

Programme de colles S3

Du 06-10 au 10-10

Suites et séries de fonctions

I Modes de convergence d'une suite ou d'une série de fonctions

- 1. Convergence simple d'une suite ou d'une série de fonctions
- 2. Convergence uniforme sur un domaine
- 3. Convergence normale d'une série de fonctions sur un intervalle
- 4. Lien entre ces trois notions

La convergence uniforme implique la convergence simple ; pour une série de fonctions, la convergence normale implique la convergence uniforme. Toute implication réciproque est fausse.

II Applications de la convergence uniforme

1. Convergence uniforme, et continuité de la limite d'une suite de fonctions continues.

(remarque : la convergence uniforme <u>sur tout segment de</u> *I* suffit). Version série de fonctions.

2. Interversion / limite (suites de fonctions)

et intégration terme à terme sur un segment, pour les séries de fonctions.

3. Dérivation de la limite (pour les suites de fonctions)

et dérivation terme à terme, pour les séries de fonctions. Version C^p de ces résultats (démonstration non exigible cette semaine). Là aussi, s'il y a convergence uniforme sur tout segment, ça tourne encore.

4. Théorème de la double limite

Si une série de fonctions $\sum f_n$ de fonctions définies sur I converge uniformément sur I, et si, pour tout $n \in \mathbb{N}$, f_n

admet une limite finie ℓ_n en une borne a (éventuellement infinie) de I, alors la série $\sum_{n\geq 0}\ell_n$ converge, la somme de la

série $\sum f_n$ admet une limite en a, et: $\sum_{n=0}^{+\infty} f_n(x) \xrightarrow[x \to a]{} \sum_{n=0}^{+\infty} \ell_n$.

Questions de cours:

- Si $(f_n)_n$ converge uniformément vers f sur I et si pour tout $n \in \mathbb{N}$, f_n est continue sur I, alors f_n est continue sur I.
- Si pour tout $n \in \mathbb{N}$, f_n est de classe C^1 sur I, si $(f_n)_n$ converge simplement vers f sur I et si converge uniformément sur I, alors f est de classe C^1 sur I et $f' = \lim_{n \to \infty} (f_n')_n$.
- Si $\sum f_n$ converge normalement sur I, alors $\sum f_n$ converge uniformément sur I.
- Si $(f_n)_n$ converge uniformément vers f sur [a, b] et si pour tout $n \in \mathbb{N}$, f_n est continue sur [a, b],

alors
$$\int_{a}^{b} f = \lim_{n \to +\infty} \int_{a}^{b} f_{n}$$
.