

Programme de colles S5

Du 03 - 11 au 07 - 11

Intégration

0. Intégration sur un segment

Révisions de première année. Extension aux fonctions continues par morceaux.

I. Intégrales impropres

1. Notion d'intégrale généralisée

2. Propriétés

Invariance de nature par "changement de borne propre". Cas des fonctions à valeurs dans $\mathbb C$. Lorsque la fonction intégrée est continue, expression en termes de primitives. Relation de Chasles ; linéarité ; relation d'ordre.

3. Quelques intégrales de référence

Intégrales du type
$$\int\limits_0^+ \int\limits_0^+ {\rm e}^{-\lambda\,t} \,{\rm d}t$$
; $\int\limits_0^1 \,{\rm ln}\; t \,{\rm d}t$; intégrales de Riemann.

4. Intégrations par parties et changements de variables

II. Fonctions intégrables sur un intervalle ; critères de convergence

1. Fonctions intégrables sur un intervalle

Définition ; notation
$$\int f$$

2. Théorèmes de comparaison pour les intégrales de fonctions positives

3. Convergence absolue et semi – convergence

La convergence absolue entraîne la convergence, la réciproque est fausse ; cas de l'intégrale de Dirichlet.

4. Quelques critères supplémentaires

Intégrales faussement impropres ; cas de fonctions bornées sur un intervalle borné.

III. Intégration terme à terme ; intégrales à paramètre

A - Convergence dominée et intégration terme à terme

1. Le théorème de convergence dominée

- a. Version suites de fonctions
- b. Version séries de fonctions

A utiliser lorsque le théorème d'intégration terme à terme qui va suivre en 2. ne s'applique pas (penser à des séries alternées non absolument convergentes).

- c. Théorème de convergence dominée à paramètre continu.
- 2. Théorème d'intégration terme à terme

B – Régularité d'une intégrale à paramètre

1. Théorème de continuité d'une intégrale à paramètre

Version domination globale, version domination locale.

2. Théorème de dérivation sous le signe \int (Leibniz).

Version
$$C^1$$
, version C^1 avec domination locale, version C^p .

On doit pouvoir appliquer ce théorème à la fonction Gamma d'Euler.