

Liste d'exercices

Réduction des endomorphismes et des matrices carrées

2025-2026

Réduction

Exercice 1

Diagonaliser sur \mathbb{C} (lorsque c'est possible) les matrices suivantes.

1.
$$\begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix}$$

1.
$$\begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix}$$
 2. $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

$$\mathbf{3.} \quad \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{pmatrix}$$

3.
$$\begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{pmatrix}$$
 4.
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

5.
$$\begin{pmatrix} -2 & 5 & 7 \\ -1 & 6 & 9 \\ 0 & -2 & -3 \end{pmatrix}$$
 6. $\begin{pmatrix} a & -a & b \\ -a & a & -b \\ b & -b & 2a - b \end{pmatrix}$ 7. $\begin{pmatrix} -1 & 2 & -2 \\ -6 & 7 & -5 \\ -6 & 6 & -4 \end{pmatrix}$ 8. $\begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & 5 \end{pmatrix}$

7.
$$\begin{pmatrix} -1 & 2 & -2 \\ -6 & 7 & -5 \\ -6 & 6 & -4 \end{pmatrix}$$

$$8. \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & 5 \end{pmatrix}$$

Dans $E = \mathbb{R}^3$ muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$, on considère l'endomorphisme f de E dont la matrice dans la

base
$$\mathcal{B}$$
 est $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

- 1. Montrer que f admet une valeur propre unique, à déterminer.
- **2.** L'endomorphisme f est il diagonalisable ?

Exercice 3

Soit
$$M = \begin{pmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{pmatrix}$$
. Pour $n \in \mathbb{N}^*$, calculer M^n .

Valeurs propres, sous – espaces propres des endomorphismes Φ et Ψ de $\mathcal{M}_2(\mathbb{R})$ définis par

$$\Phi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & -c \\ -b & d \end{pmatrix}, \quad \text{et} \quad \Psi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

$$\text{Soient} \ \ n \in \mathbb{N}^*, \ a \in \mathbb{R} \ , \ J = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n \left(\mathbb{R} \right), \text{ et } A = \begin{pmatrix} a & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & a \end{pmatrix} \in \mathcal{M}_n \left(\mathbb{R} \right).$$

Diagonaliser J et A.

Soit
$$n \in \mathbb{N}^*$$
, et $A = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & (0) & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$.

Déterminer les éléments propres de la matrice A, et la diagonaliser.

II - Applications relativement directes de la réduction

Exercice 7

Soit u un endomorphisme non nul de \mathbb{R}^3 , A sa matrice dans la base canonique de \mathbb{R}^3 .

Montrer que le plan vectoriel \mathcal{P} de \mathbb{R}^3 d'équation : \mathcal{P} : a x + b y + c z = 0 est u – stable si et seulement si

$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 est une matrice colonne propre de la matrice ' A.

On pourra considérer la forme linéaire $\Phi: \begin{pmatrix} \mathbb{R}^3 & \to \mathbb{R} \\ (x,y,z) & \mapsto a & x+b & y+c & z \end{pmatrix}$.

Application:

Déterminer tous les sous – espaces vectoriels de \mathbb{R}^3 stables par l'endomorphisme u de \mathbb{R}^3 canoniquement associé à la

matrice:
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$
.

Exercice 8

Dans
$$\mathbb{R}^4$$
, on considère $F = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z = 0 \text{ et } x - y + t = 0\}$

et
$$G = \{(x, y, z, t) \in \mathbb{R}^4, 2y + z - t = 0 \text{ et } x - z - t = 0\}.$$

- 1. Montrer que F et G sont deux sous espaces vectoriels de \mathbb{R}^4 . Sont ils supplémentaires dans \mathbb{R}^4 ?
- **2.** Construire un endomorphisme f de \mathbb{R}^4 tel que $F = \operatorname{Ker}(f)$ et $G = \operatorname{Im}(f)$.
- **3.** L'endomorphisme f est il diagonalisable ?

Exercice 9

Les matrices suivantes sont – elles semblables ?

$$A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix}; C = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}.$$

2

On considère la matrice
$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- 1. Déterminer les valeurs propres de A. Cette matrice est elle diagonalisable ?
- **2.** La matrice A est elle inversible ?
- 3. Montrer que la matrice A est semblable à la matrice $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
- **4.** Déterminer T^n en fonction de n.
- **5.** En déduire A^n en fonction de n.

Exercice 11

Soit
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 1 \\ -2 & 2 & 4 \end{pmatrix}$$
, et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

1. Déterminer Sp(A). Expliquer, sans calculs, pourquoi A n'est pas diagonalisable.

Déterminer ensuite $E_2(A)$.

2. Déterminer trois vecteurs u, v, w tels que :

$$f(w) = 2w$$
, $f(v) = w + 2v$ et $f(u) = v + 2u$.

3. Montrer que (u, v, w) est une base de \mathbb{R}^3 .

En déduire une matrice triangulaire supérieure B semblable à A.

4. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 12

On considère la matrice :
$$M = \begin{pmatrix} 6 & 1 & 3 \\ 4 & 3 & 3 \\ 4 & 1 & 5 \end{pmatrix}$$
.

- 1. Déterminer une matrice diagonale D et une matrice inversible P telles que : $M = P D P^{-1}$
- 2. Soient les suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$, $(w_n)_{n \in \mathbb{N}}$ définies par leurs premiers termes u_0 , v_0 , w_0 et

par la relation de récurrence :
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} u_{n+1} = 6u_n + v_n + 3w_n \\ v_{n+1} = 4u_n + 3v_n + 3w_n + 3w_n \end{cases}$$
.
$$w_{n+1} = 4u_n + v_n + 5w_n$$

Pour
$$n \in \mathbb{N}$$
, on pose: $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$, et $Y_n = P^{-1} X_n$.

Déterminer Y_n en fonction de n et de Y_0 . En déduire u_n , v_n et w_n en fonction de n et de u_0 , v_0 et w_0 .

3

1. Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice, relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$

de cet espace, est
$$A = \begin{pmatrix} 8 & -1 & -5 \\ -2 & 3 & 1 \\ 4 & -1 & -1 \end{pmatrix}$$
.

- **a.** Déterminer les valeurs propres et les sous espaces propres de u.
- **b.** Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 dans laquelle u admet pour matrice $B = \begin{pmatrix} 4 & 3 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

On choisira les coordonnées des vecteurs v_1 , v_2 , v_3 dans la base canonique parmi les nombres 1, 0 et -1.

2. Etant données trois fonctions réelles f_1, f_2 et f_3 de la variable réelle x, dérivables sur $\mathbb R$, on pose :

$$V(x) = f_1(x) \cdot e_1 + f_2(x) \cdot e_2 + f_3(x) \cdot e_3$$
$$V'(x) = f_1'(x) \cdot e_1 + f_2'(x) \cdot e_2 + f_3'(x) \cdot e_3$$

a. Déterminer les coordonnées $g_1(x), g_2(x), g_3(x)$ de V(x) dans la base (v_1, v_2, v_3) .

Démontrer que l'on a :
$$V'(x) = g_1'(x) \cdot v_1 + g_2'(x) \cdot v_2 + g_3'(x) \cdot v_3$$
.

b. Utiliser les résultats précédents pour déterminer les solutions du système différentiel :

$$\begin{cases} f_{1}'(x) = 8 f_{1}(x) - f_{2}(x) - 5 f_{3}(x) \\ f_{2}'(x) = -2 f_{1}(x) + 3 f_{2}(x) + f_{3}(x) \\ f_{3}'(x) = 4 f_{1}(x) - f_{2}(x) - f_{3}(x) \end{cases}.$$

Exercice 14

Etude d'une suite récurrente matricielle « arithmético – géométrique »

On pose:
$$A = \begin{pmatrix} 1 & 0 & 2 \\ \frac{3}{2} & -2 & 6 \\ \frac{1}{2} & -1 & \frac{5}{2} \end{pmatrix}$$
, et $B = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, où x , y , et z sont des réels.

On définit alors une suite de matrices colonnes $\left(\begin{array}{c} X_n \end{array} \right)_{n \ \in \ \mathbb{N}}$ de la manière suivante :

$$\left\{ \begin{array}{l} X_0 \in M_{3,1}\left(\mathbb{R}\right) \\ \forall \ n \in \mathbb{N} \ , \ X_{n+1} = A X_n + B \end{array} \right. .$$

1. Montrer que 0, $\frac{1}{2}$ et 1 sont les valeurs propres de A, et préciser des vecteurs propres u, v, et w qui leur sont respectivement associés.

Justifier de deux manières différentes la diagonalisabilité de la matrice A.

2. Justifier les affirmations suivantes :

- Il existe un unique triplet (α, β, γ) de \mathbb{R}^3 tel que $B = \alpha u + \beta v + \gamma w$;
- Pour tout entier nature n, il existe un unique triplet $(\alpha_n, \beta_n, \gamma_n)$ de \mathbb{R}^3 tel que $X_n = \alpha_n u + \beta_n v + \gamma_n w$.
- 3. Etablir par récurrence que : $\forall n \in \mathbb{N}$, $\begin{cases} \alpha_n = \alpha \\ \beta_n = \frac{\beta_0 2\beta}{2^n} + 2\beta \\ \gamma_n = \gamma_0 + n\gamma \end{cases}$
- **4.a.** Prouver que $(X_n)_{n \in \mathbb{N}}$ converge si et seulement si le réel γ introduit à la question **2.** est nul.
 - **b.** En déduire que $(X_n)_{n \in \mathbb{N}}$ converge ssi 3x 4y + 12z = 0.
- 5. On dit que le couple (A, B) admet une position d'équilibre stable lorsque la suite $(X_n)_{n \in \mathbb{N}}$ converge vers la même limite quelle que soit la valeur de X_0 .

Expliquer pourquoi, quelle que soit la valeur de B, le couple (A, B) n'admet pas de position d'équilibre stable.

Exercice 15

Soit
$$A = \begin{pmatrix} 4 & 4 & 4 \\ 4 & -1 & 1 \\ 4 & 1 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

1. Montrer que la matrice A est diagonalisable, et que ses valeurs propres sont simples.

On désignera dans la suite par D une matrice diagonale semblable à A, et par P la matrice de passage de A à D.

- **2.** Soit $Y \in \mathcal{M}_3(\mathbb{R})$ une matrice vérifiant YD = DY. Montrer que la matrice Y est diagonale.
- **3.** Soit $X \in \mathcal{M}_3(\mathbb{R})$. On pose, avec les notations de **1.**, $Y = P^{-1} X P$ Montrer que X A = A X si et seulement si Y D = D Y.
- **4.** On appelle *commutant* de A l'ensemble C(A) des matrices commutant avec A.
 - **a.** Montrer que C(A) est un \mathbb{R} espace vectoriel, et préciser sa dimension.
 - **b.** Montrer que $C(A) = \text{Vect} \left\langle \left(I_3, A, A^2\right)\right\rangle$.

Exercice 16

On considère la matrice
$$A = \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$
.

1. Déterminer les valeurs propres complexes de la matrice A, ainsi que les espaces propres correspondants.

On cherche désormais les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que : $M^2 = A$ (1)

2. Soit M une solution de l'équation (1).

Montrer que M admet les mêmes espaces propres que A.

Déterminer les valeurs propres possibles de la matrice M.

- **3.** Déterminer les matrices $M \in \mathcal{M}_3(\mathbb{R})$ solutions de (1).
- **4.** En déduire les matrices $M \in \mathcal{M}_3(\mathbb{R})$ solutions de (1).

Exercice 17

Soient
$$A = \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix}$$
, et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- 1. Déterminer une base de Im f et une base de Ker f.
- 2. On considère la matrice $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$. Montrer que P est inversible, et déterminer P^{-1} .
- **3.a.** Déterminer les valeurs propres et les sous espaces propres de f.
 - **b.** En déduire l'existence d'une matrice diagonale D telle que $A = P D P^{-1}$.
- **4.** On s'intéresse ici à la résolution de l'équation $M^3 = A$ (*), où $M \in M_3$ (\mathbb{R}).
 - **a.** Montrer que si M vérifie la relation (*), alors A et M commutent.
 - **b.** On note $X_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, et $X_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

Si la matrice M vérifie la relation (*), déduire de la question précédente que X_1 , X_2 , et X_3 sont des vecteurs propres de M.

c. En déduire l'existence d'une matrice $\Delta \in D_3(\mathbb{R})$ telle que $M = P \Delta P^{-1}$.

Quelle relation a - t - on entre les matrices Δ et D? Conclure.

Exercice 18

Pour tout n entier non nul, on considère la matrice $A_n = \begin{pmatrix} 1 & \frac{1}{n} & \frac{1}{n} \\ -\frac{1}{n} & \frac{n+2}{n} & \frac{1}{n} \\ \frac{1}{n} & -\frac{1}{n} & 1 \end{pmatrix}$.

- **1.a.** Montrer sans calculs que 1 et $1 + \frac{1}{n}$ sont les seules valeurs propres de A_n .
- **1.b.** La matrice A_n est elle diagonalisable? Inversible?
- **2.** Pour tout $n \in \mathbb{N}^*$, on note B_n la matrice produit : $B_n = A_1 A_2 ... A_n$.

La matrice B_n est – elle diagonalisable ? Inversible ? Si oui, déterminer B_n^{-1} .

Soit n un entier naturel supérieur ou égal à 2.

Pour p entier tel que $0 \le p < n$, on note $A_p = \left(a \left(p \right)_{i,j} \right)_{(i,j) \in [1,n]^2}$ la matrice de $\mathcal{M}_n (\mathbb{C})$

donnée par :
$$\forall (i, j) \in [1, n^{-2}, a(p)]_{i, j} = \begin{cases} 1 \text{ si } j - i = p \\ 1 \text{ si } i - j = n - p \\ 0 \text{ sinon} \end{cases}.$$

- **1.** Déterminer la matrice A_0 .
- **2.** Montrer que pour tout p tel que $0 \le p < n : (A_1)^p = A_p$.
- 3. Déterminer les éléments propres de la matrice A_1 . Cette matrice est elle diagonalisable ?
- **4.** En déduire les éléments propres de la matrice A_p .
- **5.** On suppose ici n = 3, et on note $T = A_0 + A_1$. Déterminer T^k pour tout k de \mathbb{N} .

Exercice 20

Soient $n \ge 2$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par :

$$\forall i \in [1, n], a_{i,i} = i$$
, et $\forall (i, j) \in [1, n]^2, i \neq j \Rightarrow a_{i,j} = 1$.

- 1. Justifier que la matrice A est diagonalisable.
- 2. Soit $\lambda \in \mathbb{R}$ et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$. On pose $s = \sum_{k=1}^n x_k$. Montrer que:

$$A X = \lambda X \iff \begin{cases} s = \lambda x_1 \\ s = (\lambda - 1) x_2 \\ \vdots \\ s = (\lambda - n + 1) x_n \end{cases}.$$

- 3. Montrer que si λ est une valeur propre de A, alors $\sum_{k=0}^{n-1} \frac{1}{\lambda k} = 1$.
- 4. Etablir la réciproque de la question précédente.
- 5. En déduire que A admet n valeurs propres distinctes.

Polynômes annulateurs

Exercice 21

Soit u l'endomorphisme de $E = \mathbb{R}^3$ défini, dans la base canonique de cet espace, par la matrice $U = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

- 1. Déterminer u^3 . En déduire les valeurs propres de u.
- **2.** Montrer que U est semblable à la matrice $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Soient $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$. Pour $A, B \in E$ fixées et non nulles, on définit $f \in \mathcal{L}(E)$ par

$$\forall M \in E, f(M) = M + Tr(AM)B.$$

- 1. Déterminer un polynôme annulateur de degré 2 de f et en déduire une condition nécessaire et suffisante sur (A, B) pour que f soit diagonalisable. Quels sont alors les éléments propres de f?
- **2.** Déterminer dim (C), où $C = \{g \in \mathcal{L}(E), g \circ f = f \circ g\}$.

Exercice 23

Soit f un endomorphisme d'un \mathbb{K} – espace vectoriel E vérifiant $f^3-f^2+f-Id_E=0$.

- 1. Que dire des valeurs propres de f? On distinguera $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.
- 2. f est il inversible ? Si oui, déterminer son inverse.

Exercice 24

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que Spec $(f) = \{2, 3, 4\}$.

- 1. Montrer qu'il existe un polynôme P de degré 3 tel que P(f) = 0.
- 2. Montrer que, pour tout entier naturel n, il existe trois réels a_n , b_n , c_n (que l'on déterminera) tels que $X^n (a_n X^2 + b_n X + c_n)$ soit divisible par $X^3 9X^2 + 26X 24$.
- 3. En déduire l'expression de f^n en fonction de f, de f^2 et de n.

Exercice 25

Soient E un \mathbb{K} – espace vectoriel, $f \in \mathcal{L}(E)$, $Q \in \mathbb{K}[X]$, et $P = (X - \lambda)Q$. On suppose que :

- P est un polynôme annulateur de f;
- Q n'est pas un polynôme annulateur de f.

Montrer que λ est une valeur propre de f.

Exercice 26

- 1. Calculer A^2 . En déduire un polynôme annulateur de A, aussi simple que possible.
- **2.** En déduire les valeurs propres possibles de A.
- **3.** La matrice A est elle diagonalisable?

Exercice 27

Soient E un \mathbb{C} – espace vectoriel de dimension finie, et f un endomorphisme de E.

- 1. Rappeler pourquoi il existe un polynôme non nul $P \in \mathbb{C}[X]$ tel que P(f) = 0.
- **2.** On suppose dans cette question que f est diagonalisable.
 - **a.** Montrer que Ker (f) et Im (f) sont supplémentaires dans E.
 - **b.** Montrer plus généralement que pour tout scalaire λ :

$$\operatorname{Ker}\left(f - \lambda \operatorname{Id}_{E}\right)$$
 et $\operatorname{Im}\left(f - \lambda \operatorname{Id}_{E}\right)$ sont supplémentaires dans E .

3. On suppose dans cette question que pour tout $\lambda \in \mathbb{C}$, Ker $(f - \lambda \operatorname{Id}_E)$

et
$$\operatorname{Im} (f - \lambda \operatorname{Id}_E)$$
 sont supplémentaires dans E .

- **a.** Montrer que pour tout scalaire λ et pour tout $p \geq 1$: Ker $(f \lambda \operatorname{Id}_E)^p = \operatorname{Ker}(f \lambda \operatorname{Id}_E)$.
- **b.** Montrer qu'il existe un polynôme à racines simples $P \in \mathbb{C}[X]$ tel que P(f) = 0, et en déduire que f est diagonalisable.

Exercice 28

Réduction des matrices de rang 1

Soit $M = (m_{i,j})_{(i,j) \in [1,n]^2} \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang 1 à coefficients dans \mathbb{C} .

1. Montrer qu'il existe deux familles de scalaires $(a_i)_{i \in [1, n]}$ et $(b_j)_{j \in [1, n]}$ telles que : $\forall (i, j) \in [1, n]^2$, $m_{i, j} = a_i b_j$.

En déduire l'existence d'une matrice colonne
$$C = (C_i)_{i \in [1, n]} \in \mathcal{M}_{n, 1}(\mathbb{C})$$
 et d'une matrice

ligne
$$L = (L_j)_{j \in [1,n]} \in \mathcal{M}_{1,n}(\mathbb{C})$$
, toutes deux à déterminer, telles que $M = C \cdot L$.

- **2.** Montrer que : $M^2 = (\operatorname{Tr} M) M$.
- **3.a.** Déterminer les valeurs propres de M.
 - **b.** Etudier la diagonalisabilité de M. On distinguera deux cas, selon que $\operatorname{Tr} M = 0$ ou $\operatorname{Tr} M \neq 0$.

Exercice 29

Soit u un endomorphisme non nul de \mathbb{R}^3 tel que $u^3=-u$, où $u^3=u$ o u o u .

- 1. Montrer que $\operatorname{Im}\left(u^2 + \operatorname{Id}_{\mathbb{R}^3}\right) \subset \ker(u)$, où $\operatorname{Id}_{\mathbb{R}^3}$ est l'endomorphisme identité de \mathbb{R}^3 .
- **2.** En déduire que $\mathbb{R}^3 = \ker(u) \oplus \ker(u^2 + Id_{\mathbb{R}^3})$.
- 3. Montrer qu'un endomorphisme de \mathbb{R}^3 possède au moins une valeur propre réelle.

Vérifier que
$$\ker(u) \neq \mathbb{R}^3$$
 et $\ker(u^2 + Id_{\mathbb{R}^3}) \neq \mathbb{R}^3$.

4. En déduire une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de u s'écrit $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercice 30

Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice annulée par $X^3 - 3X + 4$. Que dire du signe de det (A)?

Exercice 31

Soit $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n$ (\mathbb{R}) une matrice vérifiant $A^2 - 5A + 6I_n = O_n$.

Soit alors
$$\Phi_A: \left(\begin{array}{ccc} \mathcal{M}_n \left(\mathbb{R} \right) & \to & \mathcal{M}_n \left(\mathbb{R} \right) \\ M & \mapsto & AM + MA \end{array} \right).$$

Déterminer les éléments (valeurs et vecteurs) propres de Φ_A .

L'endomorphisme Φ_A est – il diagonalisable ?

Par blocs

Exercice 32

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
, et $B \in \mathcal{M}_{2n}(\mathbb{K})$ la matrice définie par $B = \begin{pmatrix} A & O_n \\ A & A \end{pmatrix}$.

Montrer que B est diagonalisable si et seulement si $A = O_n$.

Exercice 33

Soient E un \mathbb{R} – espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$ un endomorphisme non injectif de E. Etablir l'équivalence entre les trois propriétés suivantes :

- i) Ker $u \oplus \text{Im } u = E$.
- ii) Il existe une base \mathcal{B} de E relativement à laquelle la matrice de u est de la forme :

$$M = \begin{pmatrix} A_p & O_p \\ O_p & O_p \end{pmatrix}, \text{ avec } A_p \in \mathcal{GL}_p(\mathbb{R}).$$

Exercice 34

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ et $M = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ (matrice par blocs). Montrer que M est diagonalisable si et seulement si AB est diagonalisable et rang $(A) = \operatorname{rang}(B) = \operatorname{rang}(AB)$.

Opérateurs fonctionnels ; espaces de polynômes, de suites

Exercice 35

Soit E le \mathbb{R} – espace vectoriel des applications continues sur \mathbb{R} , à valeurs dans \mathbb{R} , et admettant une limite finie en $+\infty$. Soit Φ

l'endomorphisme de
$$E$$
 défini par : $\Phi: \left(\begin{array}{ccc} E & \rightarrow & E \\ f & \mapsto & \Phi(f) \end{array} \right)$, où : $\forall x \in \mathbb{R}$, $\Phi(f)(x) = f(x+1)$.

Déterminer les éléments (valeurs et vecteurs) propres de Φ .

Exercice 36

Soit
$$E = \left\{ f \in C^1 \left(\mathbb{R}, \mathbb{R} \right) / f \left(0 \right) = 0 \right\}$$
. Pour $f \in E$, on définit l'application $T \left(f \right)$ sur \mathbb{R} en posant :

$$\forall x \in \mathbb{R}, T(f)(x) = \begin{bmatrix} \int_0^x \frac{f(t)}{t} dt & \text{si } x \neq 0 \\ * & \text{si } x = 0 \end{bmatrix}.$$

- **1.** Soit $T: \begin{pmatrix} E \rightarrow \\ f \mapsto T(f) \end{pmatrix}$. Déterminer * de sorte que T soit un endomorphisme de E.
- 2. Déterminer les éléments propres (valeurs propres et vecteurs propres) de T.

Soit n un entier supérieur ou égal à 3, $E = \mathbb{R}_n [X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n, et b un

réel. Soit
$$\varphi: \left(\begin{array}{ccc} E \rightarrow E \\ P \mapsto \varphi(P) \end{array} \right)$$
, où : $\varphi(P)(X) = (X-b)(P'(X)+P'(b)) - 2(P(X)-P(b))$,

et où P' désigne le polynôme dérivé du polynôme P.

- 1. Montrer que φ est un endomorphisme de E.
- **2.** Déterminer le plus grand entier k vérifiant : $\forall P \in E$, $\exists Q \in E$, $\varphi(P) = (X b)^k Q(X)$.
- 3. Déterminer le noyau et l'image de φ .
- **4.** Pour $k \ge 3$, déterminer $\varphi(P)$ lorsque $P = (X b)^k$.

L'endomorphisme φ est – il diagonalisable ?

Exercice 38

Soit $E=\mathbb{R}^{\,\mathbb{N}^{\,*}}$ l'ensemble des suites réelles $\left(u_{\,n}\,\right)_{n\,\in\,\mathbb{N}^{\,*}}$. On définit $\,f\,\in\,\mathcal{L}\left(\,E\,
ight)\,$ par :

$$\forall u \in E, \forall n \in \mathbb{N}^*, (f(u))_n = \frac{1}{n^2} \sum_{k=1}^n k u_k$$

Déterminer l'ensemble des valeurs propres de f.

Co - réduction

Exercice 39

Soient $n \in \mathbb{N}^*$, et f, g deux endomorphismes de \mathbb{C}^n tels que f o g = g o f.

- 1. Montrer que tout espace propre de f est stable par g.
- 2. En déduire que f et g possèdent un vecteur propre commun.

Exercice 40

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $M = \begin{pmatrix} 6 & 2 & 2 \\ 2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$.

- 1. Montrer que f est diagonalisable.
- **2.** Déterminer une base \mathcal{B} de \mathbb{R}^3 et une matrice diagonale D telles que $Mat_{\mathcal{B}}(f) = D$
- **3.** Soit $g \in \mathcal{L}(\mathbb{R}^3)$ telle que $g \circ g = f$.
 - **a.** Montrer que g et f commutent.
 - **b.** En déduire que la matrice Δ de g dans la base \mathcal{B} est diagonale.
- **4.** Déterminer les endomorphismes $g \in \mathcal{L}\left(\mathbb{R}^3\right)$ tels que $g \circ g = f$, en donnant leur matrice dans la base canonique.

Exercice 41

On considère la matrice $J=\begin{pmatrix} 0 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{pmatrix}$, et on note f l'endomorphisme de \mathbb{R}^3 représenté par J dans la base canonique

$$\mathcal{B} = (e_1, e_2, e_3) \text{ de } \mathbb{R}^3.$$

1. Déterminer les valeurs propres de f et les sous – espaces propres correspondants.

Montrer que l'endomorphisme f est diagonalisable.

On considère une base $C=\left(\,c_{\,1}\,,\,c_{\,2}\,,\,c_{\,3}\,
ight)$ de $\,\mathbb{R}^{\,3}\,$ constituée de vecteurs propres de f .

2. On considère un endomorphisme g de \mathbb{R}^3 , et on suppose qu'il vérifie l'égalité g o g=f.

Montrer que l'on a g o f = f o g, puis que g est diagonalisable dans la base C.

3. Existe – t – il une matrice M de $\mathcal{M}_3(\mathbb{R})$ vérifiant : $M^2 = J$?

Expliquer comment trouver une matrice M de $\mathcal{M}_3(\mathbb{C})$ vérifiant : $M^2 = J$.

Exercice 42

Soient E un \mathbb{K} – espace vectoriel de dimension finie $n \geq 1$, et u, v deux endomorphismes de E.

- 1. On suppose que $u \circ v v \circ u = u$. Montrer que u est nilpotent.
- 2. On suppose que $u \circ v v \circ u = a u + b c$, où $a, b \in \mathbb{C}$. Montrer que u et v ont un vecteur propre commun.

Exercice 43

Résoudre dans $\mathcal{M}_2(\mathbb{C})$ l'équation $M^2 - 6M + I_2 = \begin{pmatrix} -3 & -2 \\ -3 & -2 \end{pmatrix}$.

Miscelleanous

Exercice 44

 $\text{Soit }\mathcal{E} = \left\{ A \in \mathcal{M}_4 \big(\, \mathbb{R} \, \big) \,, \; A^{\, 3} \, = I_{\, 4} \, \right\}. \; \text{D\'eterminer} \; \left\{ \det \left(\, A \, + \, I_{\, 4} \, \right), \; A \in \mathcal{E} \, \right\}.$

Exercice 45

Soit $n \in \mathbb{N}^*$, et $(f_k)_{k \in [1, n]}$ des endomorphismes de \mathbb{C}^n vérifiant :

- $\sum_{k=1}^{n} f_k = Id_{\mathbb{C}^n}.$
- •• $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow f_i \circ f_j = 0_{\mathcal{L}(\mathbb{C}^n)}.$

Soit $(a_k)_{k \in [1, n]}$ n nombres complexes distincts, et $f = \sum_{k=1}^{n} a_k f_k$.

- **1.** Pour $p \in \mathbb{N}$, calculer f^p .
- **2.** Montrer que f est diagonalisable.

Exercice 46

Soit $n \ge 3$, $\theta = \frac{2\pi}{n}$, et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par : $\forall (i, j) \in [1, n]^2$, $a_{i, j} = \cos((i + j)\theta)$.

- 1. Justifier que $A = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} \omega \\ \omega^2 \\ \vdots \\ \omega^n \end{pmatrix} \begin{pmatrix} \omega & \omega^2 & \cdots & \omega^n \end{pmatrix} + \begin{pmatrix} \overline{\omega} \\ \overline{\omega}^2 \\ \vdots \\ \overline{\omega}^n \end{pmatrix} \begin{pmatrix} \overline{\omega} & \overline{\omega}^2 & \cdots & \overline{\omega}^n \end{pmatrix}$, où $\omega = e^{\frac{2i\pi}{n}}$.
- 2. Déterminer le polynôme caractéristique de A.
- 3. En déduire det $(A + I_n)$.

Soit
$$A \in M_{3,2}(\mathbb{R})$$
, et $B \in M_{2,3}(\mathbb{R})$, telles que : $AB = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}$.

On note f (resp. g) l'élément de $\mathcal{L}\left(\mathbb{R}^2,\mathbb{R}^3\right)$ (resp., de $\mathcal{L}\left(\mathbb{R}^3,\mathbb{R}^2\right)$) canoniquement associé à A (resp. à B).

- 1. Déterminer les valeurs propres de A B, ainsi que la dimension de ses sous espaces propres.
- 2. Montrer que f est injective, et que g est surjective.
- 3. Déduire de ce qui précède que $BA = 9I_2$.

Exercice 48

Soit E un espace vectoriel de dimension finie $n \ge 1$, et u un endomorphisme de E. Montrer que E contient un sous – espace vectoriel stable par u et de dimension 1 ou 2.

Exercice 49

Théorèmes de Gerschgörin et Hadamard

1. Soient $n \ge 2$, et $A \in \mathcal{M}_n(\mathbb{C})$ telle que : $\forall i \in [1, n]$, $\left| a_{i,i} \right| > \sum_{\substack{j=1 \ j \ne i}}^n \left| a_{i,j} \right|$. Montrer que la matrice A est inversible.

On pourra raisonner par l'absurde et considérer une matrice colonne X non nulle telle que $AX = 0_{n,1}$.

2. Soit $n \geq 2$, $B \in \mathcal{M}_n(\mathbb{C})$ et λ une valeur propre de B. Montrer que $\lambda \in \bigcup_{i=1}^n D\left(a_{i,i}, \sum_{\substack{j=1 \ j \neq i}}^n \left|a_{i,j}\right|\right)$,

où pour $\alpha \in \mathbb{C}$ et R > 0, $D(\alpha, R) = \{z \in \mathbb{C} / |z - \alpha| \le R\}$.

3. Soient $n \ge 2$, et $B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$.

On pose alors $\lambda = 2 \cos \theta$, avec $\theta \in [0, \pi]$.

a. Montrer que si λ est une valeur propre réelle de B, alors $|\lambda| \le 2$.

b. Déterminer les valeurs propres et les vecteurs propres de la matrice B.

Exercice 50

13

Une matrice $M = \begin{pmatrix} m_{i,j} \end{pmatrix}_{\substack{1 \le i \le n \\ 1 \le j \le n}} \operatorname{de} \mathcal{M}_n(\mathbb{R})$ est dite *stochastique* lorsqu'elle vérifie les propriétés suivantes :

$$i- \forall (i,j) \in [1,n]^2, m_{i,j} \geq 0;$$

$$ii - \forall i \in [1, n], \sum_{j=1}^{n} m_{i, j} = 1.$$

- 1. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices stochastiques. Montrer que C = AB est une matrice stochastique.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique. Montrer que 1 est valeur propre de A.
- 3. Soit $M \in \mathcal{M}_n(\mathbb{C})$ une matrice à diagonale dominante, ie telle que : $\forall i \in [1, n]$, $\left| \sum_{j \neq i} m_{i, j} \right| < \left| m_{i, i} \right|$

Montrer que M est inversible.

On pourra considérer $X \in \mathcal{M}_{n,1}$ (\mathbb{R}) tel que M X = 0, ainsi qu'un coefficient x_k de la matrice colonne X de valeur absolue maximale, i.e. tel que : $\begin{vmatrix} x_k \end{vmatrix} = \max_{1 \le i \le n} \begin{vmatrix} x_i \end{vmatrix}$, et prouver, en considérant le k ième coefficient de M X, que $x_k = 0$.

4. On revient à notre matrice stochastique A. Montrer que si λ est une valeur propre (complexe) de A, alors $|\lambda| \leq 1$.

Exercice 51

Soit $M \in \mathcal{M}_n(\mathbb{C})$, $n \geq 1$. Prouver l'équivalence des conditions suivantes :

- 1. M est nilpotente, c'est à dire qu'il existe un entier $m \ge 1$ tel que $M^n = 0$.
- **2.** 0 est la seule valeur propre de M.
- 3. Le polynôme caractéristique χ_M de M est $(-1)^n X^n$.
- **4.** $M^n = 0$.
- **5.** Pour tout entier $k \ge 1$, on a Tr $(M^k) = 0$.
- **6.** Pour tout entier $k \in [1, n]$, on a $\operatorname{Tr}\left(M^{k}\right) = 0$.

Exercice 52

Soient E un \mathbb{C} - espace vectoriel de dimension finie $n \ge 1$, et p un entier supérieur ou égal à 2.

Soit u un endomorphisme de E tel que u^p soit diagonalisable.

Montrer que u est diagonalisable si et seulement si $\ker (u) = \ker (u^p)$.

Exercice 53

$$\text{Soit} \ \ T: \left\{ \left(u_n \right)_{n \in \mathbb{N}} \ \mapsto \left(w_n \right)_{n \in \mathbb{N}} \ \text{avec pour tout} \ n \in \mathbb{N}, w_n = \frac{1}{n+1} \sum_{k=0}^n u_k \right.$$

Déterminer les éléments propres de T.

Exercice 54

Soit $n \in \mathbb{N}$. On considère la matrice $A = (a_{i,j})_{1 \le i,j \le n}$ avec pour tout $(i,j) \in [1,n]^2$, $a_{i,j} = \begin{cases} i & \text{si } j = n \\ j & \text{si } i = n \end{cases}$. 0 sinon

- **1.** La matrice A est-elle diagonalisable?
- 2. Déterminer ses éléments propres.

Exercice 55

Soient $A, B, C \in \mathcal{M}_n (\mathbb{C})$ telles que $C \neq 0_n$ et A C = C B.

- 1. Soit $k \in \mathbb{N}$. Montrer que $A^k C = C B^k$.
- **2.** Soit $P \in \mathbb{C}[X]$. Montrer que P(A)C = CP(B).
- 3. En déduire que A et B ont une valeur propre en commun.

Exercice 56

Soit $u \in \mathcal{L}\left(\mathbb{R}^4\right)$ tel que son polynôme caractéristique vérifie : $\chi_u\left(X^2\right) = \chi_u\left(X\right)\chi_u\left(X-1\right)$.

Déterminer tous les sous-espaces vectoriels de \mathbb{R}^4 stables par u.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on définit le commutant de A par $C(A) = \{M \in \mathcal{M}_n(\mathbb{C}), AM = MA\}$.

Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{C})$, dim $(C(A)) \ge n$, et chercher les cas d'égalité.

Exercice 58

Pour $C \in \mathcal{M}_{n,1}(\mathbb{R})$ et $L \in \mathcal{M}_{1,n}(\mathbb{R})$ non nulles, on pose $A = I_n + CL$.

- 1. Déterminer le rang de CL.
- **2.** Montrer que det (A) = 1 + LC.
- **3.** Exprimer A^2 en fonction de I_n , CL et LC.
- 4. Déterminer une condition nécessaire et suffisante d'inversibilité de A, et donner son inverse lorsqu'il existe.

Exercice 59

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n \left(\mathbb{C} \right)$ inversible et admettant n valeurs propres distinctes. On pose $M = \begin{pmatrix} 0 & A \\ I_n & 0 \end{pmatrix} \in \mathcal{M}_{2n} \left(\mathbb{C} \right)$.

- 1. Exprimer le polynôme caractéristique de M en fonction de celui de A.
- **2.** La matrice M est-elle diagonalisable?

Exercice 60

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ ayant le même polynôme caractéristique P.

- 1. Montrer que si P admet n racines distinctes, alors A et B sont semblables.
- 2. Donner deux matrices ayant le même polynôme caractéristique et qui ne sont pas semblables.

Exercice 61

1. Soit
$$E = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{M}_{n,1} (\mathbb{R})$$
. Montrer que $\{M \in \mathcal{M}_n (\mathbb{R}) | E \text{ est veceteur propre de } M \}$ est un sous-espace

vectoriel de \mathcal{M}_n (\mathbb{R}), et donner sa dimension.

2. Même question avec une autre colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nulle.

Exercice 62

Soit $A \in \mathcal{M}_n$ (\mathbb{C}) inversible.

- 1. Soient $P \in \mathbb{C}[X]$ annulateur de A^2 , de degré $p \in \mathbb{N}^*$, et $\lambda_1, ..., \lambda_p$ les racines de P comptées avec leur multiplicité. On pose $Q = P(X^2)$. Que peut-on dire de Q? Exprimer Q sous forme de produit de facteurs irréductibles.
- 2. Montrer que A est diagonalisable si et seulement si A^2 est diagonalisable.
- 3. Soit $M = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$. Montrer que M est diagonalisable si et seulement si A est diagonalisable.