

DM N°2- à rendre la semaine du 03/11

Ce sujet comporte 8 pages, et est constitué de deux problèmes indépendants.

Problème I – Matrices semblables à leur transposée

Dans tout le problème, n désigne un entier supérieur ou égal à 2. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre n et $\mathcal{M}_n(\mathbb{C})$ l'ensemble des matrices carrées complexes d'ordre n.

On note A^{T} la matrice transposée d'une matrice A.

Le but de ce problème est de montrer que toute matrice A appartenant à $\mathcal{M}_n(\mathbb{R})$ est semblable à sa transposée.

Partie I – Questions préliminaires

- 1. Soient E un \mathbb{R} espace vectoriel de dimension n, \mathcal{U} et \mathcal{V} deux bases de E. On note P la matrice de passage de \mathcal{U} à \mathcal{V} .
 - **a.** Soient f un endomorphisme de E, A sa matrice dans la base \mathcal{U} et B sa matrice dans la base \mathcal{V} . Exprimer A en fonction de B, de P et de P^{-1} (On ne demande pas de démonstration).
- **b.** Soient M et N deux matrices appartenant à $\mathcal{M}_n(\mathbb{R})$; on rappelle que M est dite semblable à N lorsqu'il existe une matrice inversible Q appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $M=QNQ^{-1}$. Montrer que si M est semblable à N, alors N est semblable à M. On dit pourra donc dire désormais, de façon abrégée, que « M et N sont semblables ».
- c. Soient A, B et C trois matrices appartenant à $\mathcal{M}_n(\mathbb{R})$. On suppose que A est semblable à B et que B est semblable à C. Montrer que A et C sont semblables. Montrer aussi que A^T et B^T sont semblables.
- **d.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A est semblable à une matrice diagonale, A et A^T sont semblables.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose $P(X) = \det(X I_n A)$.

Montrer que P est un polynôme de degré n. En déduire qu'il existe un nombre fini de complexes z tels que z $I_n - A$ soit non inversible.

3. Soient A et B deux matrices appartenant à $\mathcal{M}_n(\mathbb{R})$. On suppose que ces deux matrices, considérées comme éléments de $\mathcal{M}_n(\mathbb{C})$, sont semblables : il existe donc $R \in \mathcal{GL}_n(\mathbb{C})$ telle que $B = R^{-1}AR$, et l'on pose $P = \operatorname{Re}(R)$, $Q = \operatorname{Im}(R)$ (matrices dont les coefficients sont respectivement égaux à la partie réelle, et à la

partie imaginaire, de ceux de R).

- **a.** Montrer, à l'aide de **2.**, qu'il existe un nombre fini de complexes z pour lesquels la matrice (P + iQ) + zQ est non inversible.
- **b.** En déduire l'existence d'un réel x tel que P + x Q est inversible.
- **c.** Montrer que les matrices A et B, considérées comme éléments de $\mathcal{M}_n(\mathbb{R})$, sont semblables.

4. Cet exemple est sans influence sur la suite du problème

On considère la matrice
$$A$$
 de $\mathcal{M}_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 7 & 4 & 2 \\ -2 & 0 & 0 \\ -4 & -3 & 0 \end{pmatrix}$.

On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A .

Montrer qu'il existe une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 telle que la matrice de f dans la base \mathcal{B} soit la

matrice
$$T$$
 donnée par : $T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Quelle est la matrice de f dans la base \mathcal{B} ' = $\left(e_1, e_3, e_2\right)$?

Conclure.

Partie II – Cas des endomorphismes nilpotents

On considère une matrice $A \in \mathcal{M}_n(\mathbb{C})$, et l'on note f l'endomorphisme de \mathbb{C}^n dont la matrice dans la base canonique est A. On suppose f nilpotent. On note alors p son indice de nilpotence, ie l'unique entier $p \ge 1$ tel que $f^{p} = 0$ et $f^{p-1} \ne 0$.

1. Soit x un élément de \mathbb{C}^n tel que $f^{p-1}(x) \neq 0$.

Montrer que la famille
$$\{x, f(x), f^2(x), ..., f^{p-1}(x)\}$$
 est libre dans \mathbb{C}^n .

En déduire que $p \le n$.

- **2.a.** On suppose que p = 1. Montrer qu'alors A et $^t A$ sont semblables.
 - **b.** On suppose que p = n. Soit x un élément de \mathbb{C}^n tel que $f^{n-1}(x) \neq 0$.

Déterminer la matrice de f dans la base $(x, f(x), f^2(x), ..., f^{n-1}(x))$, et sa matrice dans la

base
$$(f^{n-1}(x), f^{n-2}(x), ..., f(x), x)$$
.

En déduire que A est semblable à A^{T} .

Dans la suite de cette partie, on considère le cas où 1 .

On considère un élément x de \mathbb{C}^n tel que $f^{p-1}(x) \neq 0$. On pose $u_p = x$, $u_{p-1} = f(x)$, ..., $u_1 = f^{p-1}(x)$, et on complète la famille libre $(u_1, u_2, ..., u_p)$ en une base $(u_1, u_2, ..., u_n)$ de \mathbb{C}^n .

On note U la matrice de f sur cette base, et P la matrice carrée de taille n dont la k – ième ligne est égale à la première ligne

de U^{k-1} , et ce pour tout entier k compris entre 1 et n.

- 3. Montrer que les lignes de cette matrice P, à partir de la p+1 ème, sont nulles. Que peut – on en déduire quant au rang de P?
- **4.** Pour j et k entre 1 et p, préciser $f^k\left(u_j\right)$ suivant que k < j, k = j ou k > j. En déduire les p premiers termes de la k ième ligne de p. Montrer que la matrice p est de rang p.
- **5.** Soit g l'endomorphisme de \mathbb{C}^n admettant P pour matrice dans la base $\left(u_1, u_2, \dots, u_n\right)$ de \mathbb{C}^n , et soit W le sous espace vectoriel de \mathbb{C}^n engendré par $\left(u_1, u_2, \dots, u_p\right)$.
 - a. Montrer que pour tout u de W, on a g(v) = v. En déduire que W et le noyau de g sont deux sous – espaces supplémentaires dans \mathbb{C}^n .
 - **b.** Montrer que ces deux sous espaces sont stables par f (On rappelle qu'un sous espace F d'un espace vectoriel E est dit stable par un endomorphisme φ de E si l'on a: φ (F) \subset F).
- **6.** Montrer, par récurrence sur n, que toute matrice nilpotente $A \in \mathcal{M}_n(\mathbb{C})$ est semblable à sa transposée.

Partie III – Cas général.

Dans cette partie, on revient au cas général : A est donc une matrice quelconque de $\mathcal{M}_n(\mathbb{C})$, et l'on note f l'endomorphisme de \mathbb{C}^n dont la matrice dans la base canonique de \mathbb{C}^n est égale à A.

- 1. Soient G et H deux sous espaces vectoriels supplémentaires dans \mathbb{C}^n , stables par f (ie $f(G) \subset G$ et $f(H) \subset H$). On note $(u_1, u_2, ..., u_p)$ une base de G et $(u_{p+1}, u_{p+2}, ..., u_n)$ une base de H. Soit M la matrice de f dans la base $(u_1, u_2, ..., u_n)$.
 - **a.** Montrer que M est de la forme : $M = \begin{pmatrix} B & O \\ O & C \end{pmatrix}$, où $B \in \mathcal{M}_p(\mathbb{C})$, et $C \in \mathcal{M}_{n-p}(\mathbb{C})$; on précisera la taille des matrices nulles intervenant dans M.
 - **b.** Montrer que l'endomorphisme induit par f sur G: $g: \begin{pmatrix} G \to G \\ x \mapsto f(x) \end{pmatrix}$ est bien défini, et admet pour matrice dans la base $\begin{pmatrix} u_1, u_2, ..., u_p \end{pmatrix}$ de G la matrice B.
- **2.** On considère un complexe λ . On note : $g = f \lambda \operatorname{Id}_{\mathbb{C}^n}$. Soit $H = \left\{ x \in \mathbb{C}^n , \exists n_x \in \mathbb{N}, g^{n_x} (x) = 0 \right\}$.

- **a.** Montrer que H est un sous espace vectoriel de \mathbb{C}^n . On note m la dimension de H.
- **b.** Montrer que H est stable par g.

On note alors h l'endomorphisme induit par g sur H, défini par : $h: \begin{pmatrix} H \to H \\ x \mapsto g(x) \end{pmatrix}$

- **c.** Montrer que *h* est nilpotent.
- **d.** En déduire que $h^m = 0$.

On suppose par récurrence que toute matrice carrée de taille comprise entre 1 et n-1 est semblable à sa transposée.

- 3. On suppose ici qu'il existe deux sous espaces vectoriels F et G, stables par f et supplémentaires dans \mathbb{C}^n , aucun de ces deux sous-espaces n'étant réduit au vecteur nul. En considérant les endomorphismes induits par f sur F et sur G, montrer que A est semblable à A^T .
- **4.** On suppose ici qu'il existe $\lambda \in \mathbb{C}$ tel que $f \lambda$ Id \mathbb{C}^n soit nilpotent. Montrer que A est semblable à sa transposée.

On suppose désormais que pour tout $\lambda \in \mathbb{C}$, $f - \lambda \operatorname{Id}_{\mathbb{C}^n}$ n'est pas nilpotent.

5. Montrer que la famille $(f^k)_{k \in \mathbb{N}}$ n'est pas libre.

Il existe donc un plus petit entier p tel que la famille $\left(f^{k}\right)_{k\in[0,p]}$ soit liée. On considère des complexes $a_{0},a_{1},...,a_{p}$,

avec a_p non nul, tels que $\sum_{k=0}^p a_k f^k = 0$. On note alors P le polynôme $P = \sum_{k=0}^p a_k X^k = 0$. On considère une racine λ

de p, et l'on note m sa multiplicité : le polynôme P s'écrit donc sous la forme $P = (X - \lambda)^m Q(X)$, où

 $Q = \sum_{k=0}^{p-m} b_k X^k$ est un polynôme n'admettant pas λ pour racine. On pose enfin $g = (f - \lambda Id)^m$, et $h = \sum_{k=0}^{p-m} b_k f^k$.

On remarque que l'on a : $g \circ h = 0$.

6. Montrer que Ker g et Ker h sont tous les deux stables par f, et non égaux à \mathbb{C}^n .

7.** Montrer que Ker $g \oplus \text{Ker } h = \mathbb{C}^n$. Il n'est pas conseillé de traiter cette question : admettre.

8. En déduire que A est semblable à sa transposée.

PROBLÈME 2

Ce problème aborde l'étude d'une transformation intégrale utilisée pour le traitement des signaux analogiques : la transformation de Fourier. Celle-ci permet de modéliser le comportement fréquentiel d'un signal. La partie 1 étudie quelques propriétés de la transformée de Fourier d'un signal analogique continu par morceaux et intégrable sur \mathbb{R} . La partie 2 aboutit à la formule d'inversion de Fourier qui permet de retrouver un signal à partir de sa transformée de Fourier. La partie 3 traite le cas particulier d'un signal dont le spectre des fréquences est limité à [-1/2,1/2]. La partie 4 étudie le cas particulier dun signal périodique. Le résultat auquel elle aboutit est utilisé dans la partie 5 pour démontrer le théorème de léchantillonnage de Shannon.

On note

- E_{cpm} le \mathbb{C} espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{C}$ continues par morceaux sur \mathbb{R} et intégrables sur \mathbb{R} ;
- S le \mathbb{C} -espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{C}$ continues sur \mathbb{R} telles que $\forall k \in \mathbb{N}$, la fonction $x \mapsto x^k f(x)$ est bornée sur \mathbb{R} .

1 Transformation de Fourier

Pour toute fonction $f \in E_{cpm}$, on considère la fonction $\mathcal{F}(f)$ (transformée de Fourier de f) définie par

$$\forall \xi, \ \mathcal{F}(f)(\xi) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi it\xi} \ dt$$

1.A On considère la fonction φ définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ \varphi(x) = \begin{cases} 1 & \text{si } x \in [-\frac{1}{2}, \frac{1}{2}] \\ 0 & \text{sinon} \end{cases}$$

Justifier que φ appartient à E_{cpm} et calculer sa transformée de Fourier $\mathcal{F}(\varphi)$.

1.B On considère la fonction ψ définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}^*, \ \psi(x) = \frac{\sin(\pi x)}{\pi x} \text{ et } \psi(0) = 1$$

- **1.B.1** Montrer qu'il existe des fonctions f_n , que l'on déterminera, telles que pour tout $x \in \mathbb{R}$, $\psi(x) = \sum_{n=1}^{+\infty} f_n(x)$. En déduire que ψ est de classe C^{∞} sur \mathbb{R} .
- 1.B.2 Prouver

$$\forall n \in \mathbb{N}, \ \int_{n}^{n+1} |\psi(x)| \ dx \ge \frac{2}{\pi^{2}(n+1)}$$

En déduire que ψ n'appartient pas à E_{cpm} .

- 1.C Soit $f \in E_{cpm}$. montrer que la fonction $\mathcal{F}(f)$ est continue sur \mathbb{R} .
- 1.D Soit $f \in \mathcal{S}$.
 - **1.D.1** Justifier que, pour tout entier naturel n, la fonction $x \mapsto x^n f(x)$ est intégrable sur \mathbb{R} .
 - 1.D.2 Démontrer que la fonction $\mathcal{F}(f)$ est de classe C^{∞} sur \mathbb{R} et que

$$\forall n \in \mathbb{N}, \ \forall \xi \in \mathbb{R}, \ (\mathcal{F}(f))^n(\xi) = (-2i\pi)^n \int_{-\infty}^{+\infty} t^n f(t) e^{-2i\pi\xi} \ dt$$

- **1.E** On considère la fonction θ : $\mathbb{R} \to \mathbb{C}$ définie par $\theta(x) = \exp(-\pi x^2)$, pour $x \in \mathbb{R}$.
- 1.E.1 justifier que $\theta \in \mathcal{S}$ et que $\mathcal{F}(\theta)$ est solution de l'équation différentielle

$$\forall \xi \in \mathbb{R}, \ y'(\xi) = -2\pi \xi y(\xi)$$

1.E.2 Etablir que $\mathcal{F}(\theta) = \theta$. On admettra que $\int_{-\infty}^{+\infty} \theta(x) dx = 1$.

2 Formule d'inversion de Fourier

Soit $f \in \mathcal{S}$, on suppose que $\mathcal{F}(f)$ est intégrable sur \mathbb{R} . Pour tout entier naturel non nul n, on pose

$$I_n = \int_{-\infty}^{+\infty} \mathcal{F}(f)(\xi)\theta\left(\frac{\xi}{n}\right) d\xi \qquad J_n = \int_{-\infty}^{+\infty} f\left(\frac{t}{n}\right) \mathcal{F}(\theta)(t) dt$$

- **2.A** Montrer que $\lim_{n\to+\infty} I_n = \int_{-\infty}^{+\infty} \mathcal{F}(f)(\xi) \ d\xi$.
- **2.B** Calculer $\lim_{n\to+\infty} J_n$.
- **2.**C Prouver que $\forall n \in \mathbb{N}^*, I_n = J_n$. On admettra la formule de Fubini :

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) \theta \left(\frac{\xi}{n} \right) e^{-2i\pi \xi t} \ d\xi \right) \ dt = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) \theta \left(\frac{\xi}{n} \right) e^{-2i\pi \xi t} \ dt \right) \ d\xi$$

2.D Démontrer que $f(0) = \int_{-\infty}^{+\infty} \mathcal{F}(f)(\xi) \ d\xi$. En déduire en utilisant la fonction $h: t \mapsto f(x+t)$, que

$$\forall x \in \mathbb{R}, \ f(x) = \int_{-\infty}^{+\infty} \mathcal{F}(f)(\xi) e^{2i\pi x \xi} \ d\xi \tag{2.1}$$

Cette formule permet de reconstruire le signal f à partir de sa transformée de Fourier $\mathcal{F}(f)$.

2.E Une application Démontrer que $\forall x \in \mathbb{R}, \ \int_{-\infty}^{+\infty} \frac{e^{2i\pi\xi x}}{1+(2\pi\xi)^2} \ d\xi = \frac{1}{2}e^{-|x|}.$

3 Transformée de Fourier à support compact

Soit f une fonction de S dont la transformée de Fourier F(f) est nulle en dehors du segment [-1/2, 1/2]. D'après la relation (2.1), on a

$$\forall x \in \mathbb{R}, \ f(x) = \int_{-1/2}^{1/2} \mathcal{F}(f)(\xi) e^{2i\pi x \xi} \ d\xi$$

- **3.A** Démontrer que $\mathcal{F}(f)$ est de classe C^{∞} sur \mathbb{R} et que $\mathcal{F}(f) \in \mathcal{S}$. En déduire que f est de classe C^{∞} sur \mathbb{R} .
- 3.B Prouver que

$$\forall (x, x_0) \in \mathbb{R}^2, \ \sum_{k=0}^{+\infty} \frac{(x - x_0)^k}{k!} \int_{-1/2}^{1/2} (2i\pi\xi)^k \mathcal{F}(f)(\xi) e^{2i\pi x_0 \xi} \ d\xi = f(x)$$

3.C On suppose que f est nulle en dehors d'un segment [a, b]. Montrer que f = 0.

4 Cas de fonctions périodiques

Pour tout entier naturel n, on note S_n la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ S_n(x) = \sum_{k=-n}^n e^{2\pi i k x}$$

Soit $f~:~\mathbb{R}\to\mathbb{C}$ une fonction de classe C^∞ sur \mathbb{R} et 1-périodique. On considère :

- la fonction g définie sur [-1,1] par

$$\forall x \in]-1, 1[\setminus \{0\}, \ g(x) = \frac{f(x) - f(0)}{\sin(\pi x)}$$
 $g(0) = 0$ $g(1) = g(-1) = -g(0)$

la suite de complexes (c_n(f))_{n∈Z} définie par

$$\forall n \in \mathbb{Z}, \ c_n(f) = \int_{-1/2}^{1/2} f(x)e^{-2\pi i nx} \ dx$$

4.A

- **4.A.1** Montrer que la fonction g est de classe C^1 sur $]-1,1[\setminus\{0\}]$ et continue sur]-1,1[.
- **4.A.2** Calculer la limite de g' en 0. En déduire que g est de classe C^1 sur]-1,1[. On admet dorénavant que g est de classe C^1 sur [-1,1].
- **4.B** Soit $n \in \mathbb{N}$. Calculer l'intégrale $\int_{-1/2}^{1/2} S_n(x) dx$.
- 4.C Démontrer que

$$\forall n \in \mathbb{N}, \ \forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \setminus \{0\}, \ S_n(x) = \frac{\sin((2n+1)\pi x)}{\sin(\pi i x)}$$

4.D Justifier que

$$\forall n \in \mathbb{N}^*, \sum_{k=-n}^n c_k(f) = f(0) + \int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) dx$$

4.E A l'aide d'une intégration par parties, montrer l'existence d'un réel C tel que

$$\forall n \in \mathbb{N}, \ \left| \int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) \ dx \right| \le \frac{C}{2n+1}$$

4.F Soit $t \in [-1/2, 1/2]$. On considère la fonction G_t définie sur [-1/2, 1/2] par

$$\forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right], \ G_t(x) = f'(x+t)\sin(\pi x) - (f(x+t) - f(t))\pi\cos(\pi x)$$

Etablir l'existence d'un réel D, indépendant de x et de de t, tel que

$$\forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right], \ \forall t \in \left[-\frac{1}{2}, \frac{1}{2} \right], \ |G_t(x)| \le Dx^2$$

4.G Prouver l'existence d'un réel E tel que

$$\forall t \in \left[-\frac{1}{2}, \frac{1}{2} \right], \left| f(t) - \sum_{k=-n}^{n} c_k(f) e^{2i\pi kt} \right| \le \frac{E}{2n+1}$$
 (4.1)

On pourra introduire la fonction $h_t : x \mapsto f(x+t)$.

5 Formule d'échantillonage de Shannon

Soit $f \in \mathcal{S}$ dont la transformée de Fourier $\mathcal{F}(f)$ est nulle en dehors du segment [-1/2, 1/2], on pose

$$\forall k \in \mathbb{Z}, \ \forall x \in \mathbb{R}, \ \psi_k(x) = \psi(x+k)$$
 (5.1)

où ψ est définie à la question 1.B.

- **5.A** Justifier que $\forall n \in \mathbb{N}, (\mathcal{F}(f))^{(n)}(\frac{1}{2}) = (\mathcal{F}(f))^{(n)}(-\frac{1}{2}) = 0.$
- 5.B Soit h la fonction définie sur \mathbb{R} , qui est 1-périodique et qui vaut $\mathcal{F}(f)$ sur l'intervalle [-1/2, 1/2]. Montrer que h est de classe C^{∞} sur \mathbb{R} .
- 5.C A l'aide de l'inégalité (4.1), prouver l'existence d'une suite de nombres complexes $(d_k)_{k\in\mathbb{Z}}$ telle que la suite de fonctions $\left(x\mapsto \sum_{k=-n}^n d_k e^{2\pi i kx}\right)_{n\in\mathbb{N}}$ converge uniformément vers $\mathcal{F}(f)$ sur [-1/2,1/2].
- 5.D Démontrer que la suite de fonctions $\left(\sum_{k=-n}^n d_k \psi_k\right)_{n \in \mathbb{N}}$ converge uniformément vers f sur \mathbb{R} . On notera symboliquement $f = \sum_{k=-\infty}^{+\infty} d_k \psi_k$.
- **5.E** Etablir que $\forall j \in \mathbb{Z}$, $f(-j) = d_j$. L'égalité $f = \sum_{k=-\infty}^{+\infty} f(-k)\psi_k$ traduit la reconstruction du signal f à partir de l'échantillon $(f(k))_{k\in\mathbb{Z}}$.