

# Compléments d'algèbre linéaire

## 0 – Machinbidules que tout le monde il doit savoir le faire en moins de 5 minutes...

### Exercice 1

Soit a < b, et  $F = \left\{ f \in C^0(\mathbb{R}, \mathbb{R}) / \int_a^b f(t) dt = 0 \right\}$ , muni des opérations usuelles.

Montrer que (F, +, .) est un  $\mathbb{R}$  – espace vectoriel.

### **Exercice 2**

Soit 
$$F = \{ (5x + 3y, x - 4y, 2x), (x, y) \in \mathbb{R}^2 \}.$$

Montrer que F est un s.e.v. de  $\mathbb{R}^3$ . Déterminer dim F, et donner une base de F.

### **Exercice 3**

Soit E un  $\mathbb{R}$  – espace vectoriel de dimension finie, et  $(f, g) \in \mathcal{L}(E)^2$ .

Montrer que Im  $f \subset \text{Ker } g \text{ si, et seulement si, } g \circ f = 0_{L(E)}$ .

### **Exercice 4**

Les espaces ci – dessous sont munis de leur base canonique.

Déterminer les matrices, relativement à ces bases, des applications linéaires f suivantes :

1. 
$$f: \left(\begin{array}{c} \mathbb{R}^3 \to \mathbb{R}^2 \\ (x, y, z) \mapsto (2x + 3y - z, x - 2y + 4z) \end{array}\right)$$

2. 
$$f: \begin{pmatrix} \mathbb{R}_3[X] \to \mathbb{R}^3 \\ P \mapsto (P(2), P'(1), P(-1)) \end{pmatrix}$$
.

3. 
$$f: \left(\begin{array}{c} \mathbb{R}_{3}[X] \rightarrow & \mathcal{M}_{2}(\mathbb{R}) \\ P & \mapsto \sum_{i=1}^{2} \sum_{j=1}^{2} (P(i) - P'(j)) E_{i,j} \end{array}\right)$$

### **Exercice 5**

Soit 
$$\Phi: \left(\begin{array}{ccc} \mathcal{M}_{2}\left(\mathbb{R}\right) \times \mathbb{R}_{2}\left[X\right] \to \mathbb{R}^{\mathbb{N}} \\ \left(M,P\right) & \mapsto \left(M_{1,1} + P\left(n\right)\right)_{n \in \mathbb{N}} \end{array}\right)$$
. Montrer que  $\Phi$  est une application linéaire.

## I – Révisions d'algèbre linéaire de première année

### Exercice 6

Soient, dans  $\mathbb{R}^3$ , le plan P d'équation z = x - y, et la droite D d'équations x = -y = z.

Donner la matrice dans la base canonique de  $\mathbb{R}^3$  de la projection p de  $\mathbb{R}^3$  sur P parallèlement à D.

### Exercice 7

$$\text{Soit } E = \left\{ \left. u \right. = \left( \left. u_{n} \right. \right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left. / \right. \forall n \in \mathbb{N}, \left. u_{n+3} \right. = \left. u_{n+2} \right. + \left. u_{n+1} \right. + \left. u_{n} \right. \right\}.$$

- 1. Montrer que E est un  $\mathbb{C}$  espace vectoriel de dimension finie égale à 3.
- 2. Soit F le sous ensemble de E constitué des suites telles que  $\lim_{n \to +\infty} u_n = 0$ .

Montrer que F est un sous – espace vectoriel de E.

Quelle est sa dimension? En donner une base.

## **Exercice 8**

Soient E un  $\mathbb{R}$  – espace vectoriel de dimension finie  $n \in \mathbb{N}^*$ , et  $u \in \mathcal{L}(E)$  un endomorphisme nilpotent de E.

On désigne par p l'indice de nilpotence de u.

Montrer que:

$$\frac{n}{n - \operatorname{rg}(u)} \le p \le \operatorname{rg}(u) + 1.$$

### Exercice 9

Soient  $n \in \mathbb{N}^*$ , et  $M \in \mathcal{M}_n$  ( $\mathbb{K}$ ) non inversible. Montrer qu'il existe deux matrices inversibles  $P, Q \in \mathcal{M}_n$  ( $\mathbb{K}$ ), et une matrice nilpotente N, telles que  $N = P^{-1} M Q$ .

### Exercice 10

Soit A une matrice carrée telle que  $A^{2026} = 0$ .

Montrer que pour tout entier n > 0: rg  $(A) = rg(A + A^2 + ... + A^n)$ .

### Exercice 11

On considère le système linéaire 
$$(\Sigma)$$
: 
$$\begin{cases} x + y + z = -1 \\ x + 2y + 3z = 2 \\ x - 4y - z = 0 \end{cases}$$

On a résolu ce système par la méthode du pivot de Gauss, en faisant une seule opération élémentaire (du type  $L_i \leftarrow \alpha L_i + \beta L_j$  par étape, et l'on a représenté à chaque étape les trois plans correspondants.

On a donc obtenu 7 figures, qui sont données ci – dessous.

Les figures ont, malencontreusement, été mélangées.

Reconstituer l'ordre des figures, ainsi que le système à chacune des étapes.

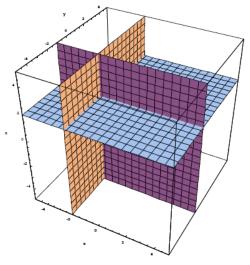


Figure A

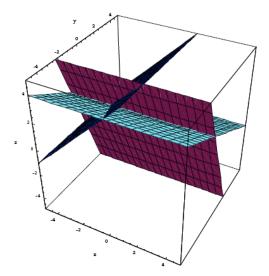


Figure C

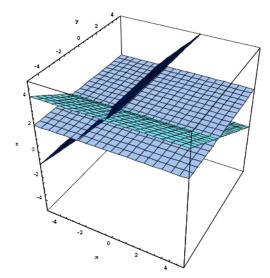


Figure E

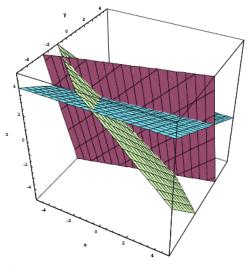


Figure B

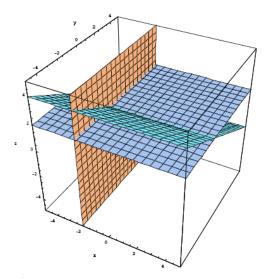


Figure D

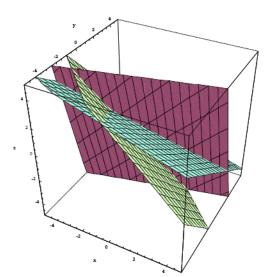


Figure F

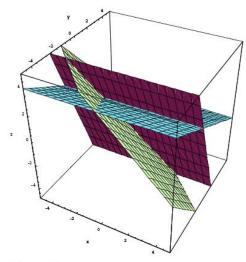


Figure G

### **Exercice 12**

Soient  $(n, p, r) \in (\mathbb{N}^*)^3$ , et  $A \in \mathcal{M}_{n, p}(\mathbb{K})$  une matrice de rang r. On note  $J_r$  la matrice

$$J_r = \begin{pmatrix} I_r & O_{r,p-r} \\ O_{n-r,r} & O_{n-r,p-r} \end{pmatrix}$$

Montrer qu'il existe deux matrices inversibles  $Q \in \mathcal{M}_{_{n}}(\mathbb{K})$  et  $P \in \mathcal{M}_{_{p}}(\mathbb{K})$  telles que  $J_{_{r}} = Q^{-1} A P$ .

 $\underline{\textbf{hint}}$  On pourra introduire l'application linéaire f canoniquement associée à A.

### **Exercice 13**

Soient  $(p,q) \in (\mathbb{N}^*)^2$ ,  $A \in \mathcal{M}_p(\mathbb{K})$ ,  $B \in \mathcal{M}_q(\mathbb{K})$ ,  $C \in \mathcal{M}_{p,q}(\mathbb{K})$ , et O la matrice nulle de  $\mathcal{M}_{p,q}(\mathbb{K})$ .

Soit alors  $M \in \mathcal{M}_{p+q}(\mathbb{K})$  la matrice définie par :  $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$ .

**1.** Montrer que :  $M \in GL_{p+q}(\mathbb{K}) \Rightarrow (A \in GL_p(\mathbb{K}) \text{ et } B \in GL_q(\mathbb{K})).$ 

<u>hint</u> On écrira  $M^{-1}$  sous forme triangulaire par blocs.

2. Montrer inversement que :

$$(A \in GL_p(\mathbb{K}) \text{ et } B \in GL_q(\mathbb{K})) \Rightarrow M \in GL_{p+q}(\mathbb{K}).$$

<u>hint</u> On cherchera une matrice triangulaire par blocs M' telle que M.  $M' = I_{p+q}$ .

### Exercice 14

### Préliminaire

Soit E un  $\mathbb{R}$  – espace vectoriel, et  $f \in \mathcal{L}(E)$ .

On désigne par  $\left.f\right|_{\operatorname{Im}\,f}$  l'endomorphisme induit par  $\left.f\right|$  sur  $\operatorname{Im}\,f$  .

 $\text{Montrer que} \ \ \operatorname{Ker}\left(\left.f_{\,|\,\operatorname{Im}\,f}\right.\right) = \operatorname{Ker}\,f\ \cap\ \operatorname{Im}\,f\ \ , \ \text{et que} \ \ \operatorname{Im}\left(\left.f_{\,|\,\operatorname{Im}\,f}\right.\right) = \operatorname{Im}\left(\left.f\right.^{\,2}\right).$ 

### Enoncé principal

Soient  $n \in \mathbb{N}^*$ , et E un  $\mathbb{R}$  – espace vectoriel de dimension finie égale à 3n.

On considère un endomorphisme  $f \in \mathcal{L}(E)$  tel que  $f^3 = 0_{\mathcal{L}(E)}$  et  $\operatorname{rg}(f) = 2n$ .

- **1.** Montrer que Ker  $f = \text{Im}(f^2)$ .
- **2.** Déterminer une base  $\mathcal{B}$  de E telle que :  $M_{\mathcal{B}}(f) = \begin{pmatrix} O_n & O_n & O_n \\ I_n & O_n & O_n \\ O_n & I_n & O_n \end{pmatrix}$ .

## II – Trace; formes linéaires

### **Exercice 15**

**1.** Montrer qu'il n'existe aucun couple  $(A, B) \in \mathcal{M}_n (\mathbb{K})^2$  tel que  $AB - BA = I_n$ .

## Exercice 17

Soient  $n \in \mathbb{N}^*$ , et  $A, B \in \mathcal{M}_n(\mathbb{K})$ . Notons  $f : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$  l'application linéaire  $X \mapsto A \times B$ .

Démontrer la formule :  $\operatorname{Tr}(f) = \operatorname{Tr}(A) \times \operatorname{Tr}(B)$ .

### Exercice 18

Dans tout cet exercice,  $\mathbb{K} = \mathbb{R}$  ou  $\mathbb{C}$  , et  $n \in \mathbb{N}^*$ .

- **0.** Soit  $A \in \mathcal{M}_n(\mathbb{K})$ . Montrer que l'application  $\Phi_A$  définie par :  $\Phi_A$  :  $\begin{pmatrix} \mathcal{M}_n(\mathbb{K}) \to \mathbb{K} \\ M \mapsto \operatorname{Tr}(AM) \end{pmatrix}$  est une forme linéaire sur  $\mathcal{M}_n(\mathbb{K})$ .
- 1. Réciproquement, soit  $\Phi \in \left(\mathcal{M}_n\left(\mathbb{K}\right)\right)^*$ . Montrer que :  $\exists ! A \in \mathcal{M}_n\left(\mathbb{K}\right) / \Phi = \Phi_A$ .
- **2.** Montrer que, dans tout hyperplan de  $\mathcal{M}_n$  (  $\mathbb{K}$  ) , il existe une matrice inversible.
- 3. Déterminer toutes les formes linéaires  $\Psi$  sur  $\mathcal{M}_n$  ( $\mathbb{K}$ ) telles que :

$$\forall \left(M,N\right) \in \mathcal{M}_{n}\left(\mathbb{K}\right)^{2},\ \Psi\left(MN\right) = \Psi\left(NM\right).$$

## III - Interpolation

## Exercice 19

Soit  $(a, b, c) \in \mathbb{R}^3$  trois réels distincts, et  $P \in \mathbb{R}[X]$ .

Déterminer le reste dans la division euclidienne de P par (X-a)(X-b)(X-c).

On utilisera les polynômes interpolateurs de Lagrange.

## **Exercice 20**

**1.** On pose  $H_0 = 1$  et pour tout entier  $n \in \mathbb{N}^*$ ,  $H_n = \frac{1}{n!} \prod_{k=0}^{n-1} (X - k)$ .

Montrer que pour tout entier naturel n,  $H_n(\mathbb{Z}) \subset \mathbb{Z}$ .

En déduire que le produit de n entiers relatifs consécutifs est divisible par n!.

2. Soit  $P \in \mathbb{C}\left[X\right]$  un polynôme de degré  $n \in \mathbb{N}^*$  . Montrer l'équivalence de :

$$i - P(\mathbb{Z}) \subset \mathbb{Z}$$
.

$$ii$$
 -  $\forall k \in 0, n, P(k) \in \mathbb{Z}$ .

### **Exercice 21**

Soient  $n \in \mathbb{N}$ , E un  $\mathbb{K}$  – espace vectoriel, F un sous – espace vectoriel de E, et  $u_0,...,u_n$  des vecteurs de E.

On définit une application  $P: \mathbb{K} \to E$  par :  $\forall x \in \mathbb{K}, P(x) = \sum_{k=1}^{n} x^k u_k$ . Montrer que, s'il existe n+1

éléments distincts de  $\mathbb{K}$  tels que  $P(x) \in F$ , alors les vecteurs  $u_0, ..., u_n$  appartiennent tous à F.

### **Exercice 22**

Soit  $n \in \mathbb{N}^*$ , et  $P \in \mathbb{R}_n [X]$ . On suppose que P prend des valeurs rationnelles en n+1 rationnels  $(q_k)_{0 \le k \le n}$ .

Montrer que  $P \in \mathbb{Q}$   $_{_n}$  [ X ], autrement dit que les coefficients de P sont rationnels.

### **Exercice 23**

Soient  $n \in \mathbb{N}^*$ ,  $(a_k)_{k \in [1, n]}$  n réels distincts,  $(b_k)_{k \in [1, n]}$  et  $(c_k)_{k \in [1, n]}$  2n réels quelconques.

Montrer qu'il existe un unique polynôme  $P \in \mathbb{R}_{2n-1}[X]$  tel que :

$$\forall k \in [1, n], P(a_k) = b_k \text{ et } P'(a_k) = c_k.$$

## IV - Projecteurs; sommes directes

### **Exercice 24**

Soient  $p \in \mathbb{N}^*$ , E un espace vectoriel de dimension finie  $n \ge 1$ , et  $f_1,...,f_p$  des endomorphismes de E.

On suppose que  $f_1 + f_2 + ... + f_p = \text{Id et } \sum_{i=1}^p \operatorname{rg}(f_i) \le n$ .

Montrer que les  $f_i$  sont des projecteurs orthogonaux, en ce sens que  $f_1 \circ f_2 = 0$  dès que  $i \neq j$ .

On pourra d'abord montrer que E est somme directe des images des  $f_i$ .

### **Exercice 25**

Soient E un  $\mathbb{K}$  – espace vectoriel, et  $f \in \mathcal{L}(E)$  vérifiant :  $f^3 = f^2 + 2f$  . On pose :

$$E_1 = \text{Ker } f$$
,  $E_2 = \text{Ker } (f + Id_E)$ , et  $E_3 = \text{Ker } (f - 2Id_E)$ .

**1.** Montrer que  $E_1 \oplus E_2 \oplus E_3 = E$ .

Pour  $(i, j, k) \in [1, 3]^3$  distincts, soit  $p_i$  la projection sur  $E_i$  parallèlement à  $E_j \oplus E_k$ .

- **2.** Exprimer f en fonction des  $(p_i)_{i \in [1,3]}$ .
- 3. En déduire qu'il existe des suites réelles  $(a_n)_{n \in \mathbb{N}^*}$ ,  $(b_n)_{n \in \mathbb{N}^*}$ , et  $(c_n)_{n \in \mathbb{N}^*}$  telles que :

$$\forall n \in \mathbb{N}^*, f^n = a_n p_1 + b_n p_2 + c_n p_3.$$

**4.** Montrer alors qu'il existe des suites  $(\alpha_n)_{n \in \mathbb{N}^*}$ ,  $(\beta_n)_{n \in \mathbb{N}^*}$ , et  $(\chi_n)_{n \in \mathbb{N}^*}$  telles que :

$$\forall n \in \mathbb{N}^*, f^n = \alpha_n \operatorname{Id}_E + \beta_n f + \chi_n f^2,$$

et déterminer ces suites.

### Exercice 26

Soient E un  $\mathbb{C}$  – espace vectoriel de dimension finie, et  $f \in \mathcal{L}(E)$  vérifiant :  $f^3 = Id_E$ .

- 1. Montrer que : Ker  $(f Id_E) \oplus \text{Ker} (f j Id_E) \oplus \text{Ker} (f j^2 Id_E) = E$ .
- 2. En déduire qu'il existe une base de E dans laquelle la matrice de f est diagonale.

#### Exercice 27

Soient 
$$E = \mathbb{K}_3 [X]$$
,  $F = \{ P \in E, P(0) = P(1) = P(2) = 0 \}$ ,

$$G = \{ P \in E, P(1) = P(2) = P(3) = 0 \}, H = \{ P \in E, P(X) = P(-X) \}.$$

- **1.** Montrer que  $F \oplus G = \{ P \in E, P(1) = P(2) = 0 \}.$
- **2.** Montrer que  $F \oplus G \oplus H = E$ .

### Exercice 28

Soient  $F_1$ ,  $F_2$ ,  $F_3$  trois sous – espaces vectoriels d'un espace vectoriel E.

- **1.** Montrer que la somme  $F_1 \oplus F_2 \oplus F_3$  est directe si et seulement si  $F_1 \cap F_2 = \{0\}$  et  $(F_1 + F_2) \cap F_3 = \{0\}$ .
- 2. Généraliser.

### **Exercice 29**

Soit  $(a_k)_{k \in [0, n]} \in \mathbb{R}^{n+1}$  n+1 réels **distincts**. Montrer que :

$$\exists ! (\lambda_k)_{k \in [0, n]} \in \mathbb{R}^{n+1} / \forall P \in \mathbb{R}_n [X], \sum_{k=0}^n \lambda_k P(a_k) = \int_0^1 P(t) dt.$$

On donnera si possible deux démonstrations : l'une utilisant la base des polynômes

interpolateurs de Lagrange, et l'autre l'inversibilité des matrices de Vandermonde.

#### Exercice 30

Soient E un  $\mathbb{K}$  – espace vectoriel de dimension finie n, et  $\mathcal{B} = (e_1, ..., e_n)$  une base de E.

Pour  $i \in [1, n]$ , on note  $F_i = \{u \in \mathcal{L}(E), \operatorname{Im}(u) \subset \operatorname{Vect}(e_i)\}$ .

- 1. Caractériser matriciellement les éléments de  $F_i$ .
- **2.** Montrer que  $F_1 \oplus F_2 \oplus ... \oplus F_n = \mathcal{L}(E)$ .

### **Exercice 31**

Soient E un  $\mathbb{K}$  – ev, et  $F_1, ..., F_n$  des sous – espaces vectoriels de E tels que  $F_1 + F_2 + ... + F_n = E$ .

 $\text{Montrer qu'il existe des sous - ev } G_1 \subset F_1 \text{ , } G_2 \subset F_2 \text{ , ..., } G_n \subset F_n \text{ tels que } G_1 \oplus G_2 \oplus ... \oplus G_n = E \text{ .}$ 

### **Exercice 32**

Soient E un  $\mathbb{K}$  - ev,  $E_1$ , ...,  $E_n$  des sous - espaces vectoriels de E tels que  $E_1 \oplus E_2 \oplus ... \oplus E_n = E$ , et F un autre sous - espace vectoriel de E. Pour tout  $i \in [1, n]$ , on pose  $F_i = E_i \cap F$ .

- 1. Montrer que la somme  $G = F_1 + F_2 + ... + F_n$  est directe.
- **2.** Comparer F et G.

### **Exercice 33**

Soient E un  $\mathbb{K}$  – espace vectoriel,  $E_1, ..., E_n$  des sous – espaces vectoriels de E tels que

$$E_1 \oplus E_2 \oplus ... \oplus E_n = E$$
. Soit, pour tout  $i \in [1, n]$ ,  $u_i \in \mathcal{L}(E_i)$ .

- 1. Montrer qu'il existe un endomorphisme  $u \in \mathcal{L}(E)$  tel que pour tout i,  $u_i = u_{|E_i|}$ .
- **2.** Montrer qu'alors Ker  $u = \text{Ker } u_1 \oplus \text{Ker } u_2 \oplus ... \oplus \text{Ker } u_n \text{ et } \text{Im } u = \text{Im } u_1 \oplus \text{Im } u_2 \oplus ... \oplus \text{Im } u_n$ .

### **Exercice 34**

Soient E un  $\mathbb{K}$  – espace vectoriel, et  $p_1, ..., p_n$  des projecteurs de E tels que

$$\forall (i, j) \in [1, n^{-2}, p_i \circ p_j = p_i \circ p_i, \text{ et } p_1 + p_2 + ... + p_n = E.$$

- **1.** Montrer que pour tout  $i \in [1, n]$ , rg  $p_i = \text{Tr } p_i$ .
- **2.** Montrer que  $E = \operatorname{Im} p_1 \oplus \operatorname{Im} p_2 \oplus ... \oplus \operatorname{Im} p_n$ .

### **Exercice 35**

Soit E le  $\mathbb C$  – espace vectoriel des applications de  $\mathbb C$  dans  $\mathbb C$ . On note  $j=\mathrm{e}^{\frac{2\,i\,\pi}{3}}$ . On pose

$$F_1 = \left\{ f \in E / \forall z \in \mathbb{C}, f(jz) = f(z) \right\},\$$

$$F_{\,2} \,=\, \left\{\,\, f \,\in\, E \,\,/\,\, \forall \,\, z \,\in\, \mathbb{C} \,\,,\,\, f\,\left(\,j\,z\,\right) \,=\, j\,\,f\,\left(\,z\,\right)\,\right\},\, \mathrm{et}$$

$$F_{3} = \left\{ f \in E / \forall z \in \mathbb{C}, f(jz) = j^{2}f(z) \right\}.$$

- 1. Montrer que  $F_1 \oplus F_2 \oplus F_3 = E$ .
- 2. Généraliser.