = \theta_b(x) = \frac{2}{x}$ et $\theta_{a+b}(x) = \frac{9}{x}$.
- II.D 1) L'équation $x_2'(t) = \lambda x_2(t)$ avec la condition initiale $x_2(0) = a_2$ a pour solution $x_2(t) = a_2 e^{\lambda t}$. En reportant dans la première équation on obtient $x_1'(t) = \lambda x_1(t) + \mu a_2 e^{\lambda t}$ qui s'écrit encore en multipliant par $e^{-\lambda t}$: $(e^{-\lambda t}x_1(t))' = \mu a_2$. On en déduit avec la condition initiale $x_1(0) = a_1$: $e^{-\lambda t}x_1(t) = a_1 + \mu a_2 t$ donc $x_1(t) = (a_1 + \mu a_2 t)e^{\lambda t}$. On a obtenu: $u_a(t) = ((a_1 + \mu a_2 t)e^{\lambda t}, a_2 e^{\lambda t})$. $\det(u_a(t), u_b(t)) = ((a_1 + \mu a_2 t)b_2 a_2(b_1 + \mu b_2 t))e^{2\lambda t} = \det(a, b)e^{t\operatorname{div}_f(a)}$ puisque $\operatorname{div}_f(x) = \operatorname{tr}(A) = 2\lambda$.

- 2) Si A a un polynôme caractéristique scindé sur \mathbb{R} , elle est soit diagonalisable et donc semblable à la matrice du II.B, soit non diagonalisable et semblable à la matrice triangulaire du II.D.1. Si P est la matrice de passage on peut écrire $u_a(t) = Pv_a(t)$ et de même $u_b(t) = Pv_b(t)$. L'égalité $\det(v_a(t), v_b(t)) = \det(v_a(0), v_b(0)) e^{t \operatorname{div}_f(a)}$ donne $\det(u_a(t), u_b(t)) = \det(P) \det(v_a(t), v_b(t)) = \det(P) \det(v_a(0), v_b(0)) e^{t \operatorname{div}_f(a)} = \det(u_a(0), u_b(0)) e^{t \operatorname{div}_f(a)}$.
- 3) Si le polynôme caractéristique de A n'est pas scindé sur \mathbb{R} , c'est que A possède deux valeurs propres complexes non réelles λ_1 et $\lambda_2 = \bar{\lambda}_1$. A est semblable à la matrice diagonale $A' = \operatorname{diag}(\lambda_1, \lambda_2)$ avec une matrice de passage complexe P. On peut donc appliquer la formule obtenue au II.B.2 à la matrice A' puis avec les mêmes calculs qu'au II.D.2 : $\det(u_a(t), u_b(t)) = \det(P) \det(v_a(t), v_b(t)) = \det(P) \det(v_a(0), v_b(0)) e^{t\operatorname{div}_f(a)} = \det(u_a(0), u_b(0)) e^{t\operatorname{div}_f(a)}$ puisque $\lambda_1 + \lambda_2 = \operatorname{tr}(A') = \operatorname{tr}(A) = \operatorname{div}_f(a)$.

Partie III

- III.A Comme f est de classe C^2 , f_k l'est aussi et on peut lui appliquer le théorème de Schwarz: $f_{i,j,k}(x) = D_{i,j}f_k(x) = D_{j,i}f_k(x) = f_{j,i,k}(x)$.
- III.B 1) Puisque $J_f(x)$ est antisymétrique on a pour tout couple (i,j): $D_j f_i(x) = -D_i f_j(x)$ donc: $f_{i,j,k}(x) = D_i D_j f_k(x) = -D_i D_k f_j(x) = -f_{i,k,j}(x)$.
 - 2) Si on permute les deux premiers indices dans $f_{i,j,k}(x)$ on ne change rien alors que si on permute les deux derniers indices, $f_{i,j,k}(x)$ devient $f_{i,k,j}(x) = -f_{i,j,k}(x)$. On en déduit: $f_{i,j,k}(x) = -f_{i,k,j}(x) = -f_{k,i,j}(x) = f_{k,j,i}(x) = f_{j,k,i}(x) = -f_{j,i,k}(x) = -f_{i,j,k}(x)$. $f_{i,j,k}(x) = -f_{i,j,k}(x)$ entraine que $f_{i,j,k}(x) = 0$.
 - 3) Les dérivées partielles de $D_j f_k(x)$ par rapport à toutes les variables x_i étant nulles, $D_j f_k(x)$ est une constante que l'on peut noter $A_{k,j}$. La matrice $J_f(x) = A$ est donc constante. A est antisymétrique puisque $J_f(x)$ l'est.
 - Posons g(x) = f(x) Ax. Pour tout couple (j, k), $D_j g_k(x) = A_{k,j} A_{k,j} = 0$ donc la fonction g est constante. On a bien montré que f(x) = Ax + b avec A antisymétrique.
 - 4) On vient de montrer que si $J_f(x)$ est antisymétrique pour tout x alors on a f(x) = Ax + B avec A antisymétrique. Réciproquement, si f(x) = Ax + B avec A antisymétrique, on déduit par le I.A que $J_f(x) = A$ est antisymétrique pour tout x.
- III.C Si pour tout i on a $f_i(x) = D_i g(x)$ avec g de classe C^2 , f est de classe C^1 et vérifie $D_j f_i(x) = D_{j,i} g(x) = D_{i,j} g(x) = D_i f_j(x)$ par le théorème de Schwarz. $J_f(x)$ est donc une matrice symétrique pour tout x.

Réciproquement supposons que $J_f(x)$ soit une matrice symétrique pour tout x. Définissons $g(x) = \sum_{k=1}^{n} x_k \int_0^1 f_k(tx)dt$. Pour montrer que g est de classe C^1 montrons d'abord que l'application définie

par $h(x_i) = \int_0^1 f_k(tx)dt$ est de classe C^1 . Les hypothèses du théorème de Leibniz sont vérifiées puisque:

 $t \to f_k(tx)$ et $t \to \frac{\partial}{\partial x_i} f_k(tx) = t D_i f_k(tx)$ sont continues et intégrables sur [0,1]

 $x_i \to tD_i f_k(tx)$ est continue

Puisque $(x_i, t) \to tD_i f_k(tx)$ est continue sur le compact $[a, b] \times [0, 1]$ on a pour $x_i \in [a, b]$ et $t \in [0, 1]$: $|tD_i f_k(tx)| \leq M$ intégrable sur [0, 1].

On en déduit que
$$D_i g(x) = \sum_{k=1}^n \frac{\partial}{\partial x_i} (x_k \int_0^1 f_k(tx) dt) = \int_0^1 f_i(tx) dt + \sum_{k=1}^n x_k \int_0^1 t D_i f_k(tx) dt = \int_0^1 f_i(tx) dt$$

$$\int_0^1 \left(f_i(tx) + t \sum_{k=1}^n x_k D_k f_i(tx) \right) dt \text{ puisque } J_f(x) \text{ est une matrice symétrique pour tout } x. \text{ Puique la}$$

dérivée de $t \to t f_i(tx)$ est égale à $f_i(tx) + t \sum_{k=1}^n x_k D_k f_i(tx)$ on déduit que $D_i g(x) = [t f_i(tx)]_0^1 = f_i(x)$.

Enfin g est bien de classe C^2 puisque f est de classe C^1 .

Partie IV

IV.A 1) Puisque $J_f(x)$ est orthogonale elle vérifie ${}^tJ_fJ_f=\mathrm{I}_n$ donc pour tout couple (i,j):

$$\sum_{p=1}^n \mathrm{D}_i f_p(x) \mathrm{D}_j f_p(x) = \delta_{i,j}.$$
 En dérivant par rapport à x_k on obtient:

$$0 = \sum_{p=1}^{n} \mathcal{D}_{k,i} f_p(x) \mathcal{D}_j f_p(x) + \sum_{p=1}^{n} \mathcal{D}_i f_p(x) \mathcal{D}_{k,j} f_p(x) \text{ ou encore } \alpha_{j,k,i} = -\alpha_{i,k,j}. \text{ Si on \'echange le}$$

premier et le troisième indice on change le signe. Comme f est de classe C^2 , le théorème de Schwarz donne: $\alpha_{i,j,k} = \alpha_{i,k,j}$. On a donc bien

- $\alpha_{i,k,j} = \alpha_{i,j,k} = -\alpha_{k,j,i}$.
- 2) Puisque $\alpha_{i,k,j} = -\alpha_{k,j,i}$, une permutation circulaire sur les indices change le signe. On a donc $\alpha_{i,j,k} = -\alpha_{j,k,i} = \alpha_{k,i,j} = -\alpha_{i,j,k}$. On a bien $\alpha_{i,j,k} = 0$ pour tout triplet (i,j,k).
- 3) Puisque $\alpha_{i,j,k} = 0$, le vecteur $D_{j,k}f(x)$ est orthogonal à toutes les colonnes $D_if(x)$ de la matrice $J_f(x)$. Comme cette matrice est orthogonale, ses colonnes forment une base orthonormale de \mathbb{R}^n . on en déduit que $D_{j,k}f(x) = 0$, pour tout j. Par suite, $D_kf(x)$ est constant, donc $J_f(x) = A$ est constante et est orthogonale. Le même calcul qu'au III.B.3 donne f(x) = Ax + b.
- IV.B On vient de montrer que si (P) alors f(x) = Ax + b avec A orthogonale. Réciproquement, si f(x) = Ax + b avec A orthogonale, on déduit avec le I.A que $J_f(x) = A$ qui est orthogonale. Il y a donc bien équivalence.
- IV.C 1) Supposons (P) ou encore f(x) = Ax + b avec A orthogonale et soit g une fonction de classe C^2 . Calculons $\Delta_{g \circ f}(x)$.

$$\frac{\partial}{\partial x_i}g(Ax+b) = \sum_{j=1}^n \frac{\partial g}{\partial x_j}(Ax+b)A_{j,i} \text{ et } \frac{\partial}{\partial x_i}\left(\frac{\partial g}{\partial x_j}(Ax+b)\right) = \sum_{k=1}^n \frac{\partial^2 g}{\partial x_k\partial x_j}(Ax+b)A_{k,i}.$$

On a donc
$$\Delta_{g \circ f}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} A_{j,i} A_{k,i} \frac{\partial^2 g}{\partial x_k \partial x_j} (Ax + b).$$

Puis
$$\Delta_{g \circ f}(x) = \sum_{j,k} \frac{\partial^2 g}{\partial x_k \partial x_j} (Ax + b) \sum_{i=1}^n A_{j,i} A_{k,i} = \sum_{j,k} \frac{\partial^2 g}{\partial x_k \partial x_j} (Ax + b) \delta_{j,k}$$
 puisque A est

orthogonale. On a donc
$$\Delta_{g \circ f}(x) = \sum_{j=1}^{n} \frac{\partial^{2} g}{\partial x_{j}^{2}} (Ax + b) = \Delta_{g}(f(x)) = (\Delta_{g}) \circ f(x).$$

2) Réciproquement supposons (Q): pour toute fonction g de classe C^2 , $\Delta_{g \circ f} = (\Delta_g) \circ f$. Prenons d'abord g définie par $g(x) = x_i$.

On a
$$g \circ f = f_i$$
 et $\Delta_g = 0$ d'où $\Delta_{f_i} = \Delta_g \circ f = 0$.

Prenons ensuite
$$h$$
 définie par $h(x) = x_i x_j$. On a $h \circ f = f_i f_j$ et $\Delta_h = 2\delta_{i,j}$.

Ensuite:
$$\Delta_{h \circ f} = \Delta_{f_i f_j} = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2} (f_i f_j) = \sum_{k=1}^n \left(\frac{\partial^2 f_i}{\partial x_k^2} f_j + 2 \frac{\partial f_i}{\partial x_k} \frac{\partial f_j}{\partial x_k} + f_i \frac{\partial^2 f_j}{\partial x_k^2} \right).$$

Donc
$$\Delta_{h \circ f}(x) = \Delta_{f_i}(x) f_j(x) + 2 \sum_{k=1}^n \frac{\partial f_i}{\partial x_k}(x) \frac{\partial f_j}{\partial x_k}(x) + f_i(x) \Delta_{f_j}(x).$$

Comme
$$\Delta_{f_i} = \Delta_{f_j} = 0$$
 on obtient $\Delta_{h \circ f}(x) = 2 \sum_{k=1}^n \frac{\partial f_i}{\partial x_k}(x) \frac{\partial f_j}{\partial x_k}(x) = \Delta_h(f(x)) = 2\delta_{i,j}$.

3

Cela signifie que la matrice $J_f(x)$ est orthogonale. On a donc bien montré l'équivalence entre (\mathcal{P}) et (\mathcal{Q}) .