Programme de colles s10 (déterminants, algèbre linéaire)

Du 18-11 au 22-11

Calculs de déterminants

Révisions de première année essentiellement. Points nouveaux :

- 1. Les déterminants de Vandermonde (démonstration à connaître).
- 2. Les déterminants triangulaires par blocs (idem).
- 3. Polynôme caractéristique : définition, premières propriétés (degré, coefficients de degré 0, 1, n-1, cas de matrices triangulaires ; polynôme caractéristique d'une transposée, de matrices semblables).

Algèbre linéaire

Révisions de première année essentiellement. Points nouveaux :

- 1. Espace vectoriel produit : définition. En dimension finie, dimension d'un espace produit.
- 2. Sommes, sommes directes de n sous espaces vectoriels. $\sum_{i=1}^{n} E_i$ est le plus petit sous ev de E contenant chacun des E_i .

Toute famille obtenue par concaténation d'une famille génératrice de chacun des E_i est une famille génératrice de $\sum_{i=1}^n E_i$.

Caractérisation des sommes directes :

- La somme $\sum_{i=1}^{n} E_i$ est directe ssi une famille obtenue par concaténation d'une base de chacun des E_i est une base de la somme. On peut remplacer « une » par « toute ». Base adaptée à une décomposition en somme directe.
- La somme $\sum_{i=1}^{n} E_i$ est directe si et seulement si : $\forall (x_1,...,x_n) \in \prod_{i=1}^{n} E_i$, $\sum_{i=1}^{n} x_i = 0 \Rightarrow x_1 = ... = x_n = 0$.
- Lorsque les E_i sont de dimension finie : $\dim\left(\sum_{i=1}^n E_i\right) \leq \sum_{i=1}^n \dim\left(E_i\right)$, et les E_i sont en somme directe si et seulement si $\dim\left(\sum_{i=1}^n E_i\right) = \sum_{i=1}^n \dim\left(E_i\right)$.

On rappelle que, pour n > 2, le fait que l'intersection des E_i soit réduite à $\{0\}$, ou que les intersections deux à deux soient réduites à $\{0\}$, ne prouve pas que la somme $\sum_{i=1}^{n} E_i$ est directe.

La semaine d'après

Algèbre linéaire