

Calculs de déterminants

Dans tout ce chapitre, \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

I Déterminant d'une matrice carrée

1. "Définition" du déterminant d'une matrice carrée

Etant donnés n vecteurs colonnes $C_1, C_2, ..., C_n \in \mathcal{M}_{n,1}(\mathbb{K})$, on notera ici $(C_1 | C_2 | , ..., | C_n)$ la matrice carrée de $\mathcal{M}_n(\mathbb{K})$ dont les colonnes sont $C_1, C_2, ..., C_n$.

Définition (déterminant d'une matrice carrée)

On admet qu'il existe une unique application $f:\mathcal{M}_n\left(\mathbbm{K}\right)\mapsto\mathbbm{K}$ vérifiant les trois propriétés suivantes :

- f est linéaire par rapport à chacune des colonnes de sa variable :

 $\text{pour tout } \left(\left. C_1, C_2, ..., C_n \right. \right) \in \left(\left. \mathcal{M}_{n,1} \left(\left. \mathbb{K} \right. \right) \right)^n, \text{ pour tout } i \in \left\{ 1, ..., n \right\}, \text{ pour tout } D_i \in \mathcal{M}_{n,1} \left(\left. \mathbb{K} \right. \right) \text{ et pour tout } \lambda \in \mathbb{K},$

$$\begin{split} f\left(\left.C_{1} \mid C_{2} \mid \ldots \mid C_{i-1} \mid C_{i} \right. + \lambda \left.D_{i} \mid C_{i+1} \mid \ldots \mid C_{n}\right) = f\left(\left.C_{1} \mid C_{2} \mid \ldots \mid C_{i-1} \mid C_{i} \mid C_{i+1} \mid \ldots \mid C_{n}\right) \\ + \lambda \left.f\left(\left.C_{1} \mid C_{2} \mid \ldots \mid C_{i-1} \mid D_{i} \mid C_{i+1} \mid \ldots \mid C_{n}\right)\right. \end{split}$$

ii - f est antisymétrique par rapport aux colonnes de sa variable :

 $\text{pour tout } \left(\left. C_1, C_2, ..., C_n \right. \right) \in \left(\left. \mathcal{M}_{n,1} \left(\left. \mathbb{K} \right. \right) \right)^n, \text{pour tout } \left(\left. i, j \right. \right) \in \left\{ 1, ..., n \right\}^2, \; i \neq j \; :$

$$\begin{split} f\left(\left.C_{1} \mid C_{2} \mid \ldots \mid C_{i-1} \mid C_{i} \mid C_{i+1} \mid \ldots \mid C_{j-1} \mid C_{j} \mid C_{j+1} \mid \ldots \mid C_{n}\right) \\ &= -f\left(\left.C_{1} \mid C_{2} \mid \ldots \mid C_{i-1} \mid C_{j} \mid C_{i+1} \mid \ldots \mid C_{j-1} \mid C_{i} \mid C_{j+1} \mid \ldots \mid C_{n}\right) \; . \end{split}$$

 $iii - f(I_n) = 1.$

Pour $M \in \mathcal{M}_n(\mathbb{K})$, on dit que f(M) est le déterminant de M. On le note det (M), et aussi $\begin{bmatrix} m_{1,1} & \cdots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{bmatrix}$.

L'application f ci – dessus est donc l'application $\det:\begin{pmatrix} \mathcal{M}_n\left(\mathbb{K}\right) \to \mathbb{K} \\ M \mapsto \det\left(M\right). \end{pmatrix}$

2. Propriétés

Proposition 1

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
. Alors, $\det(A^T) = \det(A)$.

Proposition 2 (règles élémentaires)

Soit $n \in \mathbb{N}^*$. Soit $A = (a_{i,j})_{(i,j) \in \{1,\dots,n\}^2} \in \mathcal{M}_n (\mathbb{K})$.

- i On ne change pas le déterminant de A en ajoutant à une colonne une combinaison linéaire des autres.
- ii Multiplier par λ une colonne de A revient à multiplier par λ le déterminant de A.

On en déduit que $\det (\lambda A) = \lambda^n \det (A)$.

iii – Permuter deux colonnes de A revient à changer le signe de det (A).

iv – Placer la j – ème colonne de A en première position revient à multiplier det (A) par $(-1)^{j-1}$.

Les propriétés analogues portant sur les lignes de $\it A$ sont également vérifiées. En outre :

$$\mathbf{v}$$
 – Si A est triangulaire, alors det $(A) = \prod_{i=1}^{n} a_{i,i}$.

vi - A est inversible si et seulement si det $(A) \neq 0$.

Proposition 3 (déterminant d'un produit, d'un inverse)

Soit *n* un entier naturel non nul.

i - Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, A est inversible si et seulement si det $(A) \neq 0$.

$$ii$$
 - Pour tout $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $\det(AB) = \det(A) \det(B)$.

$$iii - \qquad \text{Pour tout } A \in \mathcal{GL}_n \left(\mathbb{K} \right), \det \left(A^{-1} \right) = \frac{1}{\det \left(A \right)}.$$

iv – Si deux matrices carrées sont semblables, alors leurs déterminants sont égaux.

II Calculs pratiques de déterminants

1. Déterminants d'ordre 2 ou 3

Inutile de faire un rappel sur ce point?

2. Développement d'un déterminant par rapport à une ligne ou une colonne.

Notation

Soit $A = \left(a_{i,j}\right)_{\left(i,j\right)\in[1,n]^2}$ une matrice carrée d'ordre $n \geq 1$. Pour tout $\left(i,j\right)\in[1,n]^2$, on note classiquement $A_{i,j}$

la matrice carrée d'ordre n-1 obtenue en supprimant la i-ème ligne et la j-ème colonne de A.

Exemple

Pour
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{pmatrix}$$
, on a $A_{2,3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 16 \\ 1 & 8 & 64 \end{pmatrix}$.

Proposition

Soit
$$A = (a_{i,j})_{(i,j) \in \{1,...,n\}^2} \in \mathcal{M}_n(\mathbb{K})$$
. Alors:

• pour tout $i \in \{1, ..., n\}$, det $(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det (A_{i,j})$.

on dit que l'on a développé det(A) par rapport à la i – ème ligne.

• • De même, pour tout $j \in \{1, ..., n\}$, $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$

cette expression est le développement de $\det(A)$ par rapport à la j – ème colonne.

Vocabulaire

On dit que $(-1)^{i+j}$ det $(A_{i,j})$ est le *cofacteur* de $a_{i,j}$ dans A.

3. Déterminants de Vandermonde

Définition

Soit $(a_1, ..., a_n)$ une famille de n scalaires. On appelle matrice de Vandermonde $M(a_1, ..., a_n)$ associée à la famille $(a_1, ..., a_n)$ la matrice de $\mathcal{M}_n(\mathbb{K})$ dont le coefficient général est $m_{i,j} = a_i^{j-1}$:

$$M\left(a_{1},...,a_{n}\right) = \begin{pmatrix} 1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\ 1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-1} & a_{n-1}^{2} & \cdots & a_{n-1}^{n-1} \\ 1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1} \end{pmatrix} \in \mathcal{M}_{n}\left(\mathbb{K}\right).$$

On note généralement $V\left(a_{1},...,a_{n}\right)$ le déterminant de $M\left(a_{1},...,a_{n}\right)$: c'est le déterminant de Vandermonde associé à la famille $(a_1, ..., a_n)$.

Proposition

On a
$$V(a_1, ..., a_n) = \prod_{1 \le i < j \le n} (a_j - a_i).$$

4. Déterminant d'une matrice triangulaire par blocs

On a vu que, lorsque A est une matrice triangulaire, son déterminant est égal au produit de ses coefficients diagonaux. Ce résultat se généralise de la façon suivante :

Proposition 1

Soient
$$p$$
, n deux entiers tels que $0 . Soient $A \in \mathcal{M}_p(\mathbb{K})$, $C \in \mathcal{M}_{p,n-p}(\mathbb{K})$, $D \in \mathcal{M}_{n-p}(\mathbb{K})$. Soit T la matrice triangulaire par blocs définie par : $T = \begin{pmatrix} A & C \\ 0_{n-p,p} & D \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$. Alors $\det(T) = \det(A) \det(D)$.$

Une récurrence immédiate permet de déduire de la proposition précédente que, plus généralement :

Proposition 2

Soient $p_1, ..., p_n$ n entiers strictement positifs; soit une matrice T triangulaire supérieure par blocs, de la forme

Soient
$$p_1, ..., p_n$$
 n entiers strictement positifs ; soit une matrice T triangulaire supérieure par blocs, de la forme
$$T = \begin{pmatrix} T_{1,1} & T_{1,2} & \cdots & \cdots & T_{1,n} \\ 0_{p_2,p_1} & T_{2,2} & & \vdots \\ \vdots & 0_{p_3,p_2} & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & T_{n-1,n} \\ 0_{p_n,p_1} & \cdots & \cdots & 0_{p_n,p_{n-1}} & T_{n,n} \end{pmatrix}, \text{ où, pour tout } i \in \{1,...,n\}, T_{i,i} \text{ est un élément de } \mathcal{M}_{p_i} (\mathbb{K}).$$
Alors, $\det(T) = \prod_{i=1}^n \det(T_{i,i}).$

Alors, det
$$(T) = \prod_{i=1}^{n} \det (T_{i,i})$$

III Déterminant d'une famille de n vecteurs en dimension n

1. Définition

Soient E un \mathbb{K} – ev de dimension $n \geq 1$, \mathcal{B} une base de E, et $\left(x_1, ..., x_n\right)$ une famille de n vecteurs de E.

On appelle déterminant de la famille $(x_1,...,x_n)$ dans la base \mathcal{B} , et l'on note det $(x_1,...,x_n)$, le déterminant de la matrice des coordonnées de la famille $(x_1,...,x_n)$ dans la base $(x_1,...,x_n)$

2. Propriété

Proposition (déterminant et basicité)

Soient E un \mathbb{K} – ev de dimension $n \geq 1$, \mathcal{B} une base de E, et $(x_1,...,x_n)$ une famille de n vecteurs de E.

Alors, $(x_1,...,x_n)$ est une base de E si et seulement si $\det_{\mathscr{B}}(x_1,...,x_n) \neq 0$.

IV Déterminant d'endomorphismes en dimension finie

1. Le résultat fondateur

Proposition

Soit E un \mathbb{K} espace vectoriel de dimension finie non nulle, et soit $u \in \mathcal{L}(E)$.

Pour toutes bases \mathscr{B} , \mathscr{B} 'de E, on a det $\Big(\operatorname{\mathit{Mat}}_{\mathscr{B}}\big(u\,\big)\Big) = \det\Big(\operatorname{\mathit{Mat}}_{\mathscr{B}},\big(u\,\big)\Big).$

2. Déterminant d'un endomorphisme

Soit u un endomorphisme d'un espace vectoriel E de dimension finie non nulle.

D'après ce qui précède, le scalaire det $(Mat_{\mathcal{B}}(u)) = \det_{\mathcal{B}}(u(\mathcal{B}))$ ne dépend pas de la base \mathcal{B} de E choisie.

Ceci autorise la définition suivante :

Définition

On appelle déterminant de u, et l'on note det (u), le scalaire défini par

$$\det (u) = \det (Mat_{\mathcal{B}}(u)),$$

où \mathcal{B} est une base quelconque de E .

3. Propriétés

On considère à nouveau un \mathbb{K} – espace vectoriel E de dimension finie non nulle.

Proposition

i - Pour tout $u \in \mathcal{L}(E)$, u est un automorphisme de E si et seulement si $\det(u) \neq 0$.

ii - Pour tous endomorphismes u et v de E, det $(u \circ v) = \det(u) \det(v)$.

iii - Pour tout $u \in GL(E)$, $\det(u^{-1}) = \frac{1}{\det(u)}$.

V Polynôme caractéristique

1. Définition

• Soit u un endomorphisme d'un \mathbb{K} – espace vectoriel E de dimension finie non nulle.

Le polynôme caractéristique de
$$u$$
, noté χ_u , est défini par : $\chi_u = \det \left(X \operatorname{Id}_E - u \right)$.

• De même, on définit le polynôme caractéristique χ_M d'une matrice carrée $M \in \mathcal{M}_n$ (\mathbb{K}) (où $n \ge 1$) par :

$$\boxed{\chi_M = \det \left(X I_n - M \right)}.$$

2. Polynôme caractéristique d'un endomorphisme, et d'une matrice associée

a. C'est la même chose

Proposition

Soient
$$E$$
 un \mathbb{K} – ev de dimension $n \geq 1$. Soit \mathcal{B} une base de E . Alors: $\forall u \in \mathcal{L}(E)$, $\chi_u = \chi_{M_{\mathcal{B}}(u)}$.

Preuve

Soit
$$u \in \mathcal{L}(E)$$
. Alors, $M_{\mathcal{B}}(X \operatorname{Id}_E - u) = X I_n - M_{\mathcal{B}}(u)$. On en déduit, par définition du déterminant d'un endomorphisme, que $\det(X \operatorname{Id}_E - u) = \det(X I_n - M_{\mathcal{B}}(u))$

b. Polynômes caractéristiques de matrices semblables

Corollaire de la proposition précédente

Si deux matrices carrées sont semblables, alors elles ont même polynôme caractéristique.

Preuve

Si deux matrices carrées sont semblables, alors elles représentent le même endomorphisme (d'un espace vectoriel de dimension finie non nulle). Leurs polynômes caractéristiques sont alors égaux à celui de cet endomorphisme.

3. Polynôme caractéristique d'une matrice transposée

Proposition

Soient
$$n \in \mathbb{N}^*$$
, et $M \in \mathcal{M}_n (\mathbb{K})$. Alors, $\chi_{M^\top} = \chi_M$.

$$Preuve: \chi_{M^\top} = \det (X I_n - M^\top) = \det ((X . I_n - M)^\top) = \det (X . I_n - M) = \chi_M \qquad \Box.$$

4. Quelques coefficients du polynôme caractéristique

Proposition

Soient
$$n \in \mathbb{N}^*$$
, et $M \in \mathcal{M}_n(\mathbb{K})$. Alors:

- χ_M est de degré n et unitaire.
- • Le coefficient de degré n-1 de χ_M est égal à $-\operatorname{Tr}(M)$.
- • Le coefficient constant de χ_M est égal à $(-1)^n$ det (M).

Preuve

Evident si l'on admet que toute matrice carrée complexe est semblable à une matrice triangulaire (ce qui est prouvé dans le chapitre Réduction).

Remarque

• De manière analogue, si u est un endomorphisme d'un \mathbb{K} – espace vectoriel de dimension $n \geq 1$:

$$\chi_u = X^n - \text{Tr}(u) X^{n-1} + ... + (-1)^n \det(u).$$

Cas de la dimension 2

Le polynôme caractéristique d'une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2 \left(\mathbb{K} \right)$ est :

$$\chi_M = X^2 - \text{Tr}(M)X + \text{det}(M) = X^2 - (a + d)X + (ad - bc).$$