PRÉPARATION ORAL PC 2015

FONCTIONS DE PLUSIEURS VARIABLES, NORMES

Exercice 1 (Maxime Breton) Soit E un espace vectoriel normé. Soient A et B deux parties non vides de E.

- 1. (a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
 - (b) Montrer que $A \subset B \Longrightarrow \overline{A} \subset \overline{B}$.
- 2. Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Remarque: Une réponse sans utiliser les suites est aussi acceptée.

- 3. (a) Montrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (b) Montrer à l'aide d'un exemple que l'autre inclusion n'est pas forcément vérifiée (on pourra prendre $E = \mathbb{R}$).

Exercice 2 Celia Boltzer

Soit E un espace vectoriel normé. Soit A une partie non vide de $E.\,$

On note \overline{A} l'adhérence de A.

- 1. Donner la caractérisation séquentielle de \overline{A} .
- 2. Prouver que, si A est convexe, alors \overline{A} est convexe.

Exercice 3 Marion Heurté

- 1. Prouver que $\forall (x,y) \in \mathbb{R}^2, \ x^2 + y^2 xy \geqslant \frac{1}{2}(x^2 + y^2).$
- 2. Soient $\alpha \in \mathbb{R}$ et $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$

$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0). \end{cases}$$

(a) Quel est le domaine de définition de f?

Déterminer α pour que f soit continue sur \mathbb{R}^2 .

- (b) Justifier l'existence et calculer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- (c) Justifier l'existence et donner la valeur de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.
- (d) f est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 4 (Baptiste le Goff) On travaille dans l'espace \mathbb{R}^3 rapporté à un repère orthonormal direct. Soit \mathcal{S} la surface d'équation xyz = 1.

- 1. Déterminer le gradient de $f:(x,y,z)\mapsto xyz-1$.
- 2. Déterminer une équation du plan tangent à S en $M_0 = (x_0, y_0, z_0)$.
- 3. Déterminer et tracer les courbes intersections avec le plan z = k
- 4. Déterminer le projeté orthogonal de l'origine O sur le plan tangent à S passant par $(1, \frac{1}{2}, 2)$.

Exercice 5 (Pauline Lesongeur) Trouver les extrema de $f:(x,y) \mapsto 3xy - x^3 - y^3$ sur \mathbb{R}^2 .

Exercice 6 (Antoine Guilleux) Résoudre $\frac{\partial^2 f}{\partial x^2}(x,y) - a^2 \frac{\partial^2 f}{\partial y^2}(x,y) = 0$, où a > 0 (On pourra faire le changement de variables u = ax + y, v = ax - y, en montrant d'abord qu'il est bijectif).

Exercice 7 Vincent Larreur

1. Résoudre sur \mathbb{R}^2 l'équation aux dérivées partielles $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 0$ (On pourra faire le changement de variables u = x + y, v = x - y

2. Résoudre de façon plus générale : l'équation aux dérivées partielles $\frac{\partial f}{\partial x}(x,y) + a\frac{\partial f}{\partial y}(x,y) = 0$ où a est un réel. On étudiera successivement les cas a=0 et $a\neq 0$

Exercice 8 Juliette Parisot Résoudre l'équation aux dérivées partielles sur x > 0: $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \sqrt{x^2 + y^2}$ en passant en coordonnées polaires.

ICNA

Exercice 9 Thibault Michel On note $I_{p,q} = \int_0^1 t^p (1-t)^q dt \ (p,q \in \mathbb{N}).$

- 1. Calculer $I_{p,q}$. (On pourra chercher une relation entre $I_{p,q}$ et $I_{p+1,q-1}$ si q est non nul.
- 2. Étudier la série $\sum I_{n,n}$.
- 3. Rayon de convergence de la série entière $\sum I_{n,n}x^n$.

Exercice 10 (Lise Abiven) Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$ et $f \in \mathcal{L}(E)$ vérifiant $f^2 = -\mathrm{Id}_E$.

- 1. Montrer que f est bijectif et n'admet pas de valeur propre (réelle).
- 2. En déduire que E est de dimension paire.
- 3. Soit $u \in E$, non nul. Montrer que Vect (u, f(u)) est un plan stable par u.
- 4. On suppose ici que n=4. Montrer qu'il existe $u,v\in E$ tel que (u,f(u),v,f(v)) est une base de E. Donner la matrice de f dans cette base.
- 5. Généraliser à n quelconque.
- 6. Donner un exemple de tels endomorphismes en dimension 2.

ISUP, actuariat Dauphine

Exercice 11 (Gabriel Le Doudic) Soit l'application $N:(x,y)\in\mathbb{R}^2\mapsto\sup_{t\in[0,1]}|x+ty|$. Montrer que N est une norme de \mathbb{R}^2 et tracer sa boule unité.

Exercice 12 (Antoine Guilleux) Soit E un espace euclidien de dimension n et (e_1, \ldots, e_n) une famille de vecteurs de E telle que, pour tout $x \in E$, $||x||^2 = \sum_{i=1}^n \langle e_i | x \rangle^2$. Montrer que $e = (e_1, \ldots, e_n)$ est une base orthonormée de E.

Exercice 13 (Maïwenn Graindorge) Soit $u: P \in \mathbb{K}_n[X] \mapsto P(X+1) - P(X)$.

- 1. Montrer que u est un endomorphisme de $\mathbb{K}_n[X]$
- 2. Déterminer l'image et le noyau de u.
- 3. Trouver une base dans laquelle la matrice de u a tous ses coefficients nuls sauf les coefficients d'indices (i, i + 1) qui valent 1.

ENSSAT Lannion

Exercice 14 (Elsa Briqueleur) Soit E un espace euclidien orienté de dimension et $e = (e_1, e_2, e_3)$ une base orthonormale de E. Soit $F = \text{Vect}(e_1 + e_2 + e_3, e_1 - e_2)$. Déterminer la matrice dans e du projecteur orthogonal sur F.

Exercice 15 (Juliette Parisot)

- 1. Montrer que les séries $\sum x^n \cos(nx)$ et $\sum x^n \sin(nx)$ convergent pour tout $x \in]-1,1[$ et calculer leur somme.
- 2. Montrer que la fonction $g: x \in]-1,1[\mapsto \operatorname{Arctan} \frac{x \sin x}{1-x \cos x}$ est définie et dérivable sur]-1,1[. Calculer g'(x).
- 3. Montrer que $\forall x \in]-1,1[, g(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} \sin(nx).$

Exercice 16 Marion MiklazSoit A une matrice réelle. Montrer que $rg(A) = rg({}^tAA)$

Exercice 17 Maxime Breton Existence et calcul de $\int_0^1 \frac{3x^2-1}{\sqrt{x}\sqrt{1-x^2}} \operatorname{Arcsin} \frac{x+1}{x-1} dx$.

Exercice 18 Clement Vary Soit (P_n) une suite de fonctions polynômes réelles convergeant uniformément vers une fonction f sur \mathbb{R}

Montrer que la suite $P_{n+1}-P_n$ converge uniformément vers la fonction nulle.

En déduire qu'à partir d'un certain rang (P_n) est un polynôme constant.

Que peut-on dire de la fonction f?.

Exercice 19 (*Célia Le Troquer*) Soit $a \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on définit la fonction f_n par $f_n(x) = n^a x^2 e^{-2nx}$.

- 1. À x fixé, déterminer la limite de $(f_n(x))$ quand n tend vers $+\infty$.
- 2. La suite (f_n) converge-t-elle uniformément sur \mathbb{R}_+ ?
- 3. Donner les intervalles sur lesquels la suite (f_n) converge uniformément pour tout a.
- 4. Calculer la limite quand n tend vers $+\infty$ de $\int_{1}^{2} f_{n}(x) dx$.
- 5. Peut-on appliquer la même méthode pour étudier la limite de $\int_0^2 f_n(x) dx$? de $\int_1^{+\infty} f_n(x) dx$? Quelle méthode pourrait-on utiliser sinon?

Exercice 20 (Gwladys Kervella) Soit l'équation différentielle (E): $y' + \sin(x)y = \sin(2x)$.

- 1. Trouver les solutions.
- 2. On considère la solution vérifiant en outre y(0) = 0. Montrer que y est 2π -périodique.

Exercice 21 Soit u un endomorphisme symétrique d'un espace euclidien E. Montrer que $Im(u)^{\perp} = \ker(u)$

Exercice 22 (Steffen Morvan) Soit
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. La matrice A est-elle diagonalisable?
- 2. Déterminer les sous-espaces propres de A.
- 3. Soit w une solution du système différentiel w'(t) = Aw(t), à valeurs dans $\mathcal{M}_{3,1}(\mathbb{R})$. Étudier (les variations de) la fonction $t \in \mathbb{R} \mapsto \|w(t)\|^2$, où $\|\cdot\|$ représente la norme euclidienne canonique. Montrer que la courbe d'équation X = w(t) appartient à une surface que l'on précisera.

Minettes

Exercice 23 (Baptiste Le Goff) Pour quelles valeurs de $x \in \mathbb{R}$ l'intégrale $\int_0^1 \frac{t-1}{\ln t} t^x dt$ existe-t-elle? La calculer. (On pourra utiliser une fonction définie par une intégrale)

Exercice 24 (Maxime Quemeneur) Que dire des matrices nilpotentes diagonalisables?

Exercice 25 (Marion Miklaz) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $f_n(x) = nxe^{-nx}$. Étudier la convergence simple et uniforme de $(f_n)_{n \in \mathbb{N}}$ sur \mathbb{R} , sur \mathbb{R}^+ , et sur les intervalles de la forme $[a, +\infty[$ avec a > 0.

Exercice 26 (Marion Heurté)

- 1. Montrer que $\mathbb{R}_2[X]$ muni de $(P,Q) \longrightarrow \sum_{i=1}^3 P(i)Q(i)$ est un espace vectoriel euclidien
- 2. Trouver une base orthonormée

Exercice 27 (Matthieu Nicolas-Le Pré) On considère $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$ pour $x \in]-1, +\infty[$

- 1. Montrer que S est définie et continue.
- 2. Étudier les variations de S.
- 3. Calculer S(x+1) S(x).

- 4. Trouver un équivalent de S(x) en -1^+ .
- 5. Montrer que $\forall n \in \mathbb{N}, S(n) = \sum_{k=1}^{n} \frac{1}{k}$.
- 6. Trouver un équivalent de S en $+\infty$.

Exercice 28 (Maelle Galliou) Soit $M=\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1+c \end{array}\right)\in\mathcal{M}_4(\mathbb{R})$. Discuter de l'inversibilité de

M en fonction de a, b, c et calculer l'inverse de M quand c'est possible.

Exercice 29 (Clément Vary) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{1}{2}xy + (47 - x - y)\left(\frac{x}{3} + \frac{y}{4}\right)$. Rechercher les extrema locaux. Les extrema trouvés sont-ils globaux?

Exercice 30 (Gautier Scaerou) Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \frac{t^n}{\sqrt{1+t^2}} dt$. Calculer le rayon de convergence et la somme de la série entière $\sum a_n x^n$.

Exercice 31 (Axel Hiverlet) Soit E un espace vectoriel de dimension finie non nulle n et f un endomorphisme diagonalisable de E de spectre $\{-1,2\}$.

- 1. Montrer qu'il existe $(a,b) \in \mathbb{R}^2$ tel que $f^2 = af + bId_E$
- 2. Exprimer la trace et le déterminant de f en fonction de dim $(\ker(f+Id_E))$ et n.
- 3. Exprimer $f^n(n \in \mathbb{N})$ comme combinaison linéaires de f et Id_E .
- 4. Déterminer les projecteurs appartenant à $Vect(Id_E, f)$. Quelle est leur image et leur noyau?

Exercice 32 (Aziliz) Soit $a \in]-1,1[$ et, pour $n \in \mathbb{N}$, la fonction f_n définie par $f_n(x) = a^n x \sin(nx)$.

- 1. Montrer que la série $\sum f_n$ converge simplement sur \mathbb{R} et que sa somme est définie par $S(x) = \frac{ax \sin x}{1 2a \cos x + a^2}$.
- 2. Montrer que $\int_0^{\pi} S(x) dx = \pi \ln(1+a).$

Exercice 33 (Vincent) Soit $u_n = \frac{1}{\ln^2 2 + \ln^2 3 + \dots + \ln^2 n}$. a)En encadrant le dénominateur par une intégrale, donner un équivalent de u_n lorsque n tend vers $+\infty$. b)Quelle est la nature de la série de terme général u_n ? c)Quel est le rayon de convergence de la série $\sum u_n z^n$?

Exercice 34 (Jules Bertic) Soit $A \in \mathcal{M}_n(\mathbb{R})$, de colonnes C_k , $1 \leqslant k \leqslant n$, et $B \in \mathcal{M}_n(\mathbb{R})$, de colonnes D_k , $1 \leqslant k \leqslant n$, avec $D_k = \sum_{i \neq k} C_i$. Relier $\det(B)$ à $\det(A)$.

Exercice 35 (Justine Roué Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$ et $f \in \mathcal{L}(E)$ tel que $f^n = 0$ et $f^{n-1} \ne 0$. Quelle est le rang de f? Quelle est la trace de f? (Indication : on considère $x \in E$ tel que $f^{(n-1)}(x) \ne 0$. Montrer que $(x, f(x), \dots, f^{(n-1)}(x))$ est une base de E.

Exercice 36 () Nature de la série de terme général $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin^3 x}{1+x} dx$?

Exercice 37 () Soit $\alpha \in \mathbb{R}$ et $\phi : P \in \mathbb{R}_n[X] \mapsto (X-1)P' + \alpha P(1)$.

- 1. Montrer que ϕ est un endomorphisme.
- 2. Rechercher les vecteurs et valeurs propres de ϕ . Étudier la diagonalisabilité de ϕ .
- 3. Pour n=2, donner la matrice de ϕ dans la base canonique.

Exercice 38 () Soit $I_n = \int_0^1 \frac{1}{1+t^n} dt$.

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge et donner sa limite ℓ .
- 2. (Hors oral) Trouver un équivalent de I_n quand n tend vers $+\infty$.

Exercice 39 ()

1. Montrer que, pour toute fonction $f:]0, +\infty[\to \mathbb{R}, \text{ de classe } \mathcal{C}^1, \text{ et pour tout } n \in \mathbb{N}^*,$

$$\int_{n}^{n+1} f(t) dt = f(n) + \int_{n}^{n+1} (n+1-t)f'(t) dt.$$

- 2. Étudier la nature de la série $\sum \frac{\sin \sqrt{n}}{n}$.
- **Exercice 40** () Soit $a_0, \ldots, a_n \in \mathbb{R}$, distincts. Montrer l'existence d'une constante $c \in \mathbb{R}$ telle que

$$\forall P \in \mathbb{R}_n[X], \left| \int_0^1 P(t) \, \mathrm{d}t \right| \leqslant C \sum_{k=0}^n |P(a_k)|.$$

Exercice 41 () Soit une suite $(a_n)_{n\in\mathbb{N}}$ convergeant vers 0 telle que $\sum a_n$ diverge. Quel est le rayon de convergence de la série entière $\sum a_n x^n$?

Exercice 42 () Soit $A = \begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$.

- 1. Diagonaliser A.
- 2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ tel que $M^2 + M = A$. Montrer que $\operatorname{Sp}(M) \subset \{1, -2, 2, -3\}$. Montrer que M est diagonalisable. Résoudre.

Exercice 43 () Étude et tracé de la fonction $x \mapsto \frac{\ln |x^2 - 1|}{x^2}$.

Exercice 44 () Soit n un entier naturel non nul. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + 6I_n$. Calculer $\det(A)$.

CCP

Exercice 45 () Résoudre l'équation différentielle $y' + \frac{x}{1+x^2}y = \frac{1}{1+x^2}$.

Exercice 46 ()

- 1. Soit $f: \mathbb{R}_{n+1}[X] \to \mathbb{R}[X]$ l'application linéaire définie par f(P) = P(X+1) P(X). Noyau et image?
- 2. Soit $g: \mathbb{R}[X] \to \mathbb{R}[X]$ l'application linéaire définie par g(P) = P(X+1) P(X). Montrer que g est surjective.

Exercice 47 () Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geqslant 3$ et $f \in \mathcal{L}(E)$.

- 1. On suppose ici que le polynôme caractéristique de f (noté χ_f) est scindé sur \mathbb{R} . Montrer que f admet un plan stable.
- 2. On suppose ici que χ_f n'est pas scindé et on note $P=(X-a)^2+b^2$ un facteur irréductible de χ_f $(a,b\in\mathbb{R},b\neq 0)$. On note A la matrice de f dans une base de référence notée e.
 - (a) Montrer l'existence de $Z \in \mathcal{M}_{n,1}(\mathbb{C}), Z \neq 0$, tel que AZ = (a + ib)Z.
 - (b) En déduire que f admet un plan stable.
- 3. On suppose que A vaut $\begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Calculer χ_f et en déduire que E est la somme directe de deux plans stables.
- **Exercice 48** () On définit la suite de fonctions sur \mathbb{R} par $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f_n(x) = \sin^n x \cos x$.
 - 1. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.
 - 2. Étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$.
- **Exercice** 49 () Soit E un \mathbb{K} -espace de dimension finie n et $f,g\in\mathcal{L}(E)$ tels que $f\circ g-g\circ f=f$. On souhaite montrer de trois façons que f est nilpotent.
 - 1. Montrer $\forall k \in \mathbb{N}, f^k \circ g g \circ f^k = kf^k$.
 - 2. À l'aide de l'endomorphisme $u \in \mathcal{L}(E) \mapsto u \circ g g \circ u$, montrer que f est nilpotent.

- 3. Montrer $\forall P \in \mathbb{K}[X], P(f) \circ g g \circ P(f) = f \circ P'(f)$. En déduire à nouveau que f est nilpotent.
- 4. Ici, $\mathbb{K} = \mathbb{C}$.
 - (a) Montrer $\forall k \in \mathbb{N}^*$, $\operatorname{Tr}(f^k) = 0$.
 - (b) Soit p le nombre de valeurs propres distinctes de f. Montrer que p vaut 1.
 - (c) En déduire que f est nilpotent.

Exercice 50 () Soit $a \in]0, +\infty[$, I =]-a, a[et $f: I^2 \to I$ une fonction de classe \mathcal{C}^1 . on suppose l'existence d'une constante $K \in [0, 1[$ telle que $\forall (x,y) \in I^2, \left| \frac{\partial f}{\partial x}(x,y) \right| + \left| \frac{\partial f}{\partial y}(x,y) \right| \leqslant K$.

- 1. Soit $(x,y), (x',y') \in I^2$. En utilisant la fonction $\phi : t \in [0,1] \mapsto f(tx + (1-t)x', ty + (1-t)y')$, montrer que $|f(x,y) f(x',y')| \le K \max(|x-x'|, |y-y'|)$.
- 2. Soit une suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0,u_1\in I$ et $\forall n\in\mathbb{N},\,u_{n+2}=f(u_{n+1},u_n)$.
 - (a) On pose $a_n = \max(|u_{n+2} u_{n+1}|, |u_{n+1} u_n|)$. Étudier la décroissance de $(a_n)_{n \in \mathbb{N}}$.
 - (b) Montrer que $\forall n \in \mathbb{N}, a_{n+2} \leqslant Ka_n$.
 - (c) En étudiant la série $\sum (u_{n+1} u_n)$, montrer que la suite $(u_n)_{n \in \mathbb{N}}$ converge.

Exercice 51 () Soit u l'endomorphisme de $\mathbb{R}_n[X]$ défini par u(P) = P(1-X).

- 1. Calculer $u \circ u$. En déduire les valeurs propres de u. Que dire de u?
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant, pour tout $x \in \mathbb{R}$, f(x) = f(1-x). Que dire de la courbe représentative de f?
- 3. Trouver les sous-espaces propres associés aux valeurs propres de u. L'endomorphisme u est-il diagonalisable?

Exercice 52 () Soit $E = \mathcal{C}^2([0,1], \mathbb{R})$. Pour $f, g \in E$, on pose $\langle f|g \rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$.

- 1. Montrer que $\langle \cdot | \cdot \rangle$ est un produit scalaire de E.
- 2. Soit $F = \{ f \in E, f(0) = f(1) = 0 \}$ et $G = \{ f \in E, f'' = f \}$.
 - (a) Montrer que F et G sont orthogonaux.
 - (b) Montrer que $E = F \oplus G$.

Exercice 53 () Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose qu'il existe $P \in K[X]$, annulateur de f, et vérifiant P(0) = 0 et $P'(0) \neq 0$. Montrer que Im f et ker f sont supplémentaires dans E. Que devient le résultat si E est de dimension infinie?

Exercice 54 ()

- 1. Trouver le rayon de convergence R de la série entière de terme général $\sin\left(\frac{1}{\sqrt{n}}\right)x^n$.
- 2. Étudier la série en $x = \pm R$.
- 3. Soit $S(x) = \sum_{n=1}^{+\infty} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$. Étudier la continuité de S (variable réelle).
- 4. Montrer que la limite lorsque x tend vers 1^- de (1-x)S(x) est égale à 0.

Exercice 55 () Soit $a, b \in \mathbb{R}$ et pour $x \in \mathbb{R}$, le déterminant D(x) de la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent x, ceux au-dessus de la diagonale x - a, et les autres x - b.

- 1. Montrer que D est une fonction polynôme de degré au plus 1.
- 2. Calculer D(x) en fonction de a, b et x.

Exercice 56 () Soit deux suites complexes $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ et la série de fonctions $\sum u_n$, où $u_0(x)=a_0$ et, pour $n\geqslant 1$, $u_n(x)=a_n\cos(nx)+b_n\sin(nx)$.

1. Montrer l'existence d'une unique suite complexe $(c_n)_{n\in\mathbb{Z}}$ telle que $\forall x\in\mathbb{R}, u_n(x)=c_n\mathrm{e}^{nx}+c_{-n}\mathrm{e}^{-nx}$.

Montrer que $\sum a_n$ et $\sum b_n$ convergent absolument si et seulement si $\sum c_n$ et $\sum c_{-n}$ convergent absolument.

2. Montrer que $||u_n||_{\infty} = |c_n| + |c_{-n}|$.

Montrer que $\sum u_n$ converge normalement sur \mathbb{R} si et seulement si $\sum a_n$ et $\sum b_n$ converge absolument.

Exercice 57 () On note E le \mathbb{R} -espace vectoriel de fonctions continues de [0,1] dans \mathbb{R} , muni de la norme de la convergence uniforme, et A l'ensemble des $f \in E$ vérifiant f(0) = 0 et $\int_0^1 f(x) dx \ge 1$.

- (a) Montrer que A est une partie fermée de E.
- (b) Montrer que, pour tout $f \in A$, $||f||_{\infty} \ge 1$.